Self‐Limited Epitaxial Growth of Ultrathin Nonlayered CdS Flakes for High‐Performance Photodetectors

2D nonlayered materials that possess appealing properties are entering the researchers' vision. However, direct access to the 2D level of these materials is still a great challenge due to the instrinsic isotropic chemical bond. This work presents the initially self‐limited epitaxial growth of u...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Advanced functional materials Ročník 28; číslo 20
Hlavní autori: Jin, Bao, Huang, Pu, Zhang, Qi, Zhou, Xing, Zhang, Xiuwen, Li, Liang, Su, Jianwei, Li, Huiqiao, Zhai, Tianyou
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Hoboken Wiley Subscription Services, Inc 16.05.2018
Predmet:
ISSN:1616-301X, 1616-3028
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract 2D nonlayered materials that possess appealing properties are entering the researchers' vision. However, direct access to the 2D level of these materials is still a great challenge due to the instrinsic isotropic chemical bond. This work presents the initially self‐limited epitaxial growth of ultrathin nonlayered CdS flakes (as thin as 6 nm) on mica substrate with a large domain size (>40 µm) by employing In2S3 as the passivation agent. Besides, the thickness and sizes of the products could be tunable by the addition level of In2S3 amount. The growth mechanism is evidenced via experiments and theoretical calculations, which is attributed to the surface distortion effect of In–S motif and the preference of local environments for In on the CdS (0001) surface. The photodetector designed on CdS flake demonstrates a high photoswitching ratio (up to 103), a high detectivity (D* ≈ 2.71 × 109 Jones), and fast photoresponse speed (τR = 14 ms, τD = 8 ms). The as‐proposed self‐limited epitaxial growth method opens a new avenue to synthetize 2D nonlayered materials and will promote their further applications in novel optoelectronic devices. This work presents the initially self‐limited epitaxial growth of ultrathin nonlayered CdS flakes (≈6 nm) on mica substrate with a large domain size (>40 µm) by employing In2S3 as the passivation agent. The growth mechanism is attributed to the surface distortion effect of In–S motif and the preference of local environments for In on the CdS (0001) surface.
AbstractList 2D nonlayered materials that possess appealing properties are entering the researchers' vision. However, direct access to the 2D level of these materials is still a great challenge due to the instrinsic isotropic chemical bond. This work presents the initially self‐limited epitaxial growth of ultrathin nonlayered CdS flakes (as thin as 6 nm) on mica substrate with a large domain size (>40 µm) by employing In2S3 as the passivation agent. Besides, the thickness and sizes of the products could be tunable by the addition level of In2S3 amount. The growth mechanism is evidenced via experiments and theoretical calculations, which is attributed to the surface distortion effect of In–S motif and the preference of local environments for In on the CdS (0001) surface. The photodetector designed on CdS flake demonstrates a high photoswitching ratio (up to 103), a high detectivity (D* ≈ 2.71 × 109 Jones), and fast photoresponse speed (τR = 14 ms, τD = 8 ms). The as‐proposed self‐limited epitaxial growth method opens a new avenue to synthetize 2D nonlayered materials and will promote their further applications in novel optoelectronic devices.
2D nonlayered materials that possess appealing properties are entering the researchers' vision. However, direct access to the 2D level of these materials is still a great challenge due to the instrinsic isotropic chemical bond. This work presents the initially self‐limited epitaxial growth of ultrathin nonlayered CdS flakes (as thin as 6 nm) on mica substrate with a large domain size (>40 µm) by employing In2S3 as the passivation agent. Besides, the thickness and sizes of the products could be tunable by the addition level of In2S3 amount. The growth mechanism is evidenced via experiments and theoretical calculations, which is attributed to the surface distortion effect of In–S motif and the preference of local environments for In on the CdS (0001) surface. The photodetector designed on CdS flake demonstrates a high photoswitching ratio (up to 103), a high detectivity (D* ≈ 2.71 × 109 Jones), and fast photoresponse speed (τR = 14 ms, τD = 8 ms). The as‐proposed self‐limited epitaxial growth method opens a new avenue to synthetize 2D nonlayered materials and will promote their further applications in novel optoelectronic devices. This work presents the initially self‐limited epitaxial growth of ultrathin nonlayered CdS flakes (≈6 nm) on mica substrate with a large domain size (>40 µm) by employing In2S3 as the passivation agent. The growth mechanism is attributed to the surface distortion effect of In–S motif and the preference of local environments for In on the CdS (0001) surface.
2D nonlayered materials that possess appealing properties are entering the researchers' vision. However, direct access to the 2D level of these materials is still a great challenge due to the instrinsic isotropic chemical bond. This work presents the initially self‐limited epitaxial growth of ultrathin nonlayered CdS flakes (as thin as 6 nm) on mica substrate with a large domain size (>40 µm) by employing In 2 S 3 as the passivation agent. Besides, the thickness and sizes of the products could be tunable by the addition level of In 2 S 3 amount. The growth mechanism is evidenced via experiments and theoretical calculations, which is attributed to the surface distortion effect of In–S motif and the preference of local environments for In on the CdS (0001) surface. The photodetector designed on CdS flake demonstrates a high photoswitching ratio (up to 10 3 ), a high detectivity ( D * ≈ 2.71 × 10 9 Jones), and fast photoresponse speed (τ R = 14 ms, τ D = 8 ms). The as‐proposed self‐limited epitaxial growth method opens a new avenue to synthetize 2D nonlayered materials and will promote their further applications in novel optoelectronic devices.
Author Li, Huiqiao
Zhang, Qi
Zhang, Xiuwen
Li, Liang
Jin, Bao
Huang, Pu
Su, Jianwei
Zhai, Tianyou
Zhou, Xing
Author_xml – sequence: 1
  givenname: Bao
  surname: Jin
  fullname: Jin, Bao
  organization: Huazhong University of Science and Technology (HUST)
– sequence: 2
  givenname: Pu
  surname: Huang
  fullname: Huang, Pu
  organization: Shenzhen University
– sequence: 3
  givenname: Qi
  surname: Zhang
  fullname: Zhang, Qi
  organization: Huazhong University of Science and Technology (HUST)
– sequence: 4
  givenname: Xing
  surname: Zhou
  fullname: Zhou, Xing
  organization: Huazhong University of Science and Technology (HUST)
– sequence: 5
  givenname: Xiuwen
  surname: Zhang
  fullname: Zhang, Xiuwen
  organization: Shenzhen University
– sequence: 6
  givenname: Liang
  surname: Li
  fullname: Li, Liang
  organization: Huazhong University of Science and Technology (HUST)
– sequence: 7
  givenname: Jianwei
  surname: Su
  fullname: Su, Jianwei
  organization: Huazhong University of Science and Technology (HUST)
– sequence: 8
  givenname: Huiqiao
  surname: Li
  fullname: Li, Huiqiao
  organization: Huazhong University of Science and Technology (HUST)
– sequence: 9
  givenname: Tianyou
  orcidid: 0000-0003-0985-4806
  surname: Zhai
  fullname: Zhai, Tianyou
  email: zhaity@hust.edu.cn
  organization: Huazhong University of Science and Technology (HUST)
BookMark eNqFkE1LAzEQhoNUsK1ePQc8tyab_cgeS-2HULVQBW9Lmkzc6HZTsym1N3-Cv9FfYqSiIIiHYWbgfWbg6aBWbWtA6JSSPiUkOhdKr_oRoZyEogeoTVOa9hiJeOt7pvdHqNM0jyGSZSxuo3IBlX5_fZuZlfGg8GhtvHgxosITZ7e-xFbju8o74UtT42tbV2IHLgSHaoHHlXiCBmvr8NQ8lOHMHFzYVqKWgOel9VaBB-mta47RoRZVAydfvYvuxqPb4bQ3u5lcDgeznmSc0V6uVCIgUZIsRcJiSLRKgKtU8FimAJppuWQR1zlhOskETxlbplxLnnOZ5VqzLjrb3107-7yBxhePduPq8LKICONRzDnJQqq_T0lnm8aBLtbOrITbFZQUnzaLT5vFt80AxL8AGUR5Y-vgxlR_Y_ke25oKdv88KQYX46sf9gMkHo_C
CitedBy_id crossref_primary_10_1002_cjoc_202200676
crossref_primary_10_1007_s10853_018_2845_8
crossref_primary_10_1007_s11426_019_9525_y
crossref_primary_10_1088_1361_6528_abde61
crossref_primary_10_1002_adma_201903580
crossref_primary_10_1016_j_apsusc_2021_151185
crossref_primary_10_1007_s40820_021_00692_6
crossref_primary_10_1002_adom_202301758
crossref_primary_10_1002_smll_202105383
crossref_primary_10_1016_j_solener_2024_112594
crossref_primary_10_1038_s41467_023_35983_6
crossref_primary_10_1038_s41467_023_36619_5
crossref_primary_10_1002_aelm_202101146
crossref_primary_10_1088_1361_648X_ad144f
crossref_primary_10_1039_C9NR08890C
crossref_primary_10_1038_s41467_019_12569_9
crossref_primary_10_1002_adma_202008422
crossref_primary_10_1088_1361_648X_acd509
crossref_primary_10_1002_aelm_202000962
crossref_primary_10_1002_adma_201804541
crossref_primary_10_1021_acsomega_4c06008
crossref_primary_10_1039_C8EE02143K
crossref_primary_10_1088_1361_6463_ab1e89
crossref_primary_10_4028_www_scientific_net_MSF_1001_104
crossref_primary_10_1109_JSTQE_2024_3350431
crossref_primary_10_1002_adfm_201909849
crossref_primary_10_1016_j_apsusc_2024_161830
crossref_primary_10_1002_adfm_201805880
crossref_primary_10_1039_D0MH00599A
crossref_primary_10_1002_elt2_43
crossref_primary_10_1002_adfm_202300141
crossref_primary_10_1038_s41467_024_53907_w
crossref_primary_10_1002_adfm_202006166
crossref_primary_10_1002_adfm_202105051
crossref_primary_10_1016_j_scitotenv_2019_133884
crossref_primary_10_1039_C9NR09070C
crossref_primary_10_1016_j_scib_2022_07_005
crossref_primary_10_1002_aelm_202001125
crossref_primary_10_1016_j_jallcom_2020_157489
crossref_primary_10_1039_D0RA08662B
crossref_primary_10_1016_j_apsusc_2018_11_078
crossref_primary_10_1002_adfm_202211548
crossref_primary_10_1039_D1MH00009H
crossref_primary_10_1063_5_0241377
crossref_primary_10_1007_s11664_018_06905_w
crossref_primary_10_1007_s40242_020_0221_8
crossref_primary_10_1039_D3RA04992B
crossref_primary_10_1021_acsaom_5c00164
crossref_primary_10_1002_adom_202000430
crossref_primary_10_1021_jacs_8b07383
crossref_primary_10_1002_adfm_202419319
crossref_primary_10_1016_j_sna_2020_111933
crossref_primary_10_1039_D3RA07065D
crossref_primary_10_3390_mi13010011
crossref_primary_10_1016_j_mattod_2022_07_007
crossref_primary_10_1002_admi_201900741
crossref_primary_10_1002_smll_202410411
crossref_primary_10_1002_apxr_202400186
crossref_primary_10_1002_adom_202100449
crossref_primary_10_1016_j_tsf_2023_139861
crossref_primary_10_1039_D0RA02033H
crossref_primary_10_1088_1361_6463_ad5694
crossref_primary_10_1002_adma_201908242
crossref_primary_10_1016_j_mtnano_2019_100051
crossref_primary_10_1002_smll_202201715
crossref_primary_10_1007_s11664_023_10638_w
crossref_primary_10_1002_adfm_201908902
crossref_primary_10_1002_adfm_201802707
crossref_primary_10_1002_adfm_201908382
crossref_primary_10_1021_acsaom_5c00094
crossref_primary_10_1002_smll_202005520
Cites_doi 10.1038/ncomms10444
10.1002/adma.201705015
10.1016/j.scib.2017.11.011
10.1039/C6NR02779B
10.1002/adma.201702359
10.1021/cm5025662
10.1002/smll.201503044
10.1021/nn5028104
10.1021/acsnano.7b07436
10.1007/s12274-016-1254-z
10.1021/acs.chemrev.6b00164
10.1038/natrevmats.2016.52
10.1002/adfm.201701011
10.1021/ja1090589
10.1021/jp203551f
10.1038/ncomms6678
10.1021/acsnano.5b04158
10.1016/j.nanoen.2015.02.027
10.1002/adma.201000144
10.1038/ncomms4789
10.1002/adfm.201703858
10.1038/nature06964
10.1038/nnano.2012.193
10.1021/jp0612073
10.1063/1.1915514
10.1002/adfm.201603886
10.1021/acs.nanolett.7b00937
10.1038/ncomms2066
10.1103/PhysRevLett.77.3865
10.1038/nmat3145
10.1002/adfm.200901884
10.1002/adfm.201603254
10.1038/ncomms8873
10.1038/nmat4742
10.1002/adma.201503873
10.1002/adfm.201702448
10.1002/adma.201504631
10.1103/PhysRevB.65.245308
10.1021/nl504258m
10.1126/science.1188035
10.1002/adma.201703122
10.1103/PhysRevB.54.11169
10.1021/nn3024255
10.1021/ja3021395
10.1021/nl1034495
10.1021/nl201874w
10.1002/adfm.201602494
10.1038/s41467-017-00427-5
10.1002/adfm.201600318
10.1063/1.1644625
10.1016/j.matlet.2013.04.032
10.1103/PhysRevLett.22.780
10.1002/adfm.201702918
10.1038/ncomms4813
10.1002/adma.201504572
ContentType Journal Article
Copyright 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
DBID AAYXX
CITATION
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1002/adfm.201800181
DatabaseName CrossRef
Electronics & Communications Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList Materials Research Database

CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1616-3028
EndPage n/a
ExternalDocumentID 10_1002_adfm_201800181
ADFM201800181
Genre article
GrantInformation_xml – fundername: National Key Research and Development Program of “Strategic Advanced Electronic Materials”
  funderid: 2016YFB0401100
– fundername: Fundamental Research Funds for the Central Universities
  funderid: 2015ZDTD038; 2017KFKJXX007
– fundername: National Nature Science Foundation of China
  funderid: 51472097; 91622117; 51727809; 11774239
– fundername: National Basic Research Program of China
  funderid: 2015CB932600
GroupedDBID -~X
.3N
.GA
05W
0R~
10A
1L6
1OC
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
UB1
V2E
W8V
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
~IA
~WT
.Y3
31~
AAMMB
AANHP
AAYXX
ACBWZ
ACRPL
ACYXJ
ADMLS
ADNMO
AEFGJ
AEYWJ
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
ASPBG
AVWKF
AZFZN
CITATION
FEDTE
HF~
HVGLF
O8X
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
ID FETCH-LOGICAL-c3831-9dd5ae5dc0ba534e5fd5e8d6a84c6eef3fcb328f903f57a8633b68fc898c79ff3
IEDL.DBID DRFUL
ISICitedReferencesCount 99
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000431959500011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1616-301X
IngestDate Fri Jul 25 06:05:19 EDT 2025
Tue Nov 18 22:07:53 EST 2025
Sat Nov 29 07:18:00 EST 2025
Wed Jan 22 16:43:26 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 20
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3831-9dd5ae5dc0ba534e5fd5e8d6a84c6eef3fcb328f903f57a8633b68fc898c79ff3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-0985-4806
PQID 2038248807
PQPubID 2045204
PageCount 9
ParticipantIDs proquest_journals_2038248807
crossref_primary_10_1002_adfm_201800181
crossref_citationtrail_10_1002_adfm_201800181
wiley_primary_10_1002_adfm_201800181_ADFM201800181
PublicationCentury 2000
PublicationDate May 16, 2018
PublicationDateYYYYMMDD 2018-05-16
PublicationDate_xml – month: 05
  year: 2018
  text: May 16, 2018
  day: 16
PublicationDecade 2010
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Advanced functional materials
PublicationYear 2018
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2017; 62
2015; 13
2011; 115
2015; 15
2017; 8
2015; 6
2004; 84
2010; 329
2017; 27
2013; 104
2014; 26
2006; 110
2011; 11
2005; 86
2011; 10
2017; 29
2015; 9
2016; 15
1996; 54
2011; 133
2016; 12
1996; 77
2010; 22
2016; 7
2010; 20
2014; 5
2016; 1
2012; 3
2015; 27
2012; 134
2017; 17
2017; 11
2002; 65
1969; 22
2017
2016; 116
2008; 453
2012; 6
2012; 7
2014; 8
2016; 28
2016; 26
2016; 8
2016; 9
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_17_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_1_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_47_1
e_1_2_7_26_1
e_1_2_7_49_1
e_1_2_7_28_1
e_1_2_7_50_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_52_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_54_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_56_1
e_1_2_7_37_1
e_1_2_7_39_1
e_1_2_7_6_1
e_1_2_7_4_1
e_1_2_7_8_1
e_1_2_7_18_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_48_1
e_1_2_7_27_1
e_1_2_7_29_1
Li H. (e_1_2_7_5_1) 2017
e_1_2_7_51_1
e_1_2_7_30_1
e_1_2_7_53_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_55_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_38_1
References_xml – volume: 453
  start-page: 638
  year: 2008
  publication-title: Nature
– volume: 27
  start-page: 1702918
  year: 2017
  publication-title: Adv. Funct. Mater.
– volume: 115
  start-page: 12826
  year: 2011
  publication-title: J. Phys. Chem. C
– volume: 26
  start-page: 6371
  year: 2014
  publication-title: Chem. Mater.
– volume: 7
  start-page: 10444
  year: 2016
  publication-title: Nat. Commun.
– volume: 26
  start-page: 6371
  year: 2016
  publication-title: Adv. Funct. Mater.
– volume: 9
  start-page: 3848
  year: 2016
  publication-title: Nano Res.
– volume: 6
  start-page: 6741
  year: 2012
  publication-title: ACS Nano
– volume: 20
  start-page: 561
  year: 2010
  publication-title: Adv. Funct. Mater.
– volume: 13
  start-page: 131
  year: 2015
  publication-title: Nano Energy
– volume: 15
  start-page: 1166
  year: 2016
  publication-title: Nat. Mater.
– volume: 116
  start-page: 10934
  year: 2016
  publication-title: Chem. Rev.
– volume: 12
  start-page: 874
  year: 2016
  publication-title: Small
– volume: 77
  start-page: 3865
  year: 1996
  publication-title: Phys. Rev. Lett.
– volume: 84
  start-page: 795
  year: 2004
  publication-title: Appl. Phys. Lett.
– volume: 22
  start-page: 780
  year: 1969
  publication-title: Phys. Rev. Lett.
– volume: 11
  start-page: 3051
  year: 2011
  publication-title: Nano Lett.
– volume: 65
  start-page: 245308
  year: 2002
  publication-title: Phys. Rev. B
– volume: 22
  start-page: 3161
  year: 2010
  publication-title: Adv. Mater.
– volume: 5
  start-page: 3789
  year: 2014
  publication-title: Nat. Commun.
– volume: 62
  start-page: 1654
  year: 2017
  publication-title: Sci. Bull.
– volume: 8
  start-page: 394
  year: 2017
  publication-title: Nat. Commun.
– volume: 54
  start-page: 11169
  year: 1996
  publication-title: Phys. Rev. B
– volume: 26
  start-page: 4405
  year: 2016
  publication-title: Adv. Funct. Mater.
– volume: 27
  start-page: 1702448
  year: 2017
  publication-title: Adv. Funct. Mater.
– volume: 28
  start-page: 1950
  year: 2016
  publication-title: Adv. Mater.
– volume: 27
  start-page: 1703858
  year: 2017
  publication-title: Adv. Funct. Mater.
– volume: 133
  start-page: 2052
  year: 2011
  publication-title: J. Am. Chem. Soc.
– volume: 9
  start-page: 9276
  year: 2015
  publication-title: ACS Nano
– volume: 5
  start-page: 3813
  year: 2014
  publication-title: Nat. Commun.
– volume: 29
  start-page: 1705015
  year: 2017
  publication-title: Adv. Mater.
– volume: 10
  start-page: 936
  year: 2011
  publication-title: Nat. Mater.
– volume: 104
  start-page: 87
  year: 2013
  publication-title: Mater. Lett.
– volume: 17
  start-page: 4165
  year: 2017
  publication-title: Nano Lett.
– volume: 29
  start-page: 1703122
  year: 2017
  publication-title: Adv. Mater.
– volume: 7
  start-page: 699
  year: 2012
  publication-title: Nat. Nanotechnol.
– volume: 8
  start-page: 7497
  year: 2014
  publication-title: ACS Nano
– volume: 6
  start-page: 7873
  year: 2015
  publication-title: Nat. Commun.
– volume: 29
  start-page: 1702359
  year: 2017
  publication-title: Adv. Mater.
– volume: 5
  start-page: 5678
  year: 2014
  publication-title: Nat. Commun.
– volume: 86
  start-page: 173105
  year: 2005
  publication-title: Appl. Phys. Lett.
– volume: 329
  start-page: 550
  year: 2010
  publication-title: Science
– volume: 28
  start-page: 2399
  year: 2016
  publication-title: Adv. Mater.
– volume: 27
  start-page: 8035
  year: 2015
  publication-title: Adv. Mater.
– volume: 8
  start-page: 11375
  year: 2016
  publication-title: Nanoscale
– volume: 27
  start-page: 1603886
  year: 2017
  publication-title: Adv. Funct. Mater.
– year: 2017
  publication-title: Chem. Rev.
– volume: 110
  start-page: 9448
  year: 2006
  publication-title: J. Phys. Chem. B
– volume: 1
  start-page: 16052
  year: 2016
  publication-title: Nat. Rev. Mater.
– volume: 15
  start-page: 1183
  year: 2015
  publication-title: Nano Lett.
– volume: 11
  start-page: 11803
  year: 2017
  publication-title: ACS Nano
– volume: 27
  start-page: 1603254
  year: 2017
  publication-title: Adv. Funct. Mater.
– volume: 11
  start-page: 5111
  year: 2011
  publication-title: Nano Lett.
– volume: 134
  start-page: 6132
  year: 2012
  publication-title: J. Am. Chem. Soc.
– volume: 27
  start-page: 1701011
  year: 2017
  publication-title: Adv. Funct. Mater.
– volume: 3
  start-page: 1057
  year: 2012
  publication-title: Nat. Commun.
– ident: e_1_2_7_14_1
  doi: 10.1038/ncomms10444
– ident: e_1_2_7_24_1
  doi: 10.1002/adma.201705015
– ident: e_1_2_7_32_1
  doi: 10.1016/j.scib.2017.11.011
– ident: e_1_2_7_28_1
  doi: 10.1039/C6NR02779B
– ident: e_1_2_7_35_1
  doi: 10.1002/adma.201702359
– ident: e_1_2_7_34_1
  doi: 10.1021/cm5025662
– ident: e_1_2_7_47_1
  doi: 10.1002/smll.201503044
– ident: e_1_2_7_30_1
  doi: 10.1021/nn5028104
– ident: e_1_2_7_4_1
  doi: 10.1021/acsnano.7b07436
– ident: e_1_2_7_53_1
  doi: 10.1007/s12274-016-1254-z
– ident: e_1_2_7_10_1
  doi: 10.1021/acs.chemrev.6b00164
– ident: e_1_2_7_2_1
  doi: 10.1038/natrevmats.2016.52
– ident: e_1_2_7_6_1
  doi: 10.1002/adfm.201701011
– ident: e_1_2_7_19_1
  doi: 10.1021/ja1090589
– ident: e_1_2_7_39_1
  doi: 10.1021/jp203551f
– ident: e_1_2_7_54_1
  doi: 10.1038/ncomms6678
– ident: e_1_2_7_33_1
  doi: 10.1021/acsnano.5b04158
– ident: e_1_2_7_46_1
  doi: 10.1016/j.nanoen.2015.02.027
– ident: e_1_2_7_48_1
  doi: 10.1002/adma.201000144
– ident: e_1_2_7_7_1
  doi: 10.1038/ncomms4789
– ident: e_1_2_7_50_1
  doi: 10.1002/adfm.201703858
– ident: e_1_2_7_15_1
  doi: 10.1038/nature06964
– ident: e_1_2_7_1_1
  doi: 10.1038/nnano.2012.193
– ident: e_1_2_7_18_1
  doi: 10.1021/jp0612073
– ident: e_1_2_7_45_1
  doi: 10.1063/1.1915514
– ident: e_1_2_7_3_1
  doi: 10.1002/adfm.201603886
– year: 2017
  ident: e_1_2_7_5_1
  publication-title: Chem. Rev.
– ident: e_1_2_7_17_1
  doi: 10.1021/acs.nanolett.7b00937
– ident: e_1_2_7_9_1
  doi: 10.1038/ncomms2066
– ident: e_1_2_7_56_1
  doi: 10.1103/PhysRevLett.77.3865
– ident: e_1_2_7_42_1
  doi: 10.1038/nmat3145
– ident: e_1_2_7_40_1
  doi: 10.1002/adfm.200901884
– ident: e_1_2_7_11_1
  doi: 10.1002/adfm.201603254
– ident: e_1_2_7_8_1
  doi: 10.1038/ncomms8873
– ident: e_1_2_7_13_1
  doi: 10.1038/nmat4742
– ident: e_1_2_7_52_1
  doi: 10.1002/adma.201503873
– ident: e_1_2_7_31_1
  doi: 10.1002/adfm.201702448
– ident: e_1_2_7_41_1
  doi: 10.1002/adma.201504631
– ident: e_1_2_7_12_1
  doi: 10.1103/PhysRevB.65.245308
– ident: e_1_2_7_51_1
  doi: 10.1021/nl504258m
– ident: e_1_2_7_16_1
  doi: 10.1126/science.1188035
– ident: e_1_2_7_29_1
  doi: 10.1002/adma.201703122
– ident: e_1_2_7_55_1
  doi: 10.1103/PhysRevB.54.11169
– ident: e_1_2_7_20_1
  doi: 10.1021/nn3024255
– ident: e_1_2_7_27_1
  doi: 10.1021/ja3021395
– ident: e_1_2_7_36_1
  doi: 10.1021/nl1034495
– ident: e_1_2_7_43_1
  doi: 10.1021/nl201874w
– ident: e_1_2_7_26_1
  doi: 10.1002/adfm.201602494
– ident: e_1_2_7_25_1
  doi: 10.1038/s41467-017-00427-5
– ident: e_1_2_7_22_1
  doi: 10.1002/adfm.201600318
– ident: e_1_2_7_38_1
  doi: 10.1063/1.1644625
– ident: e_1_2_7_21_1
  doi: 10.1016/j.matlet.2013.04.032
– ident: e_1_2_7_37_1
  doi: 10.1103/PhysRevLett.22.780
– ident: e_1_2_7_49_1
  doi: 10.1002/adfm.201702918
– ident: e_1_2_7_23_1
  doi: 10.1038/ncomms4813
– ident: e_1_2_7_44_1
  doi: 10.1002/adma.201504572
SSID ssj0017734
Score 2.5599353
Snippet 2D nonlayered materials that possess appealing properties are entering the researchers' vision. However, direct access to the 2D level of these materials is...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms 2D CdS flakes
Chemical bonds
Epitaxial growth
Flakes
Materials science
Mica
nonlayered materials
Optoelectronic devices
photodetector
Photometers
self‐limited epitaxial growth
Substrates
Surface distortion
Title Self‐Limited Epitaxial Growth of Ultrathin Nonlayered CdS Flakes for High‐Performance Photodetectors
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.201800181
https://www.proquest.com/docview/2038248807
Volume 28
WOSCitedRecordID wos000431959500011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1616-3028
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017734
  issn: 1616-301X
  databaseCode: DRFUL
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NS8MwFA8yPejBb3E6JQfBU7FN2iQ9DrV60DHUwW4ln0wcm6xV9Oaf4N_oX2LSdt12EEFvLU0fIXmfyXu_B8AJIoJijKhHiJReiKnwYomYR60m9LWwAsVZ0WyCdjqs34-7c1X8JT5EfeDmJKPQ107AucjOZqChXBlXSR4w11fOxj_LyDJv1ADLF3dJ76a-SaC0vFkmgcvxCvpT4EYfnS1SWDRMM29z3mctjE6y8f_pboL1yuGE7ZJDtsCSHm2DtTkYwh0wuNdD8_XxWRU7wUvXSeTNMia8skF6PoBjA3tDB2M7eBzBjp0Nf3ctPuG5uofJkD_pDFrfF7qcEUumO6tFgN3BOB8rnRd3A9ku6CWXD-fXXtWBwZM2cg28WKmI60hJX_AIhzoyKtJMEc5CSbQ22EiBETOxj01EOSMYC8KMZDGTNDYG74HGaDzS-wA6w-dTIYOAixBpEauQMGWdFRUobg1kE3jT5U9lBU_uumQM0xJYGaVuBdN6BZvgtB7_XAJz_DiyNd3NtBLQzH7FDDnlRZsAFfv2C5W0fZHc1m8Hf_npEKy6Z5d7EJAWaOSTF30EVuRr_phNjivG_Qa4OPDv
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1PT9swFLcmmAQcgMEQHQx8mLRTRGIntnOsChkTpaoGlXqL_FetqFpEA9pu-wh8Rj4JfkmawmFCmjgmcSzr-f2z33u_h9A3whSnlPCAMa2DmHIVpJqIgHtNGFrlBUqKstkE7_XEcJj262xCqIWp8CGaCzeQjFJfg4DDhfTJEjVUGgel5JGAxnL-ALQae17yTL56-isbdJtQAudVaJlFkOQVDRfIjSE5eT3Da8u0dDdfOq2l1cm23mG922izdjlxu-KRT-iDne6gjRdAhLtodGUn7unvY13uhM-gl8hvz5r4hz-mFyM8c3gwASDb0XiKe3458g80-cQdc4Wzibyxc-y9XwxZI36a_rIaAfdHs2JmbFFGB-af0SA7u-6cB3UPhkD7s2sUpMYk0iZGh0omNLaJM4kVhkkRa2ato04rSoRLQ-oSLgWjVDHhtEiF5qlzdA-tTGdTu48wmL6QKx1FUsXEqtTETBjvrpjISG8iWyhY0D_XNUA59MmY5BW0MsmBgnlDwRb63oy_raA5_jnycLGdeS2ic_-VCgLqi7cQKTfujVny9ml22Tx9-Z-fjtHa-fVlN-_-7F0coHV4D5kIETtEK8Xdvf2KPuqHYjy_O6q5-BkotfTf
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bT9swFD5CZZq2BzZ20coY8wPSniISO7GdR0TJhmBVBVTqW-SriqhaRLNpvPET9hv3S-aTpCk8TJOmPSZxLMs-N9vnfB_APuVaMEZFxLkxUcqEjnJDZSSCJYydDgqlZE02IYZDOZnkozabEGthGnyI7sANNaO216jg7sb6gzVqqLIeS8kTicRyYQO0mSKTTA82B-fF-Ky7ShCiuVrmCSZ5JZMVcmNMDx738NgzrcPNh0Fr7XWKF_9hvC9hqw05yWEjI9uw4eav4PkDIMLXML1wM__r_mdb7kSOkUvkRxBN8jls06spWXgyniGQ7fRqToZhOOoOST7Jkb0gxUxduyUJ0S_BrJHQzWhdjUBG00W1sK6qbweWb2BcHF8efYlaDobIhL1rEuXWZspl1sRaZSx1mbeZk5YrmRrunGfeaEalz2PmM6EkZ0xz6Y3MpRG59-wt9OaLuXsHBF1fLLRJEqVT6nRuUy5tCFdsYlVwkX2IVvNfmhagHHkyZmUDrUxLnMGym8E-fOra3zTQHH9subtazrJV0WX4yiRF8yX6QOuF-0sv5eGg-No97fzLTx_h6WhQlGcnw9P38AxfYyJCwnehV91-cx_gifleXS1v91oh_g3D5fRa
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Self%E2%80%90Limited+Epitaxial+Growth+of+Ultrathin+Nonlayered+CdS+Flakes+for+High%E2%80%90Performance+Photodetectors&rft.jtitle=Advanced+functional+materials&rft.au=Bao%2C+Jin&rft.au=Huang%2C+Pu&rft.au=Zhang%2C+Qi&rft.au=Zhou%2C+Xing&rft.date=2018-05-16&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=28&rft.issue=20&rft_id=info:doi/10.1002%2Fadfm.201800181&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon