Bioinspired Perspiration‐Wicking Electronic Skins for Comfortable and Reliable Multimodal Health Monitoring

Electronic skins (e‐skins) have gained tremendous attention in health monitoring and disease diagnosis. However, the accumulated sweat at the skin/e‐skin interface would compromise the comfort, reliability, and fidelity for long‐term monitoring. Here, inspired by the active liquid transport phenomen...

Full description

Saved in:
Bibliographic Details
Published in:Advanced functional materials Vol. 32; no. 23
Main Authors: Xu, Yanting, Guo, Wei, Zhou, Shiqing, Yi, Haokun, Yang, Guoqing, Mei, Shuxing, Zhu, Kanhao, Wu, Hao, Li, Zhuo
Format: Journal Article
Language:English
Published: Hoboken Wiley Subscription Services, Inc 01.06.2022
Subjects:
ISSN:1616-301X, 1616-3028
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Electronic skins (e‐skins) have gained tremendous attention in health monitoring and disease diagnosis. However, the accumulated sweat at the skin/e‐skin interface would compromise the comfort, reliability, and fidelity for long‐term monitoring. Here, inspired by the active liquid transport phenomenon in nature, a biomimetic gold/thermoplastic polyurethane/cellulose membrane (Au/TPU/CM) based e‐skin is reported that can “pump” perspiration from the interface immediately through the combination of gradient porosity and surface energy gradient. The resulting electrode possesses good conductivity (2.68 Ω sq–1), excellent flexibility (the resistance only fluctuated 1.1% and 0.4% after 10 000 bending cycles and 2500 tensile cycles, respectively), and outstanding water vapor transmission and water evaporation rate (2.2 and 7.1 times as much as that of cotton fabric, respectively). The ultrafast perspiration‐wicking capability not only improves the wearing comfort but also minimizes the measurement error of skin hydration and temperature due to perspiration, eliminates the risk of short circuit in sensor array, and reduces the noise level, significantly enhancing the accuracy and reliability of multimodal sensing in e‐skins. The design strategy may encourage more material and structure development in e‐skins with improved sweat tolerance. This study leverages controlled liquid transport principles in biosystems in e‐skin design and achieves active and unidirectional transportation of sweat away from the skin through the construction of dual porosity and surface energy gradients, preventing signal degradation and wearing discomfort caused by perspiration accumulation.
AbstractList Electronic skins (e‐skins) have gained tremendous attention in health monitoring and disease diagnosis. However, the accumulated sweat at the skin/e‐skin interface would compromise the comfort, reliability, and fidelity for long‐term monitoring. Here, inspired by the active liquid transport phenomenon in nature, a biomimetic gold/thermoplastic polyurethane/cellulose membrane (Au/TPU/CM) based e‐skin is reported that can “pump” perspiration from the interface immediately through the combination of gradient porosity and surface energy gradient. The resulting electrode possesses good conductivity (2.68 Ω sq–1), excellent flexibility (the resistance only fluctuated 1.1% and 0.4% after 10 000 bending cycles and 2500 tensile cycles, respectively), and outstanding water vapor transmission and water evaporation rate (2.2 and 7.1 times as much as that of cotton fabric, respectively). The ultrafast perspiration‐wicking capability not only improves the wearing comfort but also minimizes the measurement error of skin hydration and temperature due to perspiration, eliminates the risk of short circuit in sensor array, and reduces the noise level, significantly enhancing the accuracy and reliability of multimodal sensing in e‐skins. The design strategy may encourage more material and structure development in e‐skins with improved sweat tolerance. This study leverages controlled liquid transport principles in biosystems in e‐skin design and achieves active and unidirectional transportation of sweat away from the skin through the construction of dual porosity and surface energy gradients, preventing signal degradation and wearing discomfort caused by perspiration accumulation.
Electronic skins (e‐skins) have gained tremendous attention in health monitoring and disease diagnosis. However, the accumulated sweat at the skin/e‐skin interface would compromise the comfort, reliability, and fidelity for long‐term monitoring. Here, inspired by the active liquid transport phenomenon in nature, a biomimetic gold/thermoplastic polyurethane/cellulose membrane (Au/TPU/CM) based e‐skin is reported that can “pump” perspiration from the interface immediately through the combination of gradient porosity and surface energy gradient. The resulting electrode possesses good conductivity (2.68 Ω sq –1 ), excellent flexibility (the resistance only fluctuated 1.1% and 0.4% after 10 000 bending cycles and 2500 tensile cycles, respectively), and outstanding water vapor transmission and water evaporation rate (2.2 and 7.1 times as much as that of cotton fabric, respectively). The ultrafast perspiration‐wicking capability not only improves the wearing comfort but also minimizes the measurement error of skin hydration and temperature due to perspiration, eliminates the risk of short circuit in sensor array, and reduces the noise level, significantly enhancing the accuracy and reliability of multimodal sensing in e‐skins. The design strategy may encourage more material and structure development in e‐skins with improved sweat tolerance.
Author Mei, Shuxing
Li, Zhuo
Guo, Wei
Yang, Guoqing
Wu, Hao
Zhou, Shiqing
Xu, Yanting
Zhu, Kanhao
Yi, Haokun
Author_xml – sequence: 1
  givenname: Yanting
  surname: Xu
  fullname: Xu, Yanting
  organization: Fudan University
– sequence: 2
  givenname: Wei
  surname: Guo
  fullname: Guo, Wei
  organization: Huazhong University of Science and Technology
– sequence: 3
  givenname: Shiqing
  surname: Zhou
  fullname: Zhou, Shiqing
  organization: Tongji University
– sequence: 4
  givenname: Haokun
  surname: Yi
  fullname: Yi, Haokun
  organization: Fudan University
– sequence: 5
  givenname: Guoqing
  surname: Yang
  fullname: Yang, Guoqing
  organization: Fudan University
– sequence: 6
  givenname: Shuxing
  surname: Mei
  fullname: Mei, Shuxing
  organization: Fudan University
– sequence: 7
  givenname: Kanhao
  surname: Zhu
  fullname: Zhu, Kanhao
  organization: Huazhong University of Science and Technology
– sequence: 8
  givenname: Hao
  orcidid: 0000-0003-1494-0848
  surname: Wu
  fullname: Wu, Hao
  email: hwu16@hust.edu.cn
  organization: Huazhong University of Science and Technology
– sequence: 9
  givenname: Zhuo
  surname: Li
  fullname: Li, Zhuo
  email: zhuo_li@fudan.edu.cn
  organization: Fudan University
BookMark eNqFkM1KAzEUhYNUsK1uXQdcT00yP80sa22t0KL4g-5CJpNoamZSkxTpzkfwGX0Sp61UEMTVPfdyvnu5pwNata0lAMcY9TBC5JSXquoRRAhCeYb3QBtnOItiRGhrp_HjAeh4P0cI9_tx0gbVmba69gvtZAmvpVsrHrStP98_HrR40fUTHBkpgrO1FvC2GXiorINDWzUl8MJIyOsS3kijN81saYKubMkNnEhuwjOcNWiwrll1CPYVN14efdcuuB-P7oaTaHp1cTkcTCMR0xhHWUKUVHmMRJIozousEFnJU4lVWeQFkTmiKqeK8pTGAucJSguiKCkFpkimqoi74GS7d-Hs61L6wOZ26ermJCNZn9CUYIwbV7J1CWe9d1IxocPm-eC4Ngwjtg6WrYNlu2AbrPcLWzhdcbf6G8i3wJs2cvWPmw3Ox7Mf9gsCbpEC
CitedBy_id crossref_primary_10_1002_SMMD_20230023
crossref_primary_10_1002_adfm_202406789
crossref_primary_10_1002_advs_202302858
crossref_primary_10_1002_agt2_319
crossref_primary_10_1016_j_nanoen_2023_108194
crossref_primary_10_1002_adhm_202303461
crossref_primary_10_1002_adma_202502118
crossref_primary_10_1002_adfm_202300794
crossref_primary_10_1021_acsnano_5c10988
crossref_primary_10_1016_j_mtcomm_2023_107968
crossref_primary_10_1109_TCPMT_2025_3539978
crossref_primary_10_3390_biomimetics8030293
crossref_primary_10_1038_s43246_025_00839_7
crossref_primary_10_1063_5_0102883
crossref_primary_10_1007_s42765_025_00533_w
crossref_primary_10_1002_adsr_202300195
crossref_primary_10_1002_smll_202206572
crossref_primary_10_1002_adfm_202204467
crossref_primary_10_1002_marc_202500557
crossref_primary_10_1021_acssensors_5c00554
crossref_primary_10_1016_j_cej_2025_163399
crossref_primary_10_1016_j_cej_2023_142350
crossref_primary_10_1038_s41467_024_53407_x
crossref_primary_10_1016_j_snb_2025_137954
crossref_primary_10_1016_j_mattod_2023_02_023
crossref_primary_10_1126_sciadv_ads1301
crossref_primary_10_1002_adma_202417799
crossref_primary_10_1002_admt_202201193
crossref_primary_10_1007_s40820_023_01094_6
crossref_primary_10_1109_JSEN_2023_3293248
crossref_primary_10_1016_j_cej_2023_142945
crossref_primary_10_1002_adfm_202211056
crossref_primary_10_1007_s40843_022_2444_0
crossref_primary_10_1007_s42765_024_00428_2
crossref_primary_10_1063_5_0173884
crossref_primary_10_1002_admi_202202263
crossref_primary_10_1002_cmtd_202200081
crossref_primary_10_1038_s41467_024_45006_7
crossref_primary_10_1002_adhm_202403780
crossref_primary_10_1016_j_biotechadv_2023_108297
crossref_primary_10_1002_smtd_202402164
crossref_primary_10_1007_s10570_024_06338_1
crossref_primary_10_1016_j_cej_2022_137518
crossref_primary_10_1016_j_nanoms_2025_05_003
crossref_primary_10_1021_acsanm_5c01353
crossref_primary_10_1002_adma_202402527
crossref_primary_10_1016_j_nanoen_2022_107311
crossref_primary_10_1021_acsmaterialslett_5c00732
Cites_doi 10.1038/nature08729
10.1002/smll.201900755
10.1038/nmat4289
10.1021/acsnano.8b08242
10.1002/adma.201902062
10.1126/sciadv.1501856
10.1016/j.jelekin.2012.04.009
10.1682/JRRD.2014.04.0108
10.1038/ncomms6674
10.1682/JRRD.2013.06.0133
10.1038/s41551-021-00685-1
10.1039/C7CS00730B
10.1002/adma.201204426
10.1038/s41563-020-00902-3
10.1002/adma.201502386
10.1002/adma.201804187
10.1126/science.1182383
10.1002/adfm.201303886
10.1021/acsnano.1c01431
10.1002/adfm.201907312
10.1021/acs.langmuir.7b01797
10.1016/j.jcis.2020.01.063
10.1002/adhm.202001322
10.1038/nature16521
10.1002/adfm.202109109
10.1038/ncomms5779
10.1038/s41565-018-0244-6
10.1038/nmat3755
10.1002/adfm.201800832
10.1002/advs.202001938
10.1021/acsnano.0c00906
10.1038/ncomms6745
10.1073/pnas.2008422117
10.1002/adma.201904113
10.1126/science.1206157
10.1038/s41551-019-0347-x
10.1021/acs.chemrev.7b00291
10.1021/acsnano.8b04245
10.1002/smll.201801527
10.1126/sciadv.1601314
10.1073/pnas.2020398118
10.1038/s41563-020-0638-3
10.1039/C8NR02492H
10.1038/nmat2834
10.1126/sciadv.abg8459
10.1002/smll.201400483
10.1002/adma.201804327
10.1002/adma.201806501
10.1016/j.apmr.2007.11.054
10.1002/adma.202106570
10.1039/D0NR04346J
10.1039/C3NR05348B
10.1038/s41467-021-25152-y
10.1038/nnano.2017.125
10.1126/science.1154367
10.1007/s11517-007-0168-z
10.1126/sciadv.1600418
ContentType Journal Article
Copyright 2022 Wiley‐VCH GmbH
Copyright_xml – notice: 2022 Wiley‐VCH GmbH
DBID AAYXX
CITATION
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1002/adfm.202200961
DatabaseName CrossRef
Electronics & Communications Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList
CrossRef
Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1616-3028
EndPage n/a
ExternalDocumentID 10_1002_adfm_202200961
ADFM202200961
Genre article
GrantInformation_xml – fundername: National Key Research and Development Program of China
  funderid: 2017YFA0204600
– fundername: National Natural Science Foundation of China
  funderid: 52173071
– fundername: National Natural Science Foundation of China
  funderid: U2013213; 51820105008
GroupedDBID -~X
.3N
.GA
05W
0R~
10A
1L6
1OC
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
UB1
V2E
W8V
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
~IA
~WT
.Y3
31~
AAMMB
AANHP
AASGY
AAYXX
ACBWZ
ACRPL
ACYXJ
ADMLS
ADNMO
AEFGJ
AEYWJ
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
HF~
HVGLF
LW6
O8X
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
ID FETCH-LOGICAL-c3831-642fef930c44faab6bc6da5e1fdb9b2e908f98f8a583c19405b2f82dc180e5fb3
IEDL.DBID DRFUL
ISICitedReferencesCount 91
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000788658000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1616-301X
IngestDate Mon Jul 14 08:12:48 EDT 2025
Sat Nov 29 07:17:41 EST 2025
Tue Nov 18 21:06:17 EST 2025
Wed Jan 22 16:24:46 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 23
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3831-642fef930c44faab6bc6da5e1fdb9b2e908f98f8a583c19405b2f82dc180e5fb3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-1494-0848
PQID 2672852111
PQPubID 2045204
PageCount 12
ParticipantIDs proquest_journals_2672852111
crossref_citationtrail_10_1002_adfm_202200961
crossref_primary_10_1002_adfm_202200961
wiley_primary_10_1002_adfm_202200961_ADFM202200961
PublicationCentury 2000
PublicationDate 2022-06-01
PublicationDateYYYYMMDD 2022-06-01
PublicationDate_xml – month: 06
  year: 2022
  text: 2022-06-01
  day: 01
PublicationDecade 2020
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Advanced functional materials
PublicationYear 2022
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2008 2014 2015; 89 51 52
2019; 31
2021 2020; 12 117
2021 2021 2017; 7 20 12
2018 2018; 34 28
2010; 463
2018 2013; 13 12
2014; 24
2020; 14
2016 2019 2020 2020 2021 2015; 529 48 32 32 8 27
2019 2010 2008; 3 327 320
2020; 565
2012 2007; 22 45
2021; 15
2020 2014 2011; 19 5 333
2016 2014; 2 5
2019 2019; 31 31
2014 2014 2017; 5 6 117
2013 2017 2021; 25 3 5
2021 2022 2020; 8 32 12
2018 2019; 14 13
2018 2022; 30 34
2010 2016; 9 2
2018 2019; 12 15
2020 2018; 9 10
2021; 118
2014; 10
2015 2020; 14 30
e_1_2_8_28_1
e_1_2_8_28_2
e_1_2_8_28_3
e_1_2_8_22_3
e_1_2_8_24_1
e_1_2_8_24_2
e_1_2_8_26_1
e_1_2_8_26_2
e_1_2_8_9_2
e_1_2_8_3_1
e_1_2_8_1_2
e_1_2_8_1_5
e_1_2_8_5_1
e_1_2_8_1_4
e_1_2_8_3_2
e_1_2_8_7_1
e_1_2_8_1_6
e_1_2_8_5_2
e_1_2_8_9_1
Huang H. Z. (e_1_2_8_22_1) 2021; 8
e_1_2_8_20_1
e_1_2_8_20_2
e_1_2_8_22_2
e_1_2_8_1_1
e_1_2_8_17_1
e_1_2_8_17_2
e_1_2_8_19_1
e_1_2_8_11_3
e_1_2_8_13_1
e_1_2_8_15_1
e_1_2_8_11_1
e_1_2_8_11_2
e_1_2_8_23_2
e_1_2_8_23_3
e_1_2_8_25_1
e_1_2_8_25_2
e_1_2_8_27_1
e_1_2_8_8_3
e_1_2_8_2_2
e_1_2_8_2_1
e_1_2_8_2_3
e_1_2_8_4_1
e_1_2_8_6_2
e_1_2_8_6_1
e_1_2_8_8_2
e_1_2_8_8_1
e_1_2_8_21_1
e_1_2_8_23_1
e_1_2_8_18_1
e_1_2_8_18_2
e_1_2_8_12_2
e_1_2_8_12_3
e_1_2_8_14_1
e_1_2_8_14_2
e_1_2_8_16_1
e_1_2_8_10_1
Lim H. R. (e_1_2_8_1_3) 2020; 32
e_1_2_8_10_2
e_1_2_8_12_1
References_xml – volume: 14
  start-page: 5798
  year: 2020
  publication-title: ACS Nano
– volume: 8 32 12
  year: 2021 2022 2020
  publication-title: Adv. Mater. Interfaces Adv. Funct. Mater. Nanoscale
– volume: 12 117
  start-page: 4880
  year: 2021 2020
  publication-title: Nat. Commun. Proc. Natl. Acad. Sci. USA
– volume: 463
  start-page: 640
  year: 2010
  publication-title: Nature
– volume: 15
  start-page: 9955
  year: 2021
  publication-title: ACS Nano
– volume: 14 13
  start-page: 1060
  year: 2018 2019
  publication-title: Small ACS Nano
– volume: 89 51 52
  start-page: 1407 855 31
  year: 2008 2014 2015
  publication-title: Arch. Phys. Med. Rehabil. J. Rehabil. Res. Dev. J. Rehabil. Res. Dev.
– volume: 22 45
  start-page: 908 447
  year: 2012 2007
  publication-title: J. Electromyogr. Kinesiol. Med. Biol. Eng. Comput.
– volume: 10
  start-page: 3083
  year: 2014
  publication-title: Small
– volume: 13 12
  start-page: 1057 938
  year: 2018 2013
  publication-title: Nat. Nanotechnol. Nat. Mater.
– volume: 34 28
  start-page: 1235
  year: 2018 2018
  publication-title: Langmuir Adv. Funct. Mater.
– volume: 5 6 117
  start-page: 5674 711
  year: 2014 2014 2017
  publication-title: Nat. Commun. Nanoscale Chem. Rev.
– volume: 31
  year: 2019
  publication-title: Adv. Mater.
– volume: 12 15
  start-page: 9326
  year: 2018 2019
  publication-title: ACS Nano Small
– volume: 30 34
  year: 2018 2022
  publication-title: Adv. Mater. Adv. Mater.
– volume: 529 48 32 32 8 27
  start-page: 509 1465 6423 6423
  year: 2016 2019 2020 2020 2021 2015
  publication-title: Nature Chem. Soc. Rev. Adv. Mater. Adv. Mater. Adv. Sci. Adv. Mater.
– volume: 7 20 12
  start-page: 859 907
  year: 2021 2021 2017
  publication-title: Sci. Adv. Nat. Mater. Nat. Nanotechnol.
– volume: 3 327 320
  start-page: 194 1603 507
  year: 2019 2010 2008
  publication-title: Nat. Biomed. Eng. Science Science
– volume: 25 3 5
  start-page: 2773 737
  year: 2013 2017 2021
  publication-title: Adv. Mater. Sci. Adv. Nat. Biomed. Eng.
– volume: 14 30
  start-page: 728
  year: 2015 2020
  publication-title: Nat. Mater. Adv. Funct. Mater.
– volume: 31 31
  year: 2019 2019
  publication-title: Adv. Mater. Adv. Mater.
– volume: 24
  start-page: 3846
  year: 2014
  publication-title: Adv. Funct. Mater.
– volume: 118
  year: 2021
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 2 5
  start-page: 5745
  year: 2016 2014
  publication-title: Sci. Adv. Nat. Commun.
– volume: 565
  start-page: 426
  year: 2020
  publication-title: J. Colloid Interface Sci.
– volume: 9 2
  start-page: 859
  year: 2010 2016
  publication-title: Nat. Mater. Sci. Adv.
– volume: 19 5 333
  start-page: 679 4779 838
  year: 2020 2014 2011
  publication-title: Nat. Mater. Nat. Commun. Science
– volume: 9 10
  year: 2020 2018
  publication-title: Adv. Healthcare Mater. Nanoscale
– ident: e_1_2_8_19_1
  doi: 10.1038/nature08729
– ident: e_1_2_8_14_2
  doi: 10.1002/smll.201900755
– ident: e_1_2_8_9_1
  doi: 10.1038/nmat4289
– ident: e_1_2_8_18_2
  doi: 10.1021/acsnano.8b08242
– ident: e_1_2_8_1_4
  doi: 10.1002/adma.201902062
– ident: e_1_2_8_6_2
  doi: 10.1126/sciadv.1501856
– ident: e_1_2_8_10_1
  doi: 10.1016/j.jelekin.2012.04.009
– ident: e_1_2_8_12_3
  doi: 10.1682/JRRD.2014.04.0108
– ident: e_1_2_8_23_1
  doi: 10.1038/ncomms6674
– ident: e_1_2_8_12_2
  doi: 10.1682/JRRD.2013.06.0133
– ident: e_1_2_8_28_3
  doi: 10.1038/s41551-021-00685-1
– ident: e_1_2_8_1_2
  doi: 10.1039/C7CS00730B
– ident: e_1_2_8_28_1
  doi: 10.1002/adma.201204426
– ident: e_1_2_8_11_2
  doi: 10.1038/s41563-020-00902-3
– ident: e_1_2_8_1_6
  doi: 10.1002/adma.201502386
– ident: e_1_2_8_17_1
  doi: 10.1002/adma.201804187
– ident: e_1_2_8_8_2
  doi: 10.1126/science.1182383
– ident: e_1_2_8_4_1
  doi: 10.1002/adfm.201303886
– ident: e_1_2_8_15_1
  doi: 10.1021/acsnano.1c01431
– ident: e_1_2_8_9_2
  doi: 10.1002/adfm.201907312
– ident: e_1_2_8_20_1
  doi: 10.1021/acs.langmuir.7b01797
– ident: e_1_2_8_21_1
  doi: 10.1016/j.jcis.2020.01.063
– ident: e_1_2_8_25_1
  doi: 10.1002/adhm.202001322
– ident: e_1_2_8_1_1
  doi: 10.1038/nature16521
– ident: e_1_2_8_22_2
  doi: 10.1002/adfm.202109109
– ident: e_1_2_8_2_2
  doi: 10.1038/ncomms5779
– ident: e_1_2_8_3_1
  doi: 10.1038/s41565-018-0244-6
– ident: e_1_2_8_3_2
  doi: 10.1038/nmat3755
– ident: e_1_2_8_20_2
  doi: 10.1002/adfm.201800832
– ident: e_1_2_8_1_5
  doi: 10.1002/advs.202001938
– ident: e_1_2_8_13_1
  doi: 10.1021/acsnano.0c00906
– ident: e_1_2_8_5_2
  doi: 10.1038/ncomms6745
– ident: e_1_2_8_26_2
  doi: 10.1073/pnas.2008422117
– ident: e_1_2_8_16_1
  doi: 10.1002/adma.201904113
– ident: e_1_2_8_2_3
  doi: 10.1126/science.1206157
– ident: e_1_2_8_8_1
  doi: 10.1038/s41551-019-0347-x
– volume: 32
  start-page: 6423
  year: 2020
  ident: e_1_2_8_1_3
  publication-title: Adv. Mater.
– ident: e_1_2_8_23_3
  doi: 10.1021/acs.chemrev.7b00291
– ident: e_1_2_8_14_1
  doi: 10.1021/acsnano.8b04245
– ident: e_1_2_8_18_1
  doi: 10.1002/smll.201801527
– ident: e_1_2_8_28_2
  doi: 10.1126/sciadv.1601314
– ident: e_1_2_8_27_1
  doi: 10.1073/pnas.2020398118
– volume: 8
  start-page: 2101602
  year: 2021
  ident: e_1_2_8_22_1
  publication-title: Adv. Mater. Interfaces
– ident: e_1_2_8_2_1
  doi: 10.1038/s41563-020-0638-3
– ident: e_1_2_8_25_2
  doi: 10.1039/C8NR02492H
– ident: e_1_2_8_6_1
  doi: 10.1038/nmat2834
– ident: e_1_2_8_11_1
  doi: 10.1126/sciadv.abg8459
– ident: e_1_2_8_7_1
  doi: 10.1002/smll.201400483
– ident: e_1_2_8_24_1
  doi: 10.1002/adma.201804327
– ident: e_1_2_8_17_2
  doi: 10.1002/adma.201806501
– ident: e_1_2_8_12_1
  doi: 10.1016/j.apmr.2007.11.054
– ident: e_1_2_8_24_2
  doi: 10.1002/adma.202106570
– ident: e_1_2_8_22_3
  doi: 10.1039/D0NR04346J
– ident: e_1_2_8_23_2
  doi: 10.1039/C3NR05348B
– ident: e_1_2_8_26_1
  doi: 10.1038/s41467-021-25152-y
– ident: e_1_2_8_11_3
  doi: 10.1038/nnano.2017.125
– ident: e_1_2_8_8_3
  doi: 10.1126/science.1154367
– ident: e_1_2_8_10_2
  doi: 10.1007/s11517-007-0168-z
– ident: e_1_2_8_5_1
  doi: 10.1126/sciadv.1600418
SSID ssj0017734
Score 2.6316063
Snippet Electronic skins (e‐skins) have gained tremendous attention in health monitoring and disease diagnosis. However, the accumulated sweat at the skin/e‐skin...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms bioinspired
Biomimetics
Cotton
electronic skins
Energy gradient
Error analysis
Evaporation rate
Materials science
multimodal monitoring
Noise levels
Perspiration
perspiration‐wicking
Polyurethane resins
Reliability
Sensor arrays
Short circuits
Surface energy
Sweat
Sweating
Transport phenomena
unidirectional water transport
Urethane thermoplastic elastomers
Water vapor
Title Bioinspired Perspiration‐Wicking Electronic Skins for Comfortable and Reliable Multimodal Health Monitoring
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.202200961
https://www.proquest.com/docview/2672852111
Volume 32
WOSCitedRecordID wos000788658000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1616-3028
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017734
  issn: 1616-301X
  databaseCode: DRFUL
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV29TsMwELagZYCBf0ShIA9ITFETx03ssdBGDKVCiEK3yL9SpDZFTWHmEXhGngQ7SdN2QEiwxYpjR76z_dl39x0AVxoJ18dcOYRK6uAQEYewEDnKSl8YoeOcp-C5Hw4GZDSiDytR_AU_RHXhZmdGvl7bCc541lqShjKpbSQ5QnnWkk1QR0Z5cQ3Uu4_RsF9ZEsKwsCwHnvXx8kYL4kYXtdZbWN-YlmhzFbPmm0609__f3Qe7JeCEnUJDDsCGSg_BzgoN4RGY3CTTJLUmdyWhdYnPje9GYF8fny-JsJfpsFely4E2X1cGDdiFZjHRFr7zsYIsldD6N-eFPKx3MpWm4yLOCRZrh-3vGAyj3tPtnVOmYXCEOb56jjmhaKWp7wqMNWM84CKQrK08LTnlSFGXaEo0YW3iC48aBMiRJkgKj7iqrbl_AmrpNFWnAAZKaQO4XGkWCmxPplwzjjxOEPMF5rQBnIUMYlFylNtUGeO4YFdGsR3GuBrGBriu6r8W7Bw_1mwuRBqXszSLUWB00-AXz7xGufB-aSXudKP7qnT2l4_OwbZ9LrzNmqA2n72pC7Al3udJNrsstfcb9t3x3Q
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3JTsMwEB1BQQIO7IgdH5A4RSROmthHtgpEWyHE0lvkVarUpqgFznwC38iX4EnSFA4ICXF04tiRZ2w_e2beABxaqvwwksZjXHMvSijzmEioZ1D6ygk9ynkKHppJu806HX5TehNiLEzBD1FduOHMyNdrnOB4IX08YQ0V2mIoOaV52pJpmImcLtVrMHN-27hvVqaEJClMy3GATl5BZ8zc6NPj7y1835kmcPMraM13ncbSP_zvMiyWkJOcFDqyAlMmW4WFL0SEa9A_7Q66GRrdjSboFJ-b353IPt7eH7sKr9PJRZUwh2DGrhFxcJe45cQigJc9Q0SmCXo454U8sLc_0K7jItKJFKsH9rcO942Lu7NLr0zE4Cl3gA08d0axxvLQV1FkhZCxVLEWdRNYLbmkhvvMcmaZqLNQBdxhQEkto1oFzDd1K8MNqGWDzGwCiY2xDnL52i0VEZ5NpRWSBpJREapI8i3wxkJIVclSjskyemnBr0xTHMa0GsYtOKrqPxX8HD_W3B3LNC3n6SilsdNOh2AC95rm0vullfTkvNGqStt_-egA5i7vWs20edW-3oF5fF74nu1C7Xn4YvZgVr0-d0fD_VKVPwF3A_XN
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEB50FdGDb3F95iB4KrZpt02O6loU10XEx95KnrCgXXFXz_4Ef6O_xEzbrXoQQTyVtGlTMsnkS2bmG4A9S5UfRtJ4jGvuRQllHhMJ9QxKXzmhRwVPwW0n6XZZr8cvK29CjIUp-SHqAzecGYW-xgluHrU9-GQNFdpiKDmlRdqSSZiKWu7agKn2VXrTqU0JSVKaluMAnbyC3pi50acH37_wfWX6hJtfQWux6qQL__C_izBfQU5yWI6RJZgw-TLMfSEiXIGHo_6gn6PR3WiCTvGF-d2J7P317a6v8DidnNQJcwhm7BoSB3eJUycWAby8N0TkmqCHc1EoAnsfBto1XEY6kVJ7YHurcJOeXB-felUiBk-5DWzguT2KNZaHvooiK4SMpYq1aJnAasklNdxnljPLRIuFKuAOA0pqGdUqYL5pWRmuQSMf5GYdSGyMdZDL105VRLg3lVZIGkhGRagiyZvgjYWQqYqlHJNl3GclvzLNsBuzuhubsF_Xfyz5OX6suTWWaVbN02FGYzc6HYIJ3GNaSO-Xr2SH7fSiLm385aVdmLlsp1nnrHu-CbN4u3Q924LG6OnZbMO0ehn1h0871Uj-ABB99Ug
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bioinspired+Perspiration%E2%80%90Wicking+Electronic+Skins+for+Comfortable+and+Reliable+Multimodal+Health+Monitoring&rft.jtitle=Advanced+functional+materials&rft.au=Xu%2C+Yanting&rft.au=Guo%2C+Wei&rft.au=Zhou%2C+Shiqing&rft.au=Haokun+Yi&rft.date=2022-06-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=32&rft.issue=23&rft_id=info:doi/10.1002%2Fadfm.202200961&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon