Bioinspired Perspiration‐Wicking Electronic Skins for Comfortable and Reliable Multimodal Health Monitoring
Electronic skins (e‐skins) have gained tremendous attention in health monitoring and disease diagnosis. However, the accumulated sweat at the skin/e‐skin interface would compromise the comfort, reliability, and fidelity for long‐term monitoring. Here, inspired by the active liquid transport phenomen...
Saved in:
| Published in: | Advanced functional materials Vol. 32; no. 23 |
|---|---|
| Main Authors: | , , , , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Hoboken
Wiley Subscription Services, Inc
01.06.2022
|
| Subjects: | |
| ISSN: | 1616-301X, 1616-3028 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Electronic skins (e‐skins) have gained tremendous attention in health monitoring and disease diagnosis. However, the accumulated sweat at the skin/e‐skin interface would compromise the comfort, reliability, and fidelity for long‐term monitoring. Here, inspired by the active liquid transport phenomenon in nature, a biomimetic gold/thermoplastic polyurethane/cellulose membrane (Au/TPU/CM) based e‐skin is reported that can “pump” perspiration from the interface immediately through the combination of gradient porosity and surface energy gradient. The resulting electrode possesses good conductivity (2.68 Ω sq–1), excellent flexibility (the resistance only fluctuated 1.1% and 0.4% after 10 000 bending cycles and 2500 tensile cycles, respectively), and outstanding water vapor transmission and water evaporation rate (2.2 and 7.1 times as much as that of cotton fabric, respectively). The ultrafast perspiration‐wicking capability not only improves the wearing comfort but also minimizes the measurement error of skin hydration and temperature due to perspiration, eliminates the risk of short circuit in sensor array, and reduces the noise level, significantly enhancing the accuracy and reliability of multimodal sensing in e‐skins. The design strategy may encourage more material and structure development in e‐skins with improved sweat tolerance.
This study leverages controlled liquid transport principles in biosystems in e‐skin design and achieves active and unidirectional transportation of sweat away from the skin through the construction of dual porosity and surface energy gradients, preventing signal degradation and wearing discomfort caused by perspiration accumulation. |
|---|---|
| AbstractList | Electronic skins (e‐skins) have gained tremendous attention in health monitoring and disease diagnosis. However, the accumulated sweat at the skin/e‐skin interface would compromise the comfort, reliability, and fidelity for long‐term monitoring. Here, inspired by the active liquid transport phenomenon in nature, a biomimetic gold/thermoplastic polyurethane/cellulose membrane (Au/TPU/CM) based e‐skin is reported that can “pump” perspiration from the interface immediately through the combination of gradient porosity and surface energy gradient. The resulting electrode possesses good conductivity (2.68 Ω sq–1), excellent flexibility (the resistance only fluctuated 1.1% and 0.4% after 10 000 bending cycles and 2500 tensile cycles, respectively), and outstanding water vapor transmission and water evaporation rate (2.2 and 7.1 times as much as that of cotton fabric, respectively). The ultrafast perspiration‐wicking capability not only improves the wearing comfort but also minimizes the measurement error of skin hydration and temperature due to perspiration, eliminates the risk of short circuit in sensor array, and reduces the noise level, significantly enhancing the accuracy and reliability of multimodal sensing in e‐skins. The design strategy may encourage more material and structure development in e‐skins with improved sweat tolerance.
This study leverages controlled liquid transport principles in biosystems in e‐skin design and achieves active and unidirectional transportation of sweat away from the skin through the construction of dual porosity and surface energy gradients, preventing signal degradation and wearing discomfort caused by perspiration accumulation. Electronic skins (e‐skins) have gained tremendous attention in health monitoring and disease diagnosis. However, the accumulated sweat at the skin/e‐skin interface would compromise the comfort, reliability, and fidelity for long‐term monitoring. Here, inspired by the active liquid transport phenomenon in nature, a biomimetic gold/thermoplastic polyurethane/cellulose membrane (Au/TPU/CM) based e‐skin is reported that can “pump” perspiration from the interface immediately through the combination of gradient porosity and surface energy gradient. The resulting electrode possesses good conductivity (2.68 Ω sq –1 ), excellent flexibility (the resistance only fluctuated 1.1% and 0.4% after 10 000 bending cycles and 2500 tensile cycles, respectively), and outstanding water vapor transmission and water evaporation rate (2.2 and 7.1 times as much as that of cotton fabric, respectively). The ultrafast perspiration‐wicking capability not only improves the wearing comfort but also minimizes the measurement error of skin hydration and temperature due to perspiration, eliminates the risk of short circuit in sensor array, and reduces the noise level, significantly enhancing the accuracy and reliability of multimodal sensing in e‐skins. The design strategy may encourage more material and structure development in e‐skins with improved sweat tolerance. |
| Author | Mei, Shuxing Li, Zhuo Guo, Wei Yang, Guoqing Wu, Hao Zhou, Shiqing Xu, Yanting Zhu, Kanhao Yi, Haokun |
| Author_xml | – sequence: 1 givenname: Yanting surname: Xu fullname: Xu, Yanting organization: Fudan University – sequence: 2 givenname: Wei surname: Guo fullname: Guo, Wei organization: Huazhong University of Science and Technology – sequence: 3 givenname: Shiqing surname: Zhou fullname: Zhou, Shiqing organization: Tongji University – sequence: 4 givenname: Haokun surname: Yi fullname: Yi, Haokun organization: Fudan University – sequence: 5 givenname: Guoqing surname: Yang fullname: Yang, Guoqing organization: Fudan University – sequence: 6 givenname: Shuxing surname: Mei fullname: Mei, Shuxing organization: Fudan University – sequence: 7 givenname: Kanhao surname: Zhu fullname: Zhu, Kanhao organization: Huazhong University of Science and Technology – sequence: 8 givenname: Hao orcidid: 0000-0003-1494-0848 surname: Wu fullname: Wu, Hao email: hwu16@hust.edu.cn organization: Huazhong University of Science and Technology – sequence: 9 givenname: Zhuo surname: Li fullname: Li, Zhuo email: zhuo_li@fudan.edu.cn organization: Fudan University |
| BookMark | eNqFkM1KAzEUhYNUsK1uXQdcT00yP80sa22t0KL4g-5CJpNoamZSkxTpzkfwGX0Sp61UEMTVPfdyvnu5pwNata0lAMcY9TBC5JSXquoRRAhCeYb3QBtnOItiRGhrp_HjAeh4P0cI9_tx0gbVmba69gvtZAmvpVsrHrStP98_HrR40fUTHBkpgrO1FvC2GXiorINDWzUl8MJIyOsS3kijN81saYKubMkNnEhuwjOcNWiwrll1CPYVN14efdcuuB-P7oaTaHp1cTkcTCMR0xhHWUKUVHmMRJIozousEFnJU4lVWeQFkTmiKqeK8pTGAucJSguiKCkFpkimqoi74GS7d-Hs61L6wOZ26ermJCNZn9CUYIwbV7J1CWe9d1IxocPm-eC4Ngwjtg6WrYNlu2AbrPcLWzhdcbf6G8i3wJs2cvWPmw3Ox7Mf9gsCbpEC |
| CitedBy_id | crossref_primary_10_1002_SMMD_20230023 crossref_primary_10_1002_adfm_202406789 crossref_primary_10_1002_advs_202302858 crossref_primary_10_1002_agt2_319 crossref_primary_10_1016_j_nanoen_2023_108194 crossref_primary_10_1002_adhm_202303461 crossref_primary_10_1002_adma_202502118 crossref_primary_10_1002_adfm_202300794 crossref_primary_10_1021_acsnano_5c10988 crossref_primary_10_1016_j_mtcomm_2023_107968 crossref_primary_10_1109_TCPMT_2025_3539978 crossref_primary_10_3390_biomimetics8030293 crossref_primary_10_1038_s43246_025_00839_7 crossref_primary_10_1063_5_0102883 crossref_primary_10_1007_s42765_025_00533_w crossref_primary_10_1002_adsr_202300195 crossref_primary_10_1002_smll_202206572 crossref_primary_10_1002_adfm_202204467 crossref_primary_10_1002_marc_202500557 crossref_primary_10_1021_acssensors_5c00554 crossref_primary_10_1016_j_cej_2025_163399 crossref_primary_10_1016_j_cej_2023_142350 crossref_primary_10_1038_s41467_024_53407_x crossref_primary_10_1016_j_snb_2025_137954 crossref_primary_10_1016_j_mattod_2023_02_023 crossref_primary_10_1126_sciadv_ads1301 crossref_primary_10_1002_adma_202417799 crossref_primary_10_1002_admt_202201193 crossref_primary_10_1007_s40820_023_01094_6 crossref_primary_10_1109_JSEN_2023_3293248 crossref_primary_10_1016_j_cej_2023_142945 crossref_primary_10_1002_adfm_202211056 crossref_primary_10_1007_s40843_022_2444_0 crossref_primary_10_1007_s42765_024_00428_2 crossref_primary_10_1063_5_0173884 crossref_primary_10_1002_admi_202202263 crossref_primary_10_1002_cmtd_202200081 crossref_primary_10_1038_s41467_024_45006_7 crossref_primary_10_1002_adhm_202403780 crossref_primary_10_1016_j_biotechadv_2023_108297 crossref_primary_10_1002_smtd_202402164 crossref_primary_10_1007_s10570_024_06338_1 crossref_primary_10_1016_j_cej_2022_137518 crossref_primary_10_1016_j_nanoms_2025_05_003 crossref_primary_10_1021_acsanm_5c01353 crossref_primary_10_1002_adma_202402527 crossref_primary_10_1016_j_nanoen_2022_107311 crossref_primary_10_1021_acsmaterialslett_5c00732 |
| Cites_doi | 10.1038/nature08729 10.1002/smll.201900755 10.1038/nmat4289 10.1021/acsnano.8b08242 10.1002/adma.201902062 10.1126/sciadv.1501856 10.1016/j.jelekin.2012.04.009 10.1682/JRRD.2014.04.0108 10.1038/ncomms6674 10.1682/JRRD.2013.06.0133 10.1038/s41551-021-00685-1 10.1039/C7CS00730B 10.1002/adma.201204426 10.1038/s41563-020-00902-3 10.1002/adma.201502386 10.1002/adma.201804187 10.1126/science.1182383 10.1002/adfm.201303886 10.1021/acsnano.1c01431 10.1002/adfm.201907312 10.1021/acs.langmuir.7b01797 10.1016/j.jcis.2020.01.063 10.1002/adhm.202001322 10.1038/nature16521 10.1002/adfm.202109109 10.1038/ncomms5779 10.1038/s41565-018-0244-6 10.1038/nmat3755 10.1002/adfm.201800832 10.1002/advs.202001938 10.1021/acsnano.0c00906 10.1038/ncomms6745 10.1073/pnas.2008422117 10.1002/adma.201904113 10.1126/science.1206157 10.1038/s41551-019-0347-x 10.1021/acs.chemrev.7b00291 10.1021/acsnano.8b04245 10.1002/smll.201801527 10.1126/sciadv.1601314 10.1073/pnas.2020398118 10.1038/s41563-020-0638-3 10.1039/C8NR02492H 10.1038/nmat2834 10.1126/sciadv.abg8459 10.1002/smll.201400483 10.1002/adma.201804327 10.1002/adma.201806501 10.1016/j.apmr.2007.11.054 10.1002/adma.202106570 10.1039/D0NR04346J 10.1039/C3NR05348B 10.1038/s41467-021-25152-y 10.1038/nnano.2017.125 10.1126/science.1154367 10.1007/s11517-007-0168-z 10.1126/sciadv.1600418 |
| ContentType | Journal Article |
| Copyright | 2022 Wiley‐VCH GmbH |
| Copyright_xml | – notice: 2022 Wiley‐VCH GmbH |
| DBID | AAYXX CITATION 7SP 7SR 7U5 8BQ 8FD JG9 L7M |
| DOI | 10.1002/adfm.202200961 |
| DatabaseName | CrossRef Electronics & Communications Abstracts Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace METADEX |
| DatabaseTitleList | CrossRef Materials Research Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1616-3028 |
| EndPage | n/a |
| ExternalDocumentID | 10_1002_adfm_202200961 ADFM202200961 |
| Genre | article |
| GrantInformation_xml | – fundername: National Key Research and Development Program of China funderid: 2017YFA0204600 – fundername: National Natural Science Foundation of China funderid: 52173071 – fundername: National Natural Science Foundation of China funderid: U2013213; 51820105008 |
| GroupedDBID | -~X .3N .GA 05W 0R~ 10A 1L6 1OC 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ UB1 V2E W8V W99 WBKPD WFSAM WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 ~IA ~WT .Y3 31~ AAMMB AANHP AASGY AAYXX ACBWZ ACRPL ACYXJ ADMLS ADNMO AEFGJ AEYWJ AGHNM AGQPQ AGXDD AGYGG AIDQK AIDYY ASPBG AVWKF AZFZN CITATION EJD FEDTE HF~ HVGLF LW6 O8X 7SP 7SR 7U5 8BQ 8FD JG9 L7M |
| ID | FETCH-LOGICAL-c3831-642fef930c44faab6bc6da5e1fdb9b2e908f98f8a583c19405b2f82dc180e5fb3 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 91 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000788658000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1616-301X |
| IngestDate | Mon Jul 14 08:12:48 EDT 2025 Sat Nov 29 07:17:41 EST 2025 Tue Nov 18 21:06:17 EST 2025 Wed Jan 22 16:24:46 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 23 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c3831-642fef930c44faab6bc6da5e1fdb9b2e908f98f8a583c19405b2f82dc180e5fb3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-1494-0848 |
| PQID | 2672852111 |
| PQPubID | 2045204 |
| PageCount | 12 |
| ParticipantIDs | proquest_journals_2672852111 crossref_citationtrail_10_1002_adfm_202200961 crossref_primary_10_1002_adfm_202200961 wiley_primary_10_1002_adfm_202200961_ADFM202200961 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-06-01 |
| PublicationDateYYYYMMDD | 2022-06-01 |
| PublicationDate_xml | – month: 06 year: 2022 text: 2022-06-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Hoboken |
| PublicationPlace_xml | – name: Hoboken |
| PublicationTitle | Advanced functional materials |
| PublicationYear | 2022 |
| Publisher | Wiley Subscription Services, Inc |
| Publisher_xml | – name: Wiley Subscription Services, Inc |
| References | 2008 2014 2015; 89 51 52 2019; 31 2021 2020; 12 117 2021 2021 2017; 7 20 12 2018 2018; 34 28 2010; 463 2018 2013; 13 12 2014; 24 2020; 14 2016 2019 2020 2020 2021 2015; 529 48 32 32 8 27 2019 2010 2008; 3 327 320 2020; 565 2012 2007; 22 45 2021; 15 2020 2014 2011; 19 5 333 2016 2014; 2 5 2019 2019; 31 31 2014 2014 2017; 5 6 117 2013 2017 2021; 25 3 5 2021 2022 2020; 8 32 12 2018 2019; 14 13 2018 2022; 30 34 2010 2016; 9 2 2018 2019; 12 15 2020 2018; 9 10 2021; 118 2014; 10 2015 2020; 14 30 e_1_2_8_28_1 e_1_2_8_28_2 e_1_2_8_28_3 e_1_2_8_22_3 e_1_2_8_24_1 e_1_2_8_24_2 e_1_2_8_26_1 e_1_2_8_26_2 e_1_2_8_9_2 e_1_2_8_3_1 e_1_2_8_1_2 e_1_2_8_1_5 e_1_2_8_5_1 e_1_2_8_1_4 e_1_2_8_3_2 e_1_2_8_7_1 e_1_2_8_1_6 e_1_2_8_5_2 e_1_2_8_9_1 Huang H. Z. (e_1_2_8_22_1) 2021; 8 e_1_2_8_20_1 e_1_2_8_20_2 e_1_2_8_22_2 e_1_2_8_1_1 e_1_2_8_17_1 e_1_2_8_17_2 e_1_2_8_19_1 e_1_2_8_11_3 e_1_2_8_13_1 e_1_2_8_15_1 e_1_2_8_11_1 e_1_2_8_11_2 e_1_2_8_23_2 e_1_2_8_23_3 e_1_2_8_25_1 e_1_2_8_25_2 e_1_2_8_27_1 e_1_2_8_8_3 e_1_2_8_2_2 e_1_2_8_2_1 e_1_2_8_2_3 e_1_2_8_4_1 e_1_2_8_6_2 e_1_2_8_6_1 e_1_2_8_8_2 e_1_2_8_8_1 e_1_2_8_21_1 e_1_2_8_23_1 e_1_2_8_18_1 e_1_2_8_18_2 e_1_2_8_12_2 e_1_2_8_12_3 e_1_2_8_14_1 e_1_2_8_14_2 e_1_2_8_16_1 e_1_2_8_10_1 Lim H. R. (e_1_2_8_1_3) 2020; 32 e_1_2_8_10_2 e_1_2_8_12_1 |
| References_xml | – volume: 14 start-page: 5798 year: 2020 publication-title: ACS Nano – volume: 8 32 12 year: 2021 2022 2020 publication-title: Adv. Mater. Interfaces Adv. Funct. Mater. Nanoscale – volume: 12 117 start-page: 4880 year: 2021 2020 publication-title: Nat. Commun. Proc. Natl. Acad. Sci. USA – volume: 463 start-page: 640 year: 2010 publication-title: Nature – volume: 15 start-page: 9955 year: 2021 publication-title: ACS Nano – volume: 14 13 start-page: 1060 year: 2018 2019 publication-title: Small ACS Nano – volume: 89 51 52 start-page: 1407 855 31 year: 2008 2014 2015 publication-title: Arch. Phys. Med. Rehabil. J. Rehabil. Res. Dev. J. Rehabil. Res. Dev. – volume: 22 45 start-page: 908 447 year: 2012 2007 publication-title: J. Electromyogr. Kinesiol. Med. Biol. Eng. Comput. – volume: 10 start-page: 3083 year: 2014 publication-title: Small – volume: 13 12 start-page: 1057 938 year: 2018 2013 publication-title: Nat. Nanotechnol. Nat. Mater. – volume: 34 28 start-page: 1235 year: 2018 2018 publication-title: Langmuir Adv. Funct. Mater. – volume: 5 6 117 start-page: 5674 711 year: 2014 2014 2017 publication-title: Nat. Commun. Nanoscale Chem. Rev. – volume: 31 year: 2019 publication-title: Adv. Mater. – volume: 12 15 start-page: 9326 year: 2018 2019 publication-title: ACS Nano Small – volume: 30 34 year: 2018 2022 publication-title: Adv. Mater. Adv. Mater. – volume: 529 48 32 32 8 27 start-page: 509 1465 6423 6423 year: 2016 2019 2020 2020 2021 2015 publication-title: Nature Chem. Soc. Rev. Adv. Mater. Adv. Mater. Adv. Sci. Adv. Mater. – volume: 7 20 12 start-page: 859 907 year: 2021 2021 2017 publication-title: Sci. Adv. Nat. Mater. Nat. Nanotechnol. – volume: 3 327 320 start-page: 194 1603 507 year: 2019 2010 2008 publication-title: Nat. Biomed. Eng. Science Science – volume: 25 3 5 start-page: 2773 737 year: 2013 2017 2021 publication-title: Adv. Mater. Sci. Adv. Nat. Biomed. Eng. – volume: 14 30 start-page: 728 year: 2015 2020 publication-title: Nat. Mater. Adv. Funct. Mater. – volume: 31 31 year: 2019 2019 publication-title: Adv. Mater. Adv. Mater. – volume: 24 start-page: 3846 year: 2014 publication-title: Adv. Funct. Mater. – volume: 118 year: 2021 publication-title: Proc. Natl. Acad. Sci. USA – volume: 2 5 start-page: 5745 year: 2016 2014 publication-title: Sci. Adv. Nat. Commun. – volume: 565 start-page: 426 year: 2020 publication-title: J. Colloid Interface Sci. – volume: 9 2 start-page: 859 year: 2010 2016 publication-title: Nat. Mater. Sci. Adv. – volume: 19 5 333 start-page: 679 4779 838 year: 2020 2014 2011 publication-title: Nat. Mater. Nat. Commun. Science – volume: 9 10 year: 2020 2018 publication-title: Adv. Healthcare Mater. Nanoscale – ident: e_1_2_8_19_1 doi: 10.1038/nature08729 – ident: e_1_2_8_14_2 doi: 10.1002/smll.201900755 – ident: e_1_2_8_9_1 doi: 10.1038/nmat4289 – ident: e_1_2_8_18_2 doi: 10.1021/acsnano.8b08242 – ident: e_1_2_8_1_4 doi: 10.1002/adma.201902062 – ident: e_1_2_8_6_2 doi: 10.1126/sciadv.1501856 – ident: e_1_2_8_10_1 doi: 10.1016/j.jelekin.2012.04.009 – ident: e_1_2_8_12_3 doi: 10.1682/JRRD.2014.04.0108 – ident: e_1_2_8_23_1 doi: 10.1038/ncomms6674 – ident: e_1_2_8_12_2 doi: 10.1682/JRRD.2013.06.0133 – ident: e_1_2_8_28_3 doi: 10.1038/s41551-021-00685-1 – ident: e_1_2_8_1_2 doi: 10.1039/C7CS00730B – ident: e_1_2_8_28_1 doi: 10.1002/adma.201204426 – ident: e_1_2_8_11_2 doi: 10.1038/s41563-020-00902-3 – ident: e_1_2_8_1_6 doi: 10.1002/adma.201502386 – ident: e_1_2_8_17_1 doi: 10.1002/adma.201804187 – ident: e_1_2_8_8_2 doi: 10.1126/science.1182383 – ident: e_1_2_8_4_1 doi: 10.1002/adfm.201303886 – ident: e_1_2_8_15_1 doi: 10.1021/acsnano.1c01431 – ident: e_1_2_8_9_2 doi: 10.1002/adfm.201907312 – ident: e_1_2_8_20_1 doi: 10.1021/acs.langmuir.7b01797 – ident: e_1_2_8_21_1 doi: 10.1016/j.jcis.2020.01.063 – ident: e_1_2_8_25_1 doi: 10.1002/adhm.202001322 – ident: e_1_2_8_1_1 doi: 10.1038/nature16521 – ident: e_1_2_8_22_2 doi: 10.1002/adfm.202109109 – ident: e_1_2_8_2_2 doi: 10.1038/ncomms5779 – ident: e_1_2_8_3_1 doi: 10.1038/s41565-018-0244-6 – ident: e_1_2_8_3_2 doi: 10.1038/nmat3755 – ident: e_1_2_8_20_2 doi: 10.1002/adfm.201800832 – ident: e_1_2_8_1_5 doi: 10.1002/advs.202001938 – ident: e_1_2_8_13_1 doi: 10.1021/acsnano.0c00906 – ident: e_1_2_8_5_2 doi: 10.1038/ncomms6745 – ident: e_1_2_8_26_2 doi: 10.1073/pnas.2008422117 – ident: e_1_2_8_16_1 doi: 10.1002/adma.201904113 – ident: e_1_2_8_2_3 doi: 10.1126/science.1206157 – ident: e_1_2_8_8_1 doi: 10.1038/s41551-019-0347-x – volume: 32 start-page: 6423 year: 2020 ident: e_1_2_8_1_3 publication-title: Adv. Mater. – ident: e_1_2_8_23_3 doi: 10.1021/acs.chemrev.7b00291 – ident: e_1_2_8_14_1 doi: 10.1021/acsnano.8b04245 – ident: e_1_2_8_18_1 doi: 10.1002/smll.201801527 – ident: e_1_2_8_28_2 doi: 10.1126/sciadv.1601314 – ident: e_1_2_8_27_1 doi: 10.1073/pnas.2020398118 – volume: 8 start-page: 2101602 year: 2021 ident: e_1_2_8_22_1 publication-title: Adv. Mater. Interfaces – ident: e_1_2_8_2_1 doi: 10.1038/s41563-020-0638-3 – ident: e_1_2_8_25_2 doi: 10.1039/C8NR02492H – ident: e_1_2_8_6_1 doi: 10.1038/nmat2834 – ident: e_1_2_8_11_1 doi: 10.1126/sciadv.abg8459 – ident: e_1_2_8_7_1 doi: 10.1002/smll.201400483 – ident: e_1_2_8_24_1 doi: 10.1002/adma.201804327 – ident: e_1_2_8_17_2 doi: 10.1002/adma.201806501 – ident: e_1_2_8_12_1 doi: 10.1016/j.apmr.2007.11.054 – ident: e_1_2_8_24_2 doi: 10.1002/adma.202106570 – ident: e_1_2_8_22_3 doi: 10.1039/D0NR04346J – ident: e_1_2_8_23_2 doi: 10.1039/C3NR05348B – ident: e_1_2_8_26_1 doi: 10.1038/s41467-021-25152-y – ident: e_1_2_8_11_3 doi: 10.1038/nnano.2017.125 – ident: e_1_2_8_8_3 doi: 10.1126/science.1154367 – ident: e_1_2_8_10_2 doi: 10.1007/s11517-007-0168-z – ident: e_1_2_8_5_1 doi: 10.1126/sciadv.1600418 |
| SSID | ssj0017734 |
| Score | 2.6316063 |
| Snippet | Electronic skins (e‐skins) have gained tremendous attention in health monitoring and disease diagnosis. However, the accumulated sweat at the skin/e‐skin... |
| SourceID | proquest crossref wiley |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| SubjectTerms | bioinspired Biomimetics Cotton electronic skins Energy gradient Error analysis Evaporation rate Materials science multimodal monitoring Noise levels Perspiration perspiration‐wicking Polyurethane resins Reliability Sensor arrays Short circuits Surface energy Sweat Sweating Transport phenomena unidirectional water transport Urethane thermoplastic elastomers Water vapor |
| Title | Bioinspired Perspiration‐Wicking Electronic Skins for Comfortable and Reliable Multimodal Health Monitoring |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.202200961 https://www.proquest.com/docview/2672852111 |
| Volume | 32 |
| WOSCitedRecordID | wos000788658000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1616-3028 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017734 issn: 1616-301X databaseCode: DRFUL dateStart: 20010101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV29TsMwELagZYCBf0ShIA9ITFETx03ssdBGDKVCiEK3yL9SpDZFTWHmEXhGngQ7SdN2QEiwxYpjR76z_dl39x0AVxoJ18dcOYRK6uAQEYewEDnKSl8YoeOcp-C5Hw4GZDSiDytR_AU_RHXhZmdGvl7bCc541lqShjKpbSQ5QnnWkk1QR0Z5cQ3Uu4_RsF9ZEsKwsCwHnvXx8kYL4kYXtdZbWN-YlmhzFbPmm0609__f3Qe7JeCEnUJDDsCGSg_BzgoN4RGY3CTTJLUmdyWhdYnPje9GYF8fny-JsJfpsFely4E2X1cGDdiFZjHRFr7zsYIsldD6N-eFPKx3MpWm4yLOCRZrh-3vGAyj3tPtnVOmYXCEOb56jjmhaKWp7wqMNWM84CKQrK08LTnlSFGXaEo0YW3iC48aBMiRJkgKj7iqrbl_AmrpNFWnAAZKaQO4XGkWCmxPplwzjjxOEPMF5rQBnIUMYlFylNtUGeO4YFdGsR3GuBrGBriu6r8W7Bw_1mwuRBqXszSLUWB00-AXz7xGufB-aSXudKP7qnT2l4_OwbZ9LrzNmqA2n72pC7Al3udJNrsstfcb9t3x3Q |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3JTsMwEB1BQQIO7IgdH5A4RSROmthHtgpEWyHE0lvkVarUpqgFznwC38iX4EnSFA4ICXF04tiRZ2w_e2beABxaqvwwksZjXHMvSijzmEioZ1D6ygk9ynkKHppJu806HX5TehNiLEzBD1FduOHMyNdrnOB4IX08YQ0V2mIoOaV52pJpmImcLtVrMHN-27hvVqaEJClMy3GATl5BZ8zc6NPj7y1835kmcPMraM13ncbSP_zvMiyWkJOcFDqyAlMmW4WFL0SEa9A_7Q66GRrdjSboFJ-b353IPt7eH7sKr9PJRZUwh2DGrhFxcJe45cQigJc9Q0SmCXo454U8sLc_0K7jItKJFKsH9rcO942Lu7NLr0zE4Cl3gA08d0axxvLQV1FkhZCxVLEWdRNYLbmkhvvMcmaZqLNQBdxhQEkto1oFzDd1K8MNqGWDzGwCiY2xDnL52i0VEZ5NpRWSBpJREapI8i3wxkJIVclSjskyemnBr0xTHMa0GsYtOKrqPxX8HD_W3B3LNC3n6SilsdNOh2AC95rm0vullfTkvNGqStt_-egA5i7vWs20edW-3oF5fF74nu1C7Xn4YvZgVr0-d0fD_VKVPwF3A_XN |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEB50FdGDb3F95iB4KrZpt02O6loU10XEx95KnrCgXXFXz_4Ef6O_xEzbrXoQQTyVtGlTMsnkS2bmG4A9S5UfRtJ4jGvuRQllHhMJ9QxKXzmhRwVPwW0n6XZZr8cvK29CjIUp-SHqAzecGYW-xgluHrU9-GQNFdpiKDmlRdqSSZiKWu7agKn2VXrTqU0JSVKaluMAnbyC3pi50acH37_wfWX6hJtfQWux6qQL__C_izBfQU5yWI6RJZgw-TLMfSEiXIGHo_6gn6PR3WiCTvGF-d2J7P317a6v8DidnNQJcwhm7BoSB3eJUycWAby8N0TkmqCHc1EoAnsfBto1XEY6kVJ7YHurcJOeXB-felUiBk-5DWzguT2KNZaHvooiK4SMpYq1aJnAasklNdxnljPLRIuFKuAOA0pqGdUqYL5pWRmuQSMf5GYdSGyMdZDL105VRLg3lVZIGkhGRagiyZvgjYWQqYqlHJNl3GclvzLNsBuzuhubsF_Xfyz5OX6suTWWaVbN02FGYzc6HYIJ3GNaSO-Xr2SH7fSiLm385aVdmLlsp1nnrHu-CbN4u3Q924LG6OnZbMO0ehn1h0871Uj-ABB99Ug |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bioinspired+Perspiration%E2%80%90Wicking+Electronic+Skins+for+Comfortable+and+Reliable+Multimodal+Health+Monitoring&rft.jtitle=Advanced+functional+materials&rft.au=Xu%2C+Yanting&rft.au=Guo%2C+Wei&rft.au=Zhou%2C+Shiqing&rft.au=Haokun+Yi&rft.date=2022-06-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=32&rft.issue=23&rft_id=info:doi/10.1002%2Fadfm.202200961&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon |