Particle swarm optimization trained neural network for structural failure prediction of multistoried RC buildings

Faulty structural design may cause multistory reinforced concrete (RC) buildings to collapse suddenly. All attempts are directed to avoid structural failure as it leads to human life danger as well as wasting time and property. Using traditional methods for predicting structural failure of the RC bu...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Neural computing & applications Ročník 28; číslo 8; s. 2005 - 2016
Hlavní autoři: Chatterjee, Sankhadeep, Sarkar, Sarbartha, Hore, Sirshendu, Dey, Nilanjan, Ashour, Amira S., Balas, Valentina E.
Médium: Journal Article
Jazyk:angličtina
Vydáno: London Springer London 01.08.2017
Springer Nature B.V
Témata:
ISSN:0941-0643, 1433-3058
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Faulty structural design may cause multistory reinforced concrete (RC) buildings to collapse suddenly. All attempts are directed to avoid structural failure as it leads to human life danger as well as wasting time and property. Using traditional methods for predicting structural failure of the RC buildings will be time-consuming and complex. Recent research proved the artificial neural network (ANN) potentiality in solving various real-life problems. The traditional learning algorithms suffer from being trapped into local optima with a premature convergence. Thus, it is a challenging task to achieve expected accuracy while using traditional learning algorithms to train ANN. To solve this problem, the present work proposed a particle swarm optimization-based approach to train the NN (NN-PSO). The PSO is employed to find a weight vector with minimum root-mean-square error (RMSE) for the NN. The proposed (NN-PSO) classifier is capable to tackle the problem of predicting structural failure of multistoried reinforced concrete buildings via detecting the failure possibility of the multistoried RC building structure in the future. A database of 150 multistoried buildings’ RC structures was employed in the experimental results. The PSO algorithm was involved to select the optimal weights for the NN classifier. Fifteen features have been extracted from the structural design, while nine features have been opted to perform the classification process. Moreover, the NN-PSO model was compared with NN and MLP-FFN (multilayer perceptron feed-forward network) classifier to find its ingenuity. The experimental results established the superiority of the proposed NN-PSO compared to the NN and MLP-FFN classifiers. The NN-PSO achieved 90 % accuracy with 90 % precision, 94.74 % recall and 92.31 % F-Measure.
AbstractList Faulty structural design may cause multistory reinforced concrete (RC) buildings to collapse suddenly. All attempts are directed to avoid structural failure as it leads to human life danger as well as wasting time and property. Using traditional methods for predicting structural failure of the RC buildings will be time-consuming and complex. Recent research proved the artificial neural network (ANN) potentiality in solving various real-life problems. The traditional learning algorithms suffer from being trapped into local optima with a premature convergence. Thus, it is a challenging task to achieve expected accuracy while using traditional learning algorithms to train ANN. To solve this problem, the present work proposed a particle swarm optimization-based approach to train the NN (NN-PSO). The PSO is employed to find a weight vector with minimum root-mean-square error (RMSE) for the NN. The proposed (NN-PSO) classifier is capable to tackle the problem of predicting structural failure of multistoried reinforced concrete buildings via detecting the failure possibility of the multistoried RC building structure in the future. A database of 150 multistoried buildings’ RC structures was employed in the experimental results. The PSO algorithm was involved to select the optimal weights for the NN classifier. Fifteen features have been extracted from the structural design, while nine features have been opted to perform the classification process. Moreover, the NN-PSO model was compared with NN and MLP-FFN (multilayer perceptron feed-forward network) classifier to find its ingenuity. The experimental results established the superiority of the proposed NN-PSO compared to the NN and MLP-FFN classifiers. The NN-PSO achieved 90 % accuracy with 90 % precision, 94.74 % recall and 92.31 % F-Measure.
Faulty structural design may cause multistory reinforced concrete (RC) buildings to collapse suddenly. All attempts are directed to avoid structural failure as it leads to human life danger as well as wasting time and property. Using traditional methods for predicting structural failure of the RC buildings will be time-consuming and complex. Recent research proved the artificial neural network (ANN) potentiality in solving various real-life problems. The traditional learning algorithms suffer from being trapped into local optima with a premature convergence. Thus, it is a challenging task to achieve expected accuracy while using traditional learning algorithms to train ANN. To solve this problem, the present work proposed a particle swarm optimization-based approach to train the NN (NN-PSO). The PSO is employed to find a weight vector with minimum root-mean-square error (RMSE) for the NN. The proposed (NN-PSO) classifier is capable to tackle the problem of predicting structural failure of multistoried reinforced concrete buildings via detecting the failure possibility of the multistoried RC building structure in the future. A database of 150 multistoried buildings’ RC structures was employed in the experimental results. The PSO algorithm was involved to select the optimal weights for the NN classifier. Fifteen features have been extracted from the structural design, while nine features have been opted to perform the classification process. Moreover, the NN-PSO model was compared with NN and MLP-FFN (multilayer perceptron feed-forward network) classifier to find its ingenuity. The experimental results established the superiority of the proposed NN-PSO compared to the NN and MLP-FFN classifiers. The NN-PSO achieved 90 % accuracy with 90 % precision, 94.74 % recall and 92.31 % F-Measure.
Author Hore, Sirshendu
Sarkar, Sarbartha
Dey, Nilanjan
Chatterjee, Sankhadeep
Ashour, Amira S.
Balas, Valentina E.
Author_xml – sequence: 1
  givenname: Sankhadeep
  surname: Chatterjee
  fullname: Chatterjee, Sankhadeep
  organization: Department of Computer Science and Engineering, University of Calcutta
– sequence: 2
  givenname: Sarbartha
  surname: Sarkar
  fullname: Sarkar, Sarbartha
  organization: Department of Civil Engineering, Hooghly Engineering and Technology College
– sequence: 3
  givenname: Sirshendu
  surname: Hore
  fullname: Hore, Sirshendu
  organization: Department of Computer Science and Engineering, Hooghly Engineering and Technology College
– sequence: 4
  givenname: Nilanjan
  surname: Dey
  fullname: Dey, Nilanjan
  organization: Department of Information Technology, Techno India College of Technology
– sequence: 5
  givenname: Amira S.
  surname: Ashour
  fullname: Ashour, Amira S.
  email: amirasashour@yahoo.com
  organization: Department of Electronics and Electrical Communications Engineering, Faculty of Engineering, Tanta University
– sequence: 6
  givenname: Valentina E.
  surname: Balas
  fullname: Balas, Valentina E.
  organization: Faculty of Engineering, Aurel Vlaicu University of Arad
BookMark eNp9kE1LAzEQhoNUsFZ_gLeA59VJsh_ZoxS_oKCInkO6m5TU3U07yVL017vtehBBTwMz7zMz73tKJp3vDCEXDK4YQHEdADLOEmB5wlkJCT8iU5YKkQjI5IRMoUyHaZ6KE3IawhoA0lxmU7J91hhd1Rgadhpb6jfRte5TR-c7GlG7ztS0Mz3qZihx5_GdWo80ROyreGhb7ZoeDd2gqV11AL2lbd9EF6JHNyx4mdNl75radatwRo6tboI5_64z8nZ3-zp_SBZP94_zm0VSCcljYutCSikszzXLKi54VmZGM1FLUQieV4bnRQFCL8HYMmesNKwuLWdFLdKcZ1rMyOW4d4N-25sQ1dr32A0nFSuZBA5lBoOqGFUV-hDQWFW5eHC_N98oBmqfrxrzVUO-ap-v4gPJfpEbdK3Gj38ZPjJh0HYrgz9--hP6AiQ3kGo
CitedBy_id crossref_primary_10_1007_s12555_020_0813_y
crossref_primary_10_1007_s00521_024_09998_z
crossref_primary_10_1016_j_engappai_2020_103650
crossref_primary_10_1016_j_istruc_2023_05_010
crossref_primary_10_2174_1574893614666191017100657
crossref_primary_10_1109_JSEN_2023_3294961
crossref_primary_10_1007_s00521_017_2855_5
crossref_primary_10_1007_s41939_024_00480_w
crossref_primary_10_1016_j_resourpol_2019_02_014
crossref_primary_10_1016_j_fuel_2022_126531
crossref_primary_10_1109_ACCESS_2020_3007876
crossref_primary_10_4018_IJAMC_2019010104
crossref_primary_10_4018_IJAMC_2019010105
crossref_primary_10_4018_IJAMC_2019010102
crossref_primary_10_1155_2021_6662779
crossref_primary_10_1109_ACCESS_2020_3017277
crossref_primary_10_4018_IJAMC_2019010101
crossref_primary_10_1016_j_applthermaleng_2025_128032
crossref_primary_10_1016_j_asoc_2021_107711
crossref_primary_10_1109_TETCI_2018_2881490
crossref_primary_10_3390_machines12010042
crossref_primary_10_1007_s11277_020_07188_3
crossref_primary_10_1002_cpe_5036
crossref_primary_10_3233_JIFS_219059
crossref_primary_10_1109_ACCESS_2019_2956835
crossref_primary_10_3390_s20010006
crossref_primary_10_1007_s12665_021_09525_6
crossref_primary_10_1007_s00521_023_08278_6
crossref_primary_10_1016_j_tws_2022_109152
crossref_primary_10_1016_j_psep_2022_03_009
crossref_primary_10_1016_j_cam_2020_112724
crossref_primary_10_1177_14759217241233733
crossref_primary_10_1016_j_engstruct_2019_109449
crossref_primary_10_4018_JGIM_2018070101
crossref_primary_10_1007_s11063_022_11055_6
crossref_primary_10_1155_2021_5599624
crossref_primary_10_1007_s00500_019_03917_4
crossref_primary_10_1016_j_ress_2021_108280
crossref_primary_10_1007_s11042_020_09138_4
crossref_primary_10_1007_s11831_020_09500_7
crossref_primary_10_1680_jemmr_20_00107
crossref_primary_10_1016_j_asoc_2019_105644
crossref_primary_10_3390_app10176123
crossref_primary_10_1007_s00521_020_05466_6
crossref_primary_10_3233_JIFS_181064
crossref_primary_10_1016_j_compstruct_2025_119455
crossref_primary_10_3390_asi6060115
crossref_primary_10_1016_j_eswa_2021_114952
crossref_primary_10_1016_j_tws_2021_107541
crossref_primary_10_1007_s12273_023_1043_z
crossref_primary_10_1088_1757_899X_955_1_012020
crossref_primary_10_1108_IJCS_03_2021_0010
crossref_primary_10_1016_j_applthermaleng_2020_115020
crossref_primary_10_1039_C9RA06079K
crossref_primary_10_1155_2020_8869810
crossref_primary_10_1007_s12652_018_0962_5
crossref_primary_10_1016_j_measurement_2019_01_035
crossref_primary_10_1016_j_geoen_2023_212023
crossref_primary_10_3390_min9060376
crossref_primary_10_3390_en11051289
crossref_primary_10_1007_s10772_019_09631_8
crossref_primary_10_1038_s41598_023_40466_1
crossref_primary_10_1109_ACCESS_2024_3405570
crossref_primary_10_1155_2019_4979582
crossref_primary_10_1016_j_egyr_2022_09_034
crossref_primary_10_1016_j_aej_2024_07_029
crossref_primary_10_3389_fenrg_2022_891184
crossref_primary_10_1007_s00500_016_2442_1
crossref_primary_10_3233_JIFS_179798
crossref_primary_10_1155_2022_4884109
crossref_primary_10_3390_toxics9110273
crossref_primary_10_1007_s00500_021_05983_z
crossref_primary_10_1061_PPSCFX_SCENG_1292
crossref_primary_10_1109_ACCESS_2019_2929857
crossref_primary_10_1016_j_resourpol_2019_101555
crossref_primary_10_3390_app9214715
crossref_primary_10_1007_s00607_019_00787_4
crossref_primary_10_1007_s00521_022_07775_4
crossref_primary_10_4018_IJBDAH_2017070102
crossref_primary_10_1016_j_cma_2018_03_029
crossref_primary_10_1016_j_eswa_2025_127975
crossref_primary_10_3390_sym11101291
crossref_primary_10_1007_s11042_019_08344_z
crossref_primary_10_1007_s11277_018_6017_6
crossref_primary_10_3390_e22121421
crossref_primary_10_1016_j_isatra_2022_04_025
crossref_primary_10_1155_2018_6381610
crossref_primary_10_1002_eer2_29
crossref_primary_10_1007_s42107_024_00998_x
crossref_primary_10_1002_mde_3016
crossref_primary_10_1007_s42107_023_00941_6
crossref_primary_10_4018_IJAMC_296262
crossref_primary_10_4018_IJISMD_2017100102
crossref_primary_10_1155_2022_1999013
crossref_primary_10_1007_s00366_021_01417_4
crossref_primary_10_1007_s00366_019_00847_5
crossref_primary_10_1007_s11465_019_0552_z
crossref_primary_10_1016_j_neucom_2018_10_090
crossref_primary_10_1007_s00521_017_3284_1
crossref_primary_10_3390_s22030862
crossref_primary_10_1007_s00521_021_06214_0
crossref_primary_10_1016_j_cscm_2023_e02183
crossref_primary_10_1002_cpe_7771
crossref_primary_10_1016_j_istruc_2022_05_041
crossref_primary_10_1016_j_engstruct_2020_110269
crossref_primary_10_1007_s12530_021_09401_5
crossref_primary_10_1155_2021_9974230
crossref_primary_10_1088_1757_899X_1107_1_012118
crossref_primary_10_1155_2021_5574501
crossref_primary_10_1007_s00521_018_3400_x
crossref_primary_10_1007_s12206_019_0516_6
crossref_primary_10_3390_su11092678
crossref_primary_10_1016_j_asoc_2019_105843
crossref_primary_10_4018_IJNCR_2018070104
crossref_primary_10_1007_s00521_019_04453_w
crossref_primary_10_1016_j_autcon_2020_103181
crossref_primary_10_1016_j_apacoust_2021_108022
crossref_primary_10_1155_2021_6628889
crossref_primary_10_1155_2022_4328185
crossref_primary_10_3390_app14010079
crossref_primary_10_1007_s11053_019_09492_7
crossref_primary_10_1007_s13202_019_0728_4
crossref_primary_10_1007_s00158_017_1653_0
crossref_primary_10_3390_modelling5010009
crossref_primary_10_3390_app9153161
crossref_primary_10_1016_j_compstruc_2020_106376
crossref_primary_10_1007_s11042_022_12534_7
crossref_primary_10_1016_j_neucom_2020_02_121
crossref_primary_10_1016_j_asoc_2018_09_007
crossref_primary_10_1007_s00521_018_3357_9
crossref_primary_10_1080_08839514_2024_2440836
crossref_primary_10_1016_j_jcsr_2020_106443
crossref_primary_10_1080_23311916_2022_2153419
crossref_primary_10_1155_2019_2671792
crossref_primary_10_3233_JIFS_179593
crossref_primary_10_1007_s11042_019_7354_5
crossref_primary_10_1142_S0219649218500168
crossref_primary_10_1109_ACCESS_2021_3074460
crossref_primary_10_1016_j_asr_2019_10_008
crossref_primary_10_1002_eng2_12676
crossref_primary_10_1007_s13369_021_06286_z
crossref_primary_10_1016_j_aei_2020_101057
crossref_primary_10_1016_j_compeleceng_2019_01_006
crossref_primary_10_1109_ACCESS_2021_3061288
crossref_primary_10_3390_app10093126
crossref_primary_10_3390_a12090183
crossref_primary_10_1007_s00521_023_08257_x
crossref_primary_10_1007_s12008_022_00885_2
crossref_primary_10_1155_2021_9946404
crossref_primary_10_1007_s11709_022_0840_2
crossref_primary_10_4018_IJACI_2020010107
crossref_primary_10_1007_s42107_023_00818_8
crossref_primary_10_1016_j_jngse_2022_104467
Cites_doi 10.1109/IECR.2010.5720163
10.1007/s00158-005-0527-z
10.1007/s00521-015-1847-6
10.1061/(ASCE)0899-1561(2006)18:3(462)
10.1007/s00521-009-0310-y
10.1109/ICCIC.2013.6724173
10.14311/NNW.2012.22.027
10.1002/nme.1964
10.1007/978-3-642-33941-7_43
10.1061/(ASCE)0733-9399(2008)134:11(961)
10.1016/j.advengsoft.2011.05.033
10.1016/j.jsv.2005.09.029
10.1016/j.engappai.2009.09.015
10.1061/(ASCE)0887-3801(1997)11:4(217)
10.1016/0045-7949(91)90178-O
10.1007/s00521-005-0467-y
10.1016/j.jtice.2012.01.002
10.1504/IJBIC.2013.057193
10.1016/j.engstruct.2010.03.010
10.1061/(ASCE)0887-3801(1995)9:3(194)
10.3233/ICA-2011-0372
10.1007/s00521-015-1855-6
10.1007/s00521-015-1871-6
10.1007/s00521-007-0084-z
10.1061/(ASCE)0733-9445(1997)123:7(880)
10.1016/0045-7949(95)00048-L
10.1155/2014/734072
10.3233/IFS-2009-0410
10.1016/S0045-7949(02)00451-0
10.1016/j.advengsoft.2009.07.006
10.4028/www.scientific.net/AMR.255-260.2345
10.1007/s00521-014-1685-y
10.1016/j.conbuildmat.2007.01.029
10.1007/s00521-015-1994-9
10.1061/(ASCE)0733-9445(1997)123:11(1535)
10.1007/s00521-015-1848-5
10.1111/j.1467-8667.2010.00656.x
10.3390/a8020292
10.1007/s00521-013-1471-2
10.1016/j.swevo.2013.11.003
10.1111/j.1467-8667.2009.00645.x
ContentType Journal Article
Copyright The Natural Computing Applications Forum 2016
Copyright Springer Science & Business Media 2017
Copyright_xml – notice: The Natural Computing Applications Forum 2016
– notice: Copyright Springer Science & Business Media 2017
DBID AAYXX
CITATION
DOI 10.1007/s00521-016-2190-2
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1433-3058
EndPage 2016
ExternalDocumentID 10_1007_s00521_016_2190_2
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29N
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
53G
5QI
5VS
67Z
6NX
8FE
8FG
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACUHS
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
B0M
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EAD
EAP
EBLON
EBS
ECS
EDO
EIOEI
EJD
EMI
EMK
EPL
ESBYG
EST
ESX
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAS
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P62
P9O
PF0
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z5O
Z7R
Z7S
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8N
Z8P
Z8Q
Z8R
Z8S
Z8T
Z8U
Z8W
Z92
ZMTXR
~8M
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
ID FETCH-LOGICAL-c382t-fd78883f26a15c232595ea13d837326ce267703ab0ef96119e1d9f217d34625a3
IEDL.DBID RSV
ISICitedReferencesCount 212
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000405528300008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0941-0643
IngestDate Tue Nov 04 16:44:28 EST 2025
Tue Nov 18 21:26:59 EST 2025
Sat Nov 29 02:59:01 EST 2025
Fri Feb 21 02:34:22 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords Multilayer perceptron feed-forward network
Structural failure
Cross-entropy
Scaled conjugate gradient algorithm
Artificial neural network
Reinforced concrete structures
Particle swarm optimization
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c382t-fd78883f26a15c232595ea13d837326ce267703ab0ef96119e1d9f217d34625a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 1918020950
PQPubID 2043988
PageCount 12
ParticipantIDs proquest_journals_1918020950
crossref_citationtrail_10_1007_s00521_016_2190_2
crossref_primary_10_1007_s00521_016_2190_2
springer_journals_10_1007_s00521_016_2190_2
PublicationCentury 2000
PublicationDate 2017-08-01
PublicationDateYYYYMMDD 2017-08-01
PublicationDate_xml – month: 08
  year: 2017
  text: 2017-08-01
  day: 01
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: Heidelberg
PublicationTitle Neural computing & applications
PublicationTitleAbbrev Neural Comput & Applic
PublicationYear 2017
Publisher Springer London
Springer Nature B.V
Publisher_xml – name: Springer London
– name: Springer Nature B.V
References JiangXAdeliHPseudospectra, MUSIC, and dynamic wavelet neural network for damage detection of highrise buildingsInt J Numer Meth Eng200771560662910.1002/nme.19641194.74343
NguyenNTLimCPJainLCBalasVETheoretical advances and applications of intelligent paradigmsJ Intell Fuzzy Syst20092012
ElazouniAMNosairIAMohieldinYAMohamedAGEstimating resource requirements at conceptual stage using neural networksJ Comput Civ Eng199711421722310.1061/(ASCE)0887-3801(1997)11:4(217)
JakubekMNeural network prediction of load capacity for eccentrically loaded reinforced concrete columnsComput Assist Methods Eng Sci201219339349
DeyNSamantaSYangX-SChaudhriSSDasAOptimization of scaling factors in electrocardiogram signal watermarking using cuckoo searchInt J Bio Inspired Comput (IJBIC)20135531532610.1504/IJBIC.2013.057193
LagarosNDPapadrakakisMNeural network based prediction schemes of the non-linear seismic response of 3D buildingsAdv Eng Softw20124419211510.1016/j.advengsoft.2011.05.033
ArslanMHAn evaluation of effective design parameters on earthquake performance of RC buildings using neural networksEng Struct20103271888189810.1016/j.engstruct.2010.03.010
FarukDÖA hybrid neural network and ARIMA model for water quality time series predictionEng Appl Artif Intell2010234586594272916010.1016/j.engappai.2009.09.015
DehuriSChoSBA hybrid genetic based functional link artificial neural network with a statistical comparison of classifiers over multiple datasetsNeural Comput Appl201019231732810.1007/s00521-009-0310-y
HajelaPBerkeLNeurobiological computational models in structural analysis and designComput Struct199141465766710.1016/0045-7949(91)90178-O0752.73053
AdeliHParkHSA neural dynamics model for structural optimization—theoryComput Struct1995573383390134595210.1016/0045-7949(95)00048-L0900.73502
PlevrisVPapadrakakisMA hybrid particle swarm-gradient algorithm for global structural optimizationComput Aided Civ Infrastruct Eng20112614868
UddiMJameelMAbdul RazakHApplication of artificial neural network in fixed offshore structuresIndian J Mar Sci2015443
JoghataieAMojtabaFDynamic analysis of nonlinear frames by Prandtl neural networksJ Eng Mech20081341196196910.1061/(ASCE)0733-9399(2008)134:11(961)
ChenBLiuWMobile agent computing paradigm for building a flexible structural health monitoring sensor networkComput Aided Civil Infrastruct Eng201025750451610.1111/j.1467-8667.2010.00656.x
GuyonIElisseeffAAn introduction to variable and feature selectionJ Mach Learn Res20033115711821102.68556
CaglarNElmasMYamanZDSaribiyikMNeural networks in 3-dimensional dynamic analysis of reinforced concrete buildingsConstr Build Mater200822578880010.1016/j.conbuildmat.2007.01.029
AwanSMAslamMKhanZASaeedHAn efficient model based on artificial bee colony optimization algorithm with neural networks for electric load forecastingNeural Comput Appl2014257–81967197810.1007/s00521-014-1685-y
PierceSWordenKMansonGA novel information-gap technique to assess reliability of neural network-based damage detectionJ Sound Vib20062931–29611110.1016/j.jsv.2005.09.029
AdeliHKarimANeural network model for optimization of cold-formed steel beamsJ Struct Eng1997123111535154310.1061/(ASCE)0733-9445(1997)123:11(1535)
FayyadhMMAbdul RazakHStiffness reduction index for detection of damage location: analytical studyInt J Phys Sci20116921942204
HadiMNSNeural network applications in concrete structuresComput Struct200381637338110.1016/S0045-7949(02)00451-0
NandaSJPandaGA survey on nature inspired metaheuristic algorithms for partitional clusteringSwarm Evolut Comput20141611810.1016/j.swevo.2013.11.003
ArslanMHCeylanMKoyuncuTDetermining earthquake performances of existing reinforced concrete buildings by using ANNWorld Acad Sci Eng Technol Int J Civ Environ Struct Constr Archit Eng201598921925
BerardiVLKlineDMRevisiting squared-error and cross-entropy functions for training neural network classifiersNeural Comput Appl200514431031810.1007/s00521-005-0467-y
AzarATEl-SaidSABalasVEOlariuTLinguistic hedges fuzzy feature selection for differential diagnosis of Erythemato-Squamous diseasesSoft Comput Appl AISC201319548750010.1007/978-3-642-33941-7_43
BagciMNeural network model for moment-curvature relationship of reinforced concrete sectionsMath Comput Appl2010151667805802297
KameliIMiriMRajiAPrediction of target displacement of reinforced concrete frames using artificial neural networksAdv Mater Res20112552345234910.4028/www.scientific.net/AMR.255-260.2345
HanJKamberMData mining: concepts and techniques20052San FranciscoMorgan and Kaufmann285378
MarenAJHarstonCTPapRMHandbook of neural computing applications2014San DiegoAcademic Press0778.68010
MacIntyreJApplications of neural computing in the twenty-first century and 21 years of neural computing and applicationsNeural Comput Appl2013233–465766510.1007/s00521-013-1471-2
StratmanBMahadevanSLiCBiswasGIdentification of critical inspection samples among railroad wheels by similarity-based agglomerative clusteringIntegr Comput Aided Eng2011183203219
RahmanianBPakizehMMansooriSAAEsfandyariMJafariDMaddahHMaskookiAPrediction of MEUF process performance using artificial neural networks and ANFIS approachesJ Taiwan Inst Chem Eng201243455856510.1016/j.jtice.2012.01.002
CoelloCoelloCAPulidoGTMultiobjective structural optimization using a microgenetic algorithmStruct Multidiscip Optim200530538840310.1007/s00158-005-0527-z
MaizirHKassimKANeural network application in prediction of axial bearing capacity of driven pilesProc Int Multiconf Eng Comput Sci2013220215155
Standard, Indian (2000) ‘IS-456. 2000’ Plain and Reinforced Concrete-Code of Practice. Bureau of Indian Standards Manak Bhavan. 9 Bahadur Shah Zafar Marg New Delhi 110002
SochaKBlumCAn ant colony optimization algorithm for continuous optimization: application to feed-forward neural network trainingNeural Comput Appl200716323524710.1007/s00521-007-0084-z
BaughmanDRLiuYANeural networks in bioprocessing and chemical engineering2014San DiegoAcademic press
ChenJ-FDoQHHsiehH-NTraining artificial neural networks by a hybrid PSO-CS algorithmAlgorithms20158292308336640910.3390/a8020292
KarayiannisNVenetsanopoulosANArtificial neural networks: learning algorithms, performance evaluation, and applications2013New YorkSpringer Science & Business Media0817.68121
KausarNPalaniappanSAlGhamdiBSSamirBBDeyNAbdullahASystematic analysis of applied data mining based optimization algorithms in clinical attribute extraction and classification for diagnosis of cardiac patientsAppl Intell Optim Biol Med Ser Intell Syst Ref Libr201596217231
GuptaRKewalramaniMGoelAPrediction of concrete strength using neural-expert systemJ Mater Civ Eng200618346246610.1061/(ASCE)0899-1561(2006)18:3(462)
RojasRNeural networks: a systematic introduction2013BerlinSpringer Science & Business Media0861.68072
CiancioCAmbrogioG GagliardiFMusmannoRHeuristic techniques to optimize neural network architecture in manufacturing applicationsNeural Comput Appl2015
Chakraborty S, Samanta S, Mukherjee A, Dey N, Chaudhuri SS (2013) Particle swarm optimization based parameter optimization technique in medical information hiding. In: 2013 IEEE international conference on computational intelligence and computing research (ICCIC), Madurai, 26–28 Dec 2013
ParkHSAdeliHDistributed neural dynamics algorithms for optimization of large steel structuresJ Struct Eng1997123788088810.1061/(ASCE)0733-9445(1997)123:7(880)
GrafWFreitagSKaliskeMSickertJURecurrent neural networks for uncertain time-dependent structural behaviorComput Aided Civ Infrastruct Eng201025532233310.1111/j.1467-8667.2009.00645.x
SiddiqueeMSAHossainMMADevelopment of a sequential artificial neural network for predicting river water levels based on Brahmaputra and Ganges water levelsNeural Comput Appl20152681979199010.1007/s00521-015-1871-6
GaoSNingBDongHAdaptive neural control with intercepted adaptation for time-delay saturated nonlinear systemsNeural Comput Appl20152681849185710.1007/s00521-015-1855-6
MukherjeeADespandeJMModeling initial design process using artificial neural networksJ Comput Civ Eng19959319420010.1061/(ASCE)0887-3801(1995)9:3(194)
ArslanMHCeylanMKoyuncuTAn ANN approaches on estimating earthquake performances of existing RC buildingsNeural Netw World201222544310.14311/NNW.2012.22.027
MirjaliliSZSaremiSMirjaliliSMDesigning evolutionary feedforward neural networks using social spider optimization algorithmNeural Comput Appl20152681919192810.1007/s00521-015-1847-6
KiaASensoySClassification of earthquake-induced damage for R/C slab column frames using multiclass SVM and its combination with MLP neural networkMath Probl Eng2014201411410.1155/2014/734072
ZhangTOn the consistency of feature selection using greedy least squares regressionJ Mach Learn Res20091055556824917491235.62096
McEntireDADisaster response and recovery: strategies and tactics for resilience2014HobokenJohn Wiley & Sons
Dash RN, Subudhi B, Das S. (2010) A comparison between MLP NN and RBF NN techniques for the detection of stator inter-turn fault of an induction motor. In: 2010 International conference on industrial electronics, control and robotics (IECR), pp 251–256
ErdemHPrediction of moment capacity of reinforced concrete slabs in fire using artificial neural networksAdv Eng Softw201041227027610.1016/j.advengsoft.2009.07.0061180.80060
CaoZChengLZhouCGuNWangXTanMSpiking neural network-based target tracking control for autonomous mobile robotsNeural Comput Appl20152681839184710.1007/s00521-015-1848-5
DA McEntire (2190_CR1) 2014
K Socha (2190_CR41) 2007; 16
A Kia (2190_CR57) 2014; 2014
R Rojas (2190_CR33) 2013
P Hajela (2190_CR13) 1991; 41
NT Nguyen (2190_CR42) 2009; 20
VL Berardi (2190_CR37) 2005; 14
B Chen (2190_CR4) 2010; 25
N Caglar (2190_CR6) 2008; 22
W Graf (2190_CR21) 2010; 25
MH Arslan (2190_CR58) 2015; 9
I Kameli (2190_CR36) 2011; 255
J MacIntyre (2190_CR44) 2013; 23
J-F Chen (2190_CR9) 2015; 8
AM Elazouni (2190_CR18) 1997; 11
DR Baughman (2190_CR32) 2014
A Joghataie (2190_CR28) 2008; 134
DÖ Faruk (2190_CR12) 2010; 23
X Jiang (2190_CR3) 2007; 71
ND Lagaros (2190_CR25) 2012; 44
S Gao (2190_CR51) 2015; 26
SJ Nanda (2190_CR10) 2014; 16
I Guyon (2190_CR39) 2003; 3
N Dey (2190_CR46) 2013; 5
MSA Siddiquee (2190_CR49) 2015; 26
MNS Hadi (2190_CR19) 2003; 81
M Uddi (2190_CR27) 2015; 44
MH Arslan (2190_CR56) 2012; 22
M Bagci (2190_CR23) 2010; 15
CA CoelloCoello (2190_CR35) 2005; 30
AT Azar (2190_CR45) 2013; 195
MH Arslan (2190_CR55) 2010; 32
HS Park (2190_CR17) 1997; 123
N Kausar (2190_CR52) 2015; 96
2190_CR47
MM Fayyadh (2190_CR2) 2011; 6
J Han (2190_CR7) 2005
H Adeli (2190_CR14) 1995; 57
H Maizir (2190_CR26) 2013; 2202
R Gupta (2190_CR20) 2006; 18
M Jakubek (2190_CR24) 2012; 19
B Stratman (2190_CR5) 2011; 18
Z Cao (2190_CR50) 2015; 26
T Zhang (2190_CR38) 2009; 10
2190_CR34
N Karayiannis (2190_CR40) 2013
S Pierce (2190_CR8) 2006; 293
C Ciancio (2190_CR53) 2015
2190_CR30
B Rahmanian (2190_CR11) 2012; 43
V Plevris (2190_CR29) 2011; 26
H Adeli (2190_CR16) 1997; 123
A Mukherjee (2190_CR15) 1995; 9
SZ Mirjalili (2190_CR54) 2015; 26
AJ Maren (2190_CR31) 2014
H Erdem (2190_CR22) 2010; 41
S Dehuri (2190_CR43) 2010; 19
SM Awan (2190_CR48) 2014; 25
References_xml – reference: CaglarNElmasMYamanZDSaribiyikMNeural networks in 3-dimensional dynamic analysis of reinforced concrete buildingsConstr Build Mater200822578880010.1016/j.conbuildmat.2007.01.029
– reference: StratmanBMahadevanSLiCBiswasGIdentification of critical inspection samples among railroad wheels by similarity-based agglomerative clusteringIntegr Comput Aided Eng2011183203219
– reference: ChenJ-FDoQHHsiehH-NTraining artificial neural networks by a hybrid PSO-CS algorithmAlgorithms20158292308336640910.3390/a8020292
– reference: GuyonIElisseeffAAn introduction to variable and feature selectionJ Mach Learn Res20033115711821102.68556
– reference: AdeliHParkHSA neural dynamics model for structural optimization—theoryComput Struct1995573383390134595210.1016/0045-7949(95)00048-L0900.73502
– reference: ZhangTOn the consistency of feature selection using greedy least squares regressionJ Mach Learn Res20091055556824917491235.62096
– reference: Standard, Indian (2000) ‘IS-456. 2000’ Plain and Reinforced Concrete-Code of Practice. Bureau of Indian Standards Manak Bhavan. 9 Bahadur Shah Zafar Marg New Delhi 110002
– reference: ElazouniAMNosairIAMohieldinYAMohamedAGEstimating resource requirements at conceptual stage using neural networksJ Comput Civ Eng199711421722310.1061/(ASCE)0887-3801(1997)11:4(217)
– reference: ArslanMHCeylanMKoyuncuTAn ANN approaches on estimating earthquake performances of existing RC buildingsNeural Netw World201222544310.14311/NNW.2012.22.027
– reference: ArslanMHAn evaluation of effective design parameters on earthquake performance of RC buildings using neural networksEng Struct20103271888189810.1016/j.engstruct.2010.03.010
– reference: NandaSJPandaGA survey on nature inspired metaheuristic algorithms for partitional clusteringSwarm Evolut Comput20141611810.1016/j.swevo.2013.11.003
– reference: GaoSNingBDongHAdaptive neural control with intercepted adaptation for time-delay saturated nonlinear systemsNeural Comput Appl20152681849185710.1007/s00521-015-1855-6
– reference: MukherjeeADespandeJMModeling initial design process using artificial neural networksJ Comput Civ Eng19959319420010.1061/(ASCE)0887-3801(1995)9:3(194)
– reference: MarenAJHarstonCTPapRMHandbook of neural computing applications2014San DiegoAcademic Press0778.68010
– reference: Dash RN, Subudhi B, Das S. (2010) A comparison between MLP NN and RBF NN techniques for the detection of stator inter-turn fault of an induction motor. In: 2010 International conference on industrial electronics, control and robotics (IECR), pp 251–256
– reference: RahmanianBPakizehMMansooriSAAEsfandyariMJafariDMaddahHMaskookiAPrediction of MEUF process performance using artificial neural networks and ANFIS approachesJ Taiwan Inst Chem Eng201243455856510.1016/j.jtice.2012.01.002
– reference: CaoZChengLZhouCGuNWangXTanMSpiking neural network-based target tracking control for autonomous mobile robotsNeural Comput Appl20152681839184710.1007/s00521-015-1848-5
– reference: HajelaPBerkeLNeurobiological computational models in structural analysis and designComput Struct199141465766710.1016/0045-7949(91)90178-O0752.73053
– reference: KarayiannisNVenetsanopoulosANArtificial neural networks: learning algorithms, performance evaluation, and applications2013New YorkSpringer Science & Business Media0817.68121
– reference: SiddiqueeMSAHossainMMADevelopment of a sequential artificial neural network for predicting river water levels based on Brahmaputra and Ganges water levelsNeural Comput Appl20152681979199010.1007/s00521-015-1871-6
– reference: RojasRNeural networks: a systematic introduction2013BerlinSpringer Science & Business Media0861.68072
– reference: ArslanMHCeylanMKoyuncuTDetermining earthquake performances of existing reinforced concrete buildings by using ANNWorld Acad Sci Eng Technol Int J Civ Environ Struct Constr Archit Eng201598921925
– reference: UddiMJameelMAbdul RazakHApplication of artificial neural network in fixed offshore structuresIndian J Mar Sci2015443
– reference: HanJKamberMData mining: concepts and techniques20052San FranciscoMorgan and Kaufmann285378
– reference: AwanSMAslamMKhanZASaeedHAn efficient model based on artificial bee colony optimization algorithm with neural networks for electric load forecastingNeural Comput Appl2014257–81967197810.1007/s00521-014-1685-y
– reference: MirjaliliSZSaremiSMirjaliliSMDesigning evolutionary feedforward neural networks using social spider optimization algorithmNeural Comput Appl20152681919192810.1007/s00521-015-1847-6
– reference: GrafWFreitagSKaliskeMSickertJURecurrent neural networks for uncertain time-dependent structural behaviorComput Aided Civ Infrastruct Eng201025532233310.1111/j.1467-8667.2009.00645.x
– reference: DehuriSChoSBA hybrid genetic based functional link artificial neural network with a statistical comparison of classifiers over multiple datasetsNeural Comput Appl201019231732810.1007/s00521-009-0310-y
– reference: AzarATEl-SaidSABalasVEOlariuTLinguistic hedges fuzzy feature selection for differential diagnosis of Erythemato-Squamous diseasesSoft Comput Appl AISC201319548750010.1007/978-3-642-33941-7_43
– reference: BaughmanDRLiuYANeural networks in bioprocessing and chemical engineering2014San DiegoAcademic press
– reference: DeyNSamantaSYangX-SChaudhriSSDasAOptimization of scaling factors in electrocardiogram signal watermarking using cuckoo searchInt J Bio Inspired Comput (IJBIC)20135531532610.1504/IJBIC.2013.057193
– reference: Chakraborty S, Samanta S, Mukherjee A, Dey N, Chaudhuri SS (2013) Particle swarm optimization based parameter optimization technique in medical information hiding. In: 2013 IEEE international conference on computational intelligence and computing research (ICCIC), Madurai, 26–28 Dec 2013
– reference: ErdemHPrediction of moment capacity of reinforced concrete slabs in fire using artificial neural networksAdv Eng Softw201041227027610.1016/j.advengsoft.2009.07.0061180.80060
– reference: NguyenNTLimCPJainLCBalasVETheoretical advances and applications of intelligent paradigmsJ Intell Fuzzy Syst20092012
– reference: PierceSWordenKMansonGA novel information-gap technique to assess reliability of neural network-based damage detectionJ Sound Vib20062931–29611110.1016/j.jsv.2005.09.029
– reference: ChenBLiuWMobile agent computing paradigm for building a flexible structural health monitoring sensor networkComput Aided Civil Infrastruct Eng201025750451610.1111/j.1467-8667.2010.00656.x
– reference: ParkHSAdeliHDistributed neural dynamics algorithms for optimization of large steel structuresJ Struct Eng1997123788088810.1061/(ASCE)0733-9445(1997)123:7(880)
– reference: BagciMNeural network model for moment-curvature relationship of reinforced concrete sectionsMath Comput Appl2010151667805802297
– reference: FayyadhMMAbdul RazakHStiffness reduction index for detection of damage location: analytical studyInt J Phys Sci20116921942204
– reference: KausarNPalaniappanSAlGhamdiBSSamirBBDeyNAbdullahASystematic analysis of applied data mining based optimization algorithms in clinical attribute extraction and classification for diagnosis of cardiac patientsAppl Intell Optim Biol Med Ser Intell Syst Ref Libr201596217231
– reference: JiangXAdeliHPseudospectra, MUSIC, and dynamic wavelet neural network for damage detection of highrise buildingsInt J Numer Meth Eng200771560662910.1002/nme.19641194.74343
– reference: JakubekMNeural network prediction of load capacity for eccentrically loaded reinforced concrete columnsComput Assist Methods Eng Sci201219339349
– reference: JoghataieAMojtabaFDynamic analysis of nonlinear frames by Prandtl neural networksJ Eng Mech20081341196196910.1061/(ASCE)0733-9399(2008)134:11(961)
– reference: FarukDÖA hybrid neural network and ARIMA model for water quality time series predictionEng Appl Artif Intell2010234586594272916010.1016/j.engappai.2009.09.015
– reference: BerardiVLKlineDMRevisiting squared-error and cross-entropy functions for training neural network classifiersNeural Comput Appl200514431031810.1007/s00521-005-0467-y
– reference: HadiMNSNeural network applications in concrete structuresComput Struct200381637338110.1016/S0045-7949(02)00451-0
– reference: AdeliHKarimANeural network model for optimization of cold-formed steel beamsJ Struct Eng1997123111535154310.1061/(ASCE)0733-9445(1997)123:11(1535)
– reference: LagarosNDPapadrakakisMNeural network based prediction schemes of the non-linear seismic response of 3D buildingsAdv Eng Softw20124419211510.1016/j.advengsoft.2011.05.033
– reference: McEntireDADisaster response and recovery: strategies and tactics for resilience2014HobokenJohn Wiley & Sons
– reference: CiancioCAmbrogioG GagliardiFMusmannoRHeuristic techniques to optimize neural network architecture in manufacturing applicationsNeural Comput Appl2015
– reference: GuptaRKewalramaniMGoelAPrediction of concrete strength using neural-expert systemJ Mater Civ Eng200618346246610.1061/(ASCE)0899-1561(2006)18:3(462)
– reference: KameliIMiriMRajiAPrediction of target displacement of reinforced concrete frames using artificial neural networksAdv Mater Res20112552345234910.4028/www.scientific.net/AMR.255-260.2345
– reference: MaizirHKassimKANeural network application in prediction of axial bearing capacity of driven pilesProc Int Multiconf Eng Comput Sci2013220215155
– reference: CoelloCoelloCAPulidoGTMultiobjective structural optimization using a microgenetic algorithmStruct Multidiscip Optim200530538840310.1007/s00158-005-0527-z
– reference: KiaASensoySClassification of earthquake-induced damage for R/C slab column frames using multiclass SVM and its combination with MLP neural networkMath Probl Eng2014201411410.1155/2014/734072
– reference: SochaKBlumCAn ant colony optimization algorithm for continuous optimization: application to feed-forward neural network trainingNeural Comput Appl200716323524710.1007/s00521-007-0084-z
– reference: PlevrisVPapadrakakisMA hybrid particle swarm-gradient algorithm for global structural optimizationComput Aided Civ Infrastruct Eng20112614868
– reference: MacIntyreJApplications of neural computing in the twenty-first century and 21 years of neural computing and applicationsNeural Comput Appl2013233–465766510.1007/s00521-013-1471-2
– ident: 2190_CR34
  doi: 10.1109/IECR.2010.5720163
– volume-title: Neural networks: a systematic introduction
  year: 2013
  ident: 2190_CR33
– volume: 30
  start-page: 388
  issue: 5
  year: 2005
  ident: 2190_CR35
  publication-title: Struct Multidiscip Optim
  doi: 10.1007/s00158-005-0527-z
– volume: 26
  start-page: 1919
  issue: 8
  year: 2015
  ident: 2190_CR54
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-015-1847-6
– volume: 18
  start-page: 462
  issue: 3
  year: 2006
  ident: 2190_CR20
  publication-title: J Mater Civ Eng
  doi: 10.1061/(ASCE)0899-1561(2006)18:3(462)
– volume: 19
  start-page: 317
  issue: 2
  year: 2010
  ident: 2190_CR43
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-009-0310-y
– ident: 2190_CR47
  doi: 10.1109/ICCIC.2013.6724173
– volume: 22
  start-page: 443
  issue: 5
  year: 2012
  ident: 2190_CR56
  publication-title: Neural Netw World
  doi: 10.14311/NNW.2012.22.027
– ident: 2190_CR30
– volume: 19
  start-page: 339
  year: 2012
  ident: 2190_CR24
  publication-title: Comput Assist Methods Eng Sci
– volume: 71
  start-page: 606
  issue: 5
  year: 2007
  ident: 2190_CR3
  publication-title: Int J Numer Meth Eng
  doi: 10.1002/nme.1964
– volume: 195
  start-page: 487
  year: 2013
  ident: 2190_CR45
  publication-title: Soft Comput Appl AISC
  doi: 10.1007/978-3-642-33941-7_43
– volume: 134
  start-page: 961
  issue: 11
  year: 2008
  ident: 2190_CR28
  publication-title: J Eng Mech
  doi: 10.1061/(ASCE)0733-9399(2008)134:11(961)
– volume: 44
  start-page: 92
  issue: 1
  year: 2012
  ident: 2190_CR25
  publication-title: Adv Eng Softw
  doi: 10.1016/j.advengsoft.2011.05.033
– volume-title: Neural networks in bioprocessing and chemical engineering
  year: 2014
  ident: 2190_CR32
– volume: 293
  start-page: 96
  issue: 1–2
  year: 2006
  ident: 2190_CR8
  publication-title: J Sound Vib
  doi: 10.1016/j.jsv.2005.09.029
– volume: 23
  start-page: 586
  issue: 4
  year: 2010
  ident: 2190_CR12
  publication-title: Eng Appl Artif Intell
  doi: 10.1016/j.engappai.2009.09.015
– volume: 11
  start-page: 217
  issue: 4
  year: 1997
  ident: 2190_CR18
  publication-title: J Comput Civ Eng
  doi: 10.1061/(ASCE)0887-3801(1997)11:4(217)
– start-page: 285
  volume-title: Data mining: concepts and techniques
  year: 2005
  ident: 2190_CR7
– volume: 41
  start-page: 657
  issue: 4
  year: 1991
  ident: 2190_CR13
  publication-title: Comput Struct
  doi: 10.1016/0045-7949(91)90178-O
– volume: 14
  start-page: 310
  issue: 4
  year: 2005
  ident: 2190_CR37
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-005-0467-y
– volume: 43
  start-page: 558
  issue: 4
  year: 2012
  ident: 2190_CR11
  publication-title: J Taiwan Inst Chem Eng
  doi: 10.1016/j.jtice.2012.01.002
– volume: 5
  start-page: 315
  issue: 5
  year: 2013
  ident: 2190_CR46
  publication-title: Int J Bio Inspired Comput (IJBIC)
  doi: 10.1504/IJBIC.2013.057193
– volume: 96
  start-page: 217
  year: 2015
  ident: 2190_CR52
  publication-title: Appl Intell Optim Biol Med Ser Intell Syst Ref Libr
– volume: 32
  start-page: 1888
  issue: 7
  year: 2010
  ident: 2190_CR55
  publication-title: Eng Struct
  doi: 10.1016/j.engstruct.2010.03.010
– volume: 9
  start-page: 194
  issue: 3
  year: 1995
  ident: 2190_CR15
  publication-title: J Comput Civ Eng
  doi: 10.1061/(ASCE)0887-3801(1995)9:3(194)
– volume: 18
  start-page: 203
  issue: 3
  year: 2011
  ident: 2190_CR5
  publication-title: Integr Comput Aided Eng
  doi: 10.3233/ICA-2011-0372
– volume: 26
  start-page: 1849
  issue: 8
  year: 2015
  ident: 2190_CR51
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-015-1855-6
– volume-title: Handbook of neural computing applications
  year: 2014
  ident: 2190_CR31
– volume: 26
  start-page: 1979
  issue: 8
  year: 2015
  ident: 2190_CR49
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-015-1871-6
– volume: 3
  start-page: 1157
  year: 2003
  ident: 2190_CR39
  publication-title: J Mach Learn Res
– volume: 9
  start-page: 921
  issue: 8
  year: 2015
  ident: 2190_CR58
  publication-title: World Acad Sci Eng Technol Int J Civ Environ Struct Constr Archit Eng
– volume: 16
  start-page: 235
  issue: 3
  year: 2007
  ident: 2190_CR41
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-007-0084-z
– volume: 123
  start-page: 880
  issue: 7
  year: 1997
  ident: 2190_CR17
  publication-title: J Struct Eng
  doi: 10.1061/(ASCE)0733-9445(1997)123:7(880)
– volume: 44
  start-page: 3
  year: 2015
  ident: 2190_CR27
  publication-title: Indian J Mar Sci
– volume: 57
  start-page: 383
  issue: 3
  year: 1995
  ident: 2190_CR14
  publication-title: Comput Struct
  doi: 10.1016/0045-7949(95)00048-L
– volume: 2014
  start-page: 1
  year: 2014
  ident: 2190_CR57
  publication-title: Math Probl Eng
  doi: 10.1155/2014/734072
– volume-title: Artificial neural networks: learning algorithms, performance evaluation, and applications
  year: 2013
  ident: 2190_CR40
– volume: 20
  start-page: 1
  year: 2009
  ident: 2190_CR42
  publication-title: J Intell Fuzzy Syst
  doi: 10.3233/IFS-2009-0410
– volume: 6
  start-page: 2194
  issue: 9
  year: 2011
  ident: 2190_CR2
  publication-title: Int J Phys Sci
– volume: 81
  start-page: 373
  issue: 6
  year: 2003
  ident: 2190_CR19
  publication-title: Comput Struct
  doi: 10.1016/S0045-7949(02)00451-0
– volume: 2202
  start-page: 51
  issue: 1
  year: 2013
  ident: 2190_CR26
  publication-title: Proc Int Multiconf Eng Comput Sci
– volume-title: Disaster response and recovery: strategies and tactics for resilience
  year: 2014
  ident: 2190_CR1
– volume: 41
  start-page: 270
  issue: 2
  year: 2010
  ident: 2190_CR22
  publication-title: Adv Eng Softw
  doi: 10.1016/j.advengsoft.2009.07.006
– volume: 255
  start-page: 2345
  year: 2011
  ident: 2190_CR36
  publication-title: Adv Mater Res
  doi: 10.4028/www.scientific.net/AMR.255-260.2345
– volume: 25
  start-page: 1967
  issue: 7–8
  year: 2014
  ident: 2190_CR48
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-014-1685-y
– volume: 22
  start-page: 788
  issue: 5
  year: 2008
  ident: 2190_CR6
  publication-title: Constr Build Mater
  doi: 10.1016/j.conbuildmat.2007.01.029
– year: 2015
  ident: 2190_CR53
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-015-1994-9
– volume: 123
  start-page: 1535
  issue: 11
  year: 1997
  ident: 2190_CR16
  publication-title: J Struct Eng
  doi: 10.1061/(ASCE)0733-9445(1997)123:11(1535)
– volume: 15
  start-page: 66
  issue: 1
  year: 2010
  ident: 2190_CR23
  publication-title: Math Comput Appl
– volume: 26
  start-page: 48
  issue: 1
  year: 2011
  ident: 2190_CR29
  publication-title: Comput Aided Civ Infrastruct Eng
– volume: 26
  start-page: 1839
  issue: 8
  year: 2015
  ident: 2190_CR50
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-015-1848-5
– volume: 25
  start-page: 504
  issue: 7
  year: 2010
  ident: 2190_CR4
  publication-title: Comput Aided Civil Infrastruct Eng
  doi: 10.1111/j.1467-8667.2010.00656.x
– volume: 10
  start-page: 555
  year: 2009
  ident: 2190_CR38
  publication-title: J Mach Learn Res
– volume: 8
  start-page: 292
  year: 2015
  ident: 2190_CR9
  publication-title: Algorithms
  doi: 10.3390/a8020292
– volume: 23
  start-page: 657
  issue: 3–4
  year: 2013
  ident: 2190_CR44
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-013-1471-2
– volume: 16
  start-page: 1
  year: 2014
  ident: 2190_CR10
  publication-title: Swarm Evolut Comput
  doi: 10.1016/j.swevo.2013.11.003
– volume: 25
  start-page: 322
  issue: 5
  year: 2010
  ident: 2190_CR21
  publication-title: Comput Aided Civ Infrastruct Eng
  doi: 10.1111/j.1467-8667.2009.00645.x
SSID ssj0004685
Score 2.5445154
Snippet Faulty structural design may cause multistory reinforced concrete (RC) buildings to collapse suddenly. All attempts are directed to avoid structural failure as...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2005
SubjectTerms Accuracy
Algorithms
Artificial Intelligence
Artificial neural networks
Classifiers
Collapse
Computational Biology/Bioinformatics
Computational Science and Engineering
Computer Science
Concrete construction
Data Mining and Knowledge Discovery
Feature extraction
Hazards
Image Processing and Computer Vision
Learning theory
Machine learning
Multistory buildings
Neural networks
Original Article
Particle swarm optimization
Predictions
Probability and Statistics in Computer Science
Reinforced concrete
Root-mean-square errors
Structural design
Structural failure
Title Particle swarm optimization trained neural network for structural failure prediction of multistoried RC buildings
URI https://link.springer.com/article/10.1007/s00521-016-2190-2
https://www.proquest.com/docview/1918020950
Volume 28
WOSCitedRecordID wos000405528300008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1433-3058
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0004685
  issn: 0941-0643
  databaseCode: P5Z
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1433-3058
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0004685
  issn: 0941-0643
  databaseCode: BENPR
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1433-3058
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004685
  issn: 0941-0643
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLZg48CF8RSDMeXACRRpbdquPcK0idNUjYcmLlXSJBISdGNF8Pdx0nQMBEhwbRurjePkc21_BjgVuUaQrxhVCEdooJmgiYg45VIo3udoI4G0zSb643E8nSapq-Mu62z3OiRpd-plsZv5g2lc34j6pv4Z990mnnaxscbJ9d1KMaTtw4lui0npCVgdyvxOxOfD6ANhfgmK2rNm1PrXW27DloOW5KJaCzuwpopdaNVtG4iz4j14Tt1yIeUbXzyRGe4aT64ck9iWEUoSw3OJwooqS5wgtCUV1ay9rPmDSWcn84WJ89iBM01scqJlHUEBkwERruV2uQ-3o-HN4Iq6zgs0Z7H_QrU0njHTfsS9MEfQFSah4h6T6M4i3suVH_Vxq-Cip3QSeV6iPJlo9G4kC9Ch4uwAGsWsUIdADB-_70WCs8iw2ctE5hHKjWPFWCiYbEOvVkGWO1py86mP2ZJQ2U5pZlLRzJRmfhvOlkPmFSfHbw93ar1mzjzLDJ3UGHFyEvbacF7rceX2T8KO_vT0MWz6BgTYdMEONFBL6gQ28lfUxaILzcvhOJ10YT0N77t2Db8DwUzp3Q
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwEA8yBX1xfuJ0ah58UgJr02bNowzHxDnGnLK3kjQJCO7DVfTf95Kmc4oK-to2R5tLLr_r3f0OoTOZGQD5mhINcIREhkrCJRNEKKlFU8AeiZRrNtHs9ZLRiPd9HXdeZruXIUlnqRfFbvYPpnV9GQlt_TPY3dUIDiybxze4e1gqhnR9OMFtsSk9ES1Dmd-J-HwYfSDML0FRd9a0q_96yy206aElvizWwjZa0ZMdVC3bNmC_i3fRc98vF5y_ifkYT8FqjH05JnYtI7TClucShE2KLHEM0BYXVLPushGPNp0dz-Y2zuMGTg12yYmOdQQEDFpY-pbb-R66b18NWx3iOy-QjCbhCzHKesbUhEwEcQagK-axFgFV4M4C3st0yJpgKoRsaMNZEHAdKG7Au1E0AodK0H1UmUwn-gBhy8cfBkwKyiybveIqYyA3STSlsaSqhhqlCtLM05LbT31KF4TKbkpTm4pmpzQNa-h8MWRWcHL89nC91Gvqt2eegpOaAE7mcaOGLko9Lt3-Sdjhn54-Reud4W037V73bo7QRmgBgUsdrKMKaEwfo7XsFfQyP3Er-B3oieon
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFA6iIr44rzidmgeflLK1abvmUaZDUcbwxt5K0iQguG6uQ_--56TpnKKC-No2hzYnl-8053wfIccyMwDyNfM0wBEvNEx6XMbCE0pq0RYwR0JlxSbavV4yGPC-0zktqmz36kiyrGlAlqZ82hwr05wVvuHfTAyDYy_AWmhYg5dC1AzCcP3uca4w0mpyQgiD6T0hq441vzPxeWP6QJtfDkjtvtOt_fuN18mag5z0rBwjG2RB55ukVsk5UDe7t8hL3w0jWryJyZCOYDUZujJNaqUktKLIfwnG8jJ7nALkpSUFrb1sxBOmudPxBM9_bMORoTZp0bKRgIHbDpVOirvYJg_di_vOpecUGbyMJcHUMwojZmaCWPhRBmAs4pEWPlMQ5gIOzHQQt2EJEbKlDY99n2tfcQNRj2IhBFqC7ZDFfJTrXUKRpz_wYylYjCz3iqssBrtJohmLJFN10qrckWaOrhw_9TmdES3bLk0xRQ27NA3q5GTWZFxydfz2cKPyceqmbZFC8JoAfuZRq05OK5_O3f7J2N6fnj4iK_3zbnpz1bveJ6sB4gSbUdggi-AwfUCWs1dwy-TQDuZ3TKrzCw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Particle+swarm+optimization+trained+neural+network+for+structural+failure+prediction+of+multistoried+RC+buildings&rft.jtitle=Neural+computing+%26+applications&rft.au=Chatterjee%2C+Sankhadeep&rft.au=Sarkar%2C+Sarbartha&rft.au=Hore%2C+Sirshendu&rft.au=Dey%2C+Nilanjan&rft.date=2017-08-01&rft.issn=0941-0643&rft.eissn=1433-3058&rft.volume=28&rft.issue=8&rft.spage=2005&rft.epage=2016&rft_id=info:doi/10.1007%2Fs00521-016-2190-2&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00521_016_2190_2
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0941-0643&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0941-0643&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0941-0643&client=summon