Particle swarm optimization trained neural network for structural failure prediction of multistoried RC buildings
Faulty structural design may cause multistory reinforced concrete (RC) buildings to collapse suddenly. All attempts are directed to avoid structural failure as it leads to human life danger as well as wasting time and property. Using traditional methods for predicting structural failure of the RC bu...
Gespeichert in:
| Veröffentlicht in: | Neural computing & applications Jg. 28; H. 8; S. 2005 - 2016 |
|---|---|
| Hauptverfasser: | , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
London
Springer London
01.08.2017
Springer Nature B.V |
| Schlagworte: | |
| ISSN: | 0941-0643, 1433-3058 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Faulty structural design may cause multistory reinforced concrete (RC) buildings to collapse suddenly. All attempts are directed to avoid structural failure as it leads to human life danger as well as wasting time and property. Using traditional methods for predicting structural failure of the RC buildings will be time-consuming and complex. Recent research proved the artificial neural network (ANN) potentiality in solving various real-life problems. The traditional learning algorithms suffer from being trapped into local optima with a premature convergence. Thus, it is a challenging task to achieve expected accuracy while using traditional learning algorithms to train ANN. To solve this problem, the present work proposed a particle swarm optimization-based approach to train the NN (NN-PSO). The PSO is employed to find a weight vector with minimum root-mean-square error (RMSE) for the NN. The proposed (NN-PSO) classifier is capable to tackle the problem of predicting structural failure of multistoried reinforced concrete buildings via detecting the failure possibility of the multistoried RC building structure in the future. A database of 150 multistoried buildings’ RC structures was employed in the experimental results. The PSO algorithm was involved to select the optimal weights for the NN classifier. Fifteen features have been extracted from the structural design, while nine features have been opted to perform the classification process. Moreover, the NN-PSO model was compared with NN and MLP-FFN (multilayer perceptron feed-forward network) classifier to find its ingenuity. The experimental results established the superiority of the proposed NN-PSO compared to the NN and MLP-FFN classifiers. The NN-PSO achieved 90 % accuracy with 90 % precision, 94.74 % recall and 92.31 % F-Measure. |
|---|---|
| AbstractList | Faulty structural design may cause multistory reinforced concrete (RC) buildings to collapse suddenly. All attempts are directed to avoid structural failure as it leads to human life danger as well as wasting time and property. Using traditional methods for predicting structural failure of the RC buildings will be time-consuming and complex. Recent research proved the artificial neural network (ANN) potentiality in solving various real-life problems. The traditional learning algorithms suffer from being trapped into local optima with a premature convergence. Thus, it is a challenging task to achieve expected accuracy while using traditional learning algorithms to train ANN. To solve this problem, the present work proposed a particle swarm optimization-based approach to train the NN (NN-PSO). The PSO is employed to find a weight vector with minimum root-mean-square error (RMSE) for the NN. The proposed (NN-PSO) classifier is capable to tackle the problem of predicting structural failure of multistoried reinforced concrete buildings via detecting the failure possibility of the multistoried RC building structure in the future. A database of 150 multistoried buildings’ RC structures was employed in the experimental results. The PSO algorithm was involved to select the optimal weights for the NN classifier. Fifteen features have been extracted from the structural design, while nine features have been opted to perform the classification process. Moreover, the NN-PSO model was compared with NN and MLP-FFN (multilayer perceptron feed-forward network) classifier to find its ingenuity. The experimental results established the superiority of the proposed NN-PSO compared to the NN and MLP-FFN classifiers. The NN-PSO achieved 90 % accuracy with 90 % precision, 94.74 % recall and 92.31 % F-Measure. Faulty structural design may cause multistory reinforced concrete (RC) buildings to collapse suddenly. All attempts are directed to avoid structural failure as it leads to human life danger as well as wasting time and property. Using traditional methods for predicting structural failure of the RC buildings will be time-consuming and complex. Recent research proved the artificial neural network (ANN) potentiality in solving various real-life problems. The traditional learning algorithms suffer from being trapped into local optima with a premature convergence. Thus, it is a challenging task to achieve expected accuracy while using traditional learning algorithms to train ANN. To solve this problem, the present work proposed a particle swarm optimization-based approach to train the NN (NN-PSO). The PSO is employed to find a weight vector with minimum root-mean-square error (RMSE) for the NN. The proposed (NN-PSO) classifier is capable to tackle the problem of predicting structural failure of multistoried reinforced concrete buildings via detecting the failure possibility of the multistoried RC building structure in the future. A database of 150 multistoried buildings’ RC structures was employed in the experimental results. The PSO algorithm was involved to select the optimal weights for the NN classifier. Fifteen features have been extracted from the structural design, while nine features have been opted to perform the classification process. Moreover, the NN-PSO model was compared with NN and MLP-FFN (multilayer perceptron feed-forward network) classifier to find its ingenuity. The experimental results established the superiority of the proposed NN-PSO compared to the NN and MLP-FFN classifiers. The NN-PSO achieved 90 % accuracy with 90 % precision, 94.74 % recall and 92.31 % F-Measure. |
| Author | Hore, Sirshendu Sarkar, Sarbartha Dey, Nilanjan Chatterjee, Sankhadeep Ashour, Amira S. Balas, Valentina E. |
| Author_xml | – sequence: 1 givenname: Sankhadeep surname: Chatterjee fullname: Chatterjee, Sankhadeep organization: Department of Computer Science and Engineering, University of Calcutta – sequence: 2 givenname: Sarbartha surname: Sarkar fullname: Sarkar, Sarbartha organization: Department of Civil Engineering, Hooghly Engineering and Technology College – sequence: 3 givenname: Sirshendu surname: Hore fullname: Hore, Sirshendu organization: Department of Computer Science and Engineering, Hooghly Engineering and Technology College – sequence: 4 givenname: Nilanjan surname: Dey fullname: Dey, Nilanjan organization: Department of Information Technology, Techno India College of Technology – sequence: 5 givenname: Amira S. surname: Ashour fullname: Ashour, Amira S. email: amirasashour@yahoo.com organization: Department of Electronics and Electrical Communications Engineering, Faculty of Engineering, Tanta University – sequence: 6 givenname: Valentina E. surname: Balas fullname: Balas, Valentina E. organization: Faculty of Engineering, Aurel Vlaicu University of Arad |
| BookMark | eNp9kE1LAzEQhoNUsFZ_gLeA59VJsh_ZoxS_oKCInkO6m5TU3U07yVL017vtehBBTwMz7zMz73tKJp3vDCEXDK4YQHEdADLOEmB5wlkJCT8iU5YKkQjI5IRMoUyHaZ6KE3IawhoA0lxmU7J91hhd1Rgadhpb6jfRte5TR-c7GlG7ztS0Mz3qZihx5_GdWo80ROyreGhb7ZoeDd2gqV11AL2lbd9EF6JHNyx4mdNl75radatwRo6tboI5_64z8nZ3-zp_SBZP94_zm0VSCcljYutCSikszzXLKi54VmZGM1FLUQieV4bnRQFCL8HYMmesNKwuLWdFLdKcZ1rMyOW4d4N-25sQ1dr32A0nFSuZBA5lBoOqGFUV-hDQWFW5eHC_N98oBmqfrxrzVUO-ap-v4gPJfpEbdK3Gj38ZPjJh0HYrgz9--hP6AiQ3kGo |
| CitedBy_id | crossref_primary_10_1007_s12555_020_0813_y crossref_primary_10_1007_s00521_024_09998_z crossref_primary_10_1016_j_engappai_2020_103650 crossref_primary_10_1016_j_istruc_2023_05_010 crossref_primary_10_2174_1574893614666191017100657 crossref_primary_10_1109_JSEN_2023_3294961 crossref_primary_10_1007_s00521_017_2855_5 crossref_primary_10_1007_s41939_024_00480_w crossref_primary_10_1016_j_resourpol_2019_02_014 crossref_primary_10_1016_j_fuel_2022_126531 crossref_primary_10_1109_ACCESS_2020_3007876 crossref_primary_10_4018_IJAMC_2019010104 crossref_primary_10_4018_IJAMC_2019010105 crossref_primary_10_4018_IJAMC_2019010102 crossref_primary_10_1155_2021_6662779 crossref_primary_10_1109_ACCESS_2020_3017277 crossref_primary_10_4018_IJAMC_2019010101 crossref_primary_10_1016_j_applthermaleng_2025_128032 crossref_primary_10_1016_j_asoc_2021_107711 crossref_primary_10_1109_TETCI_2018_2881490 crossref_primary_10_3390_machines12010042 crossref_primary_10_1007_s11277_020_07188_3 crossref_primary_10_1002_cpe_5036 crossref_primary_10_3233_JIFS_219059 crossref_primary_10_1109_ACCESS_2019_2956835 crossref_primary_10_3390_s20010006 crossref_primary_10_1007_s12665_021_09525_6 crossref_primary_10_1007_s00521_023_08278_6 crossref_primary_10_1016_j_tws_2022_109152 crossref_primary_10_1016_j_psep_2022_03_009 crossref_primary_10_1016_j_cam_2020_112724 crossref_primary_10_1177_14759217241233733 crossref_primary_10_1016_j_engstruct_2019_109449 crossref_primary_10_4018_JGIM_2018070101 crossref_primary_10_1007_s11063_022_11055_6 crossref_primary_10_1155_2021_5599624 crossref_primary_10_1007_s00500_019_03917_4 crossref_primary_10_1016_j_ress_2021_108280 crossref_primary_10_1007_s11042_020_09138_4 crossref_primary_10_1007_s11831_020_09500_7 crossref_primary_10_1680_jemmr_20_00107 crossref_primary_10_1016_j_asoc_2019_105644 crossref_primary_10_3390_app10176123 crossref_primary_10_1007_s00521_020_05466_6 crossref_primary_10_3233_JIFS_181064 crossref_primary_10_1016_j_compstruct_2025_119455 crossref_primary_10_3390_asi6060115 crossref_primary_10_1016_j_eswa_2021_114952 crossref_primary_10_1016_j_tws_2021_107541 crossref_primary_10_1007_s12273_023_1043_z crossref_primary_10_1088_1757_899X_955_1_012020 crossref_primary_10_1108_IJCS_03_2021_0010 crossref_primary_10_1016_j_applthermaleng_2020_115020 crossref_primary_10_1039_C9RA06079K crossref_primary_10_1155_2020_8869810 crossref_primary_10_1007_s12652_018_0962_5 crossref_primary_10_1016_j_measurement_2019_01_035 crossref_primary_10_1016_j_geoen_2023_212023 crossref_primary_10_3390_min9060376 crossref_primary_10_3390_en11051289 crossref_primary_10_1007_s10772_019_09631_8 crossref_primary_10_1038_s41598_023_40466_1 crossref_primary_10_1109_ACCESS_2024_3405570 crossref_primary_10_1155_2019_4979582 crossref_primary_10_1016_j_egyr_2022_09_034 crossref_primary_10_1016_j_aej_2024_07_029 crossref_primary_10_3389_fenrg_2022_891184 crossref_primary_10_1007_s00500_016_2442_1 crossref_primary_10_3233_JIFS_179798 crossref_primary_10_1155_2022_4884109 crossref_primary_10_3390_toxics9110273 crossref_primary_10_1007_s00500_021_05983_z crossref_primary_10_1061_PPSCFX_SCENG_1292 crossref_primary_10_1109_ACCESS_2019_2929857 crossref_primary_10_1016_j_resourpol_2019_101555 crossref_primary_10_3390_app9214715 crossref_primary_10_1007_s00607_019_00787_4 crossref_primary_10_1007_s00521_022_07775_4 crossref_primary_10_4018_IJBDAH_2017070102 crossref_primary_10_1016_j_cma_2018_03_029 crossref_primary_10_1016_j_eswa_2025_127975 crossref_primary_10_3390_sym11101291 crossref_primary_10_1007_s11042_019_08344_z crossref_primary_10_1007_s11277_018_6017_6 crossref_primary_10_3390_e22121421 crossref_primary_10_1016_j_isatra_2022_04_025 crossref_primary_10_1155_2018_6381610 crossref_primary_10_1002_eer2_29 crossref_primary_10_1007_s42107_024_00998_x crossref_primary_10_1002_mde_3016 crossref_primary_10_1007_s42107_023_00941_6 crossref_primary_10_4018_IJAMC_296262 crossref_primary_10_4018_IJISMD_2017100102 crossref_primary_10_1155_2022_1999013 crossref_primary_10_1007_s00366_021_01417_4 crossref_primary_10_1007_s00366_019_00847_5 crossref_primary_10_1007_s11465_019_0552_z crossref_primary_10_1016_j_neucom_2018_10_090 crossref_primary_10_1007_s00521_017_3284_1 crossref_primary_10_3390_s22030862 crossref_primary_10_1007_s00521_021_06214_0 crossref_primary_10_1016_j_cscm_2023_e02183 crossref_primary_10_1002_cpe_7771 crossref_primary_10_1016_j_istruc_2022_05_041 crossref_primary_10_1016_j_engstruct_2020_110269 crossref_primary_10_1007_s12530_021_09401_5 crossref_primary_10_1155_2021_9974230 crossref_primary_10_1088_1757_899X_1107_1_012118 crossref_primary_10_1155_2021_5574501 crossref_primary_10_1007_s00521_018_3400_x crossref_primary_10_1007_s12206_019_0516_6 crossref_primary_10_3390_su11092678 crossref_primary_10_1016_j_asoc_2019_105843 crossref_primary_10_4018_IJNCR_2018070104 crossref_primary_10_1007_s00521_019_04453_w crossref_primary_10_1016_j_autcon_2020_103181 crossref_primary_10_1016_j_apacoust_2021_108022 crossref_primary_10_1155_2021_6628889 crossref_primary_10_1155_2022_4328185 crossref_primary_10_3390_app14010079 crossref_primary_10_1007_s11053_019_09492_7 crossref_primary_10_1007_s13202_019_0728_4 crossref_primary_10_1007_s00158_017_1653_0 crossref_primary_10_3390_modelling5010009 crossref_primary_10_3390_app9153161 crossref_primary_10_1016_j_compstruc_2020_106376 crossref_primary_10_1007_s11042_022_12534_7 crossref_primary_10_1016_j_neucom_2020_02_121 crossref_primary_10_1016_j_asoc_2018_09_007 crossref_primary_10_1007_s00521_018_3357_9 crossref_primary_10_1080_08839514_2024_2440836 crossref_primary_10_1016_j_jcsr_2020_106443 crossref_primary_10_1080_23311916_2022_2153419 crossref_primary_10_1155_2019_2671792 crossref_primary_10_3233_JIFS_179593 crossref_primary_10_1007_s11042_019_7354_5 crossref_primary_10_1142_S0219649218500168 crossref_primary_10_1109_ACCESS_2021_3074460 crossref_primary_10_1016_j_asr_2019_10_008 crossref_primary_10_1002_eng2_12676 crossref_primary_10_1007_s13369_021_06286_z crossref_primary_10_1016_j_aei_2020_101057 crossref_primary_10_1016_j_compeleceng_2019_01_006 crossref_primary_10_1109_ACCESS_2021_3061288 crossref_primary_10_3390_app10093126 crossref_primary_10_3390_a12090183 crossref_primary_10_1007_s00521_023_08257_x crossref_primary_10_1007_s12008_022_00885_2 crossref_primary_10_1155_2021_9946404 crossref_primary_10_1007_s11709_022_0840_2 crossref_primary_10_4018_IJACI_2020010107 crossref_primary_10_1007_s42107_023_00818_8 crossref_primary_10_1016_j_jngse_2022_104467 |
| Cites_doi | 10.1109/IECR.2010.5720163 10.1007/s00158-005-0527-z 10.1007/s00521-015-1847-6 10.1061/(ASCE)0899-1561(2006)18:3(462) 10.1007/s00521-009-0310-y 10.1109/ICCIC.2013.6724173 10.14311/NNW.2012.22.027 10.1002/nme.1964 10.1007/978-3-642-33941-7_43 10.1061/(ASCE)0733-9399(2008)134:11(961) 10.1016/j.advengsoft.2011.05.033 10.1016/j.jsv.2005.09.029 10.1016/j.engappai.2009.09.015 10.1061/(ASCE)0887-3801(1997)11:4(217) 10.1016/0045-7949(91)90178-O 10.1007/s00521-005-0467-y 10.1016/j.jtice.2012.01.002 10.1504/IJBIC.2013.057193 10.1016/j.engstruct.2010.03.010 10.1061/(ASCE)0887-3801(1995)9:3(194) 10.3233/ICA-2011-0372 10.1007/s00521-015-1855-6 10.1007/s00521-015-1871-6 10.1007/s00521-007-0084-z 10.1061/(ASCE)0733-9445(1997)123:7(880) 10.1016/0045-7949(95)00048-L 10.1155/2014/734072 10.3233/IFS-2009-0410 10.1016/S0045-7949(02)00451-0 10.1016/j.advengsoft.2009.07.006 10.4028/www.scientific.net/AMR.255-260.2345 10.1007/s00521-014-1685-y 10.1016/j.conbuildmat.2007.01.029 10.1007/s00521-015-1994-9 10.1061/(ASCE)0733-9445(1997)123:11(1535) 10.1007/s00521-015-1848-5 10.1111/j.1467-8667.2010.00656.x 10.3390/a8020292 10.1007/s00521-013-1471-2 10.1016/j.swevo.2013.11.003 10.1111/j.1467-8667.2009.00645.x |
| ContentType | Journal Article |
| Copyright | The Natural Computing Applications Forum 2016 Copyright Springer Science & Business Media 2017 |
| Copyright_xml | – notice: The Natural Computing Applications Forum 2016 – notice: Copyright Springer Science & Business Media 2017 |
| DBID | AAYXX CITATION |
| DOI | 10.1007/s00521-016-2190-2 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1433-3058 |
| EndPage | 2016 |
| ExternalDocumentID | 10_1007_s00521_016_2190_2 |
| GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 123 1N0 1SB 2.D 203 28- 29N 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 53G 5QI 5VS 67Z 6NX 8FE 8FG 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABLJU ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACUHS ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. B0M BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EAD EAP EBLON EBS ECS EDO EIOEI EJD EMI EMK EPL ESBYG EST ESX F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW LAS LLZTM M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P P62 P9O PF0 PT4 PT5 QOK QOS R4E R89 R9I RHV RIG RNI RNS ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z5O Z7R Z7S Z7V Z7W Z7X Z7Y Z7Z Z81 Z83 Z86 Z88 Z8M Z8N Z8P Z8Q Z8R Z8S Z8T Z8U Z8W Z92 ZMTXR ~8M ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG ADKFA AEZWR AFDZB AFFHD AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PQGLB |
| ID | FETCH-LOGICAL-c382t-fd78883f26a15c232595ea13d837326ce267703ab0ef96119e1d9f217d34625a3 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 212 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000405528300008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0941-0643 |
| IngestDate | Tue Nov 04 16:44:28 EST 2025 Tue Nov 18 21:26:59 EST 2025 Sat Nov 29 02:59:01 EST 2025 Fri Feb 21 02:34:22 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 8 |
| Keywords | Multilayer perceptron feed-forward network Structural failure Cross-entropy Scaled conjugate gradient algorithm Artificial neural network Reinforced concrete structures Particle swarm optimization |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c382t-fd78883f26a15c232595ea13d837326ce267703ab0ef96119e1d9f217d34625a3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 1918020950 |
| PQPubID | 2043988 |
| PageCount | 12 |
| ParticipantIDs | proquest_journals_1918020950 crossref_citationtrail_10_1007_s00521_016_2190_2 crossref_primary_10_1007_s00521_016_2190_2 springer_journals_10_1007_s00521_016_2190_2 |
| PublicationCentury | 2000 |
| PublicationDate | 2017-08-01 |
| PublicationDateYYYYMMDD | 2017-08-01 |
| PublicationDate_xml | – month: 08 year: 2017 text: 2017-08-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: Heidelberg |
| PublicationTitle | Neural computing & applications |
| PublicationTitleAbbrev | Neural Comput & Applic |
| PublicationYear | 2017 |
| Publisher | Springer London Springer Nature B.V |
| Publisher_xml | – name: Springer London – name: Springer Nature B.V |
| References | JiangXAdeliHPseudospectra, MUSIC, and dynamic wavelet neural network for damage detection of highrise buildingsInt J Numer Meth Eng200771560662910.1002/nme.19641194.74343 NguyenNTLimCPJainLCBalasVETheoretical advances and applications of intelligent paradigmsJ Intell Fuzzy Syst20092012 ElazouniAMNosairIAMohieldinYAMohamedAGEstimating resource requirements at conceptual stage using neural networksJ Comput Civ Eng199711421722310.1061/(ASCE)0887-3801(1997)11:4(217) JakubekMNeural network prediction of load capacity for eccentrically loaded reinforced concrete columnsComput Assist Methods Eng Sci201219339349 DeyNSamantaSYangX-SChaudhriSSDasAOptimization of scaling factors in electrocardiogram signal watermarking using cuckoo searchInt J Bio Inspired Comput (IJBIC)20135531532610.1504/IJBIC.2013.057193 LagarosNDPapadrakakisMNeural network based prediction schemes of the non-linear seismic response of 3D buildingsAdv Eng Softw20124419211510.1016/j.advengsoft.2011.05.033 ArslanMHAn evaluation of effective design parameters on earthquake performance of RC buildings using neural networksEng Struct20103271888189810.1016/j.engstruct.2010.03.010 FarukDÖA hybrid neural network and ARIMA model for water quality time series predictionEng Appl Artif Intell2010234586594272916010.1016/j.engappai.2009.09.015 DehuriSChoSBA hybrid genetic based functional link artificial neural network with a statistical comparison of classifiers over multiple datasetsNeural Comput Appl201019231732810.1007/s00521-009-0310-y HajelaPBerkeLNeurobiological computational models in structural analysis and designComput Struct199141465766710.1016/0045-7949(91)90178-O0752.73053 AdeliHParkHSA neural dynamics model for structural optimization—theoryComput Struct1995573383390134595210.1016/0045-7949(95)00048-L0900.73502 PlevrisVPapadrakakisMA hybrid particle swarm-gradient algorithm for global structural optimizationComput Aided Civ Infrastruct Eng20112614868 UddiMJameelMAbdul RazakHApplication of artificial neural network in fixed offshore structuresIndian J Mar Sci2015443 JoghataieAMojtabaFDynamic analysis of nonlinear frames by Prandtl neural networksJ Eng Mech20081341196196910.1061/(ASCE)0733-9399(2008)134:11(961) ChenBLiuWMobile agent computing paradigm for building a flexible structural health monitoring sensor networkComput Aided Civil Infrastruct Eng201025750451610.1111/j.1467-8667.2010.00656.x GuyonIElisseeffAAn introduction to variable and feature selectionJ Mach Learn Res20033115711821102.68556 CaglarNElmasMYamanZDSaribiyikMNeural networks in 3-dimensional dynamic analysis of reinforced concrete buildingsConstr Build Mater200822578880010.1016/j.conbuildmat.2007.01.029 AwanSMAslamMKhanZASaeedHAn efficient model based on artificial bee colony optimization algorithm with neural networks for electric load forecastingNeural Comput Appl2014257–81967197810.1007/s00521-014-1685-y PierceSWordenKMansonGA novel information-gap technique to assess reliability of neural network-based damage detectionJ Sound Vib20062931–29611110.1016/j.jsv.2005.09.029 AdeliHKarimANeural network model for optimization of cold-formed steel beamsJ Struct Eng1997123111535154310.1061/(ASCE)0733-9445(1997)123:11(1535) FayyadhMMAbdul RazakHStiffness reduction index for detection of damage location: analytical studyInt J Phys Sci20116921942204 HadiMNSNeural network applications in concrete structuresComput Struct200381637338110.1016/S0045-7949(02)00451-0 NandaSJPandaGA survey on nature inspired metaheuristic algorithms for partitional clusteringSwarm Evolut Comput20141611810.1016/j.swevo.2013.11.003 ArslanMHCeylanMKoyuncuTDetermining earthquake performances of existing reinforced concrete buildings by using ANNWorld Acad Sci Eng Technol Int J Civ Environ Struct Constr Archit Eng201598921925 BerardiVLKlineDMRevisiting squared-error and cross-entropy functions for training neural network classifiersNeural Comput Appl200514431031810.1007/s00521-005-0467-y AzarATEl-SaidSABalasVEOlariuTLinguistic hedges fuzzy feature selection for differential diagnosis of Erythemato-Squamous diseasesSoft Comput Appl AISC201319548750010.1007/978-3-642-33941-7_43 BagciMNeural network model for moment-curvature relationship of reinforced concrete sectionsMath Comput Appl2010151667805802297 KameliIMiriMRajiAPrediction of target displacement of reinforced concrete frames using artificial neural networksAdv Mater Res20112552345234910.4028/www.scientific.net/AMR.255-260.2345 HanJKamberMData mining: concepts and techniques20052San FranciscoMorgan and Kaufmann285378 MarenAJHarstonCTPapRMHandbook of neural computing applications2014San DiegoAcademic Press0778.68010 MacIntyreJApplications of neural computing in the twenty-first century and 21 years of neural computing and applicationsNeural Comput Appl2013233–465766510.1007/s00521-013-1471-2 StratmanBMahadevanSLiCBiswasGIdentification of critical inspection samples among railroad wheels by similarity-based agglomerative clusteringIntegr Comput Aided Eng2011183203219 RahmanianBPakizehMMansooriSAAEsfandyariMJafariDMaddahHMaskookiAPrediction of MEUF process performance using artificial neural networks and ANFIS approachesJ Taiwan Inst Chem Eng201243455856510.1016/j.jtice.2012.01.002 CoelloCoelloCAPulidoGTMultiobjective structural optimization using a microgenetic algorithmStruct Multidiscip Optim200530538840310.1007/s00158-005-0527-z MaizirHKassimKANeural network application in prediction of axial bearing capacity of driven pilesProc Int Multiconf Eng Comput Sci2013220215155 Standard, Indian (2000) ‘IS-456. 2000’ Plain and Reinforced Concrete-Code of Practice. Bureau of Indian Standards Manak Bhavan. 9 Bahadur Shah Zafar Marg New Delhi 110002 SochaKBlumCAn ant colony optimization algorithm for continuous optimization: application to feed-forward neural network trainingNeural Comput Appl200716323524710.1007/s00521-007-0084-z BaughmanDRLiuYANeural networks in bioprocessing and chemical engineering2014San DiegoAcademic press ChenJ-FDoQHHsiehH-NTraining artificial neural networks by a hybrid PSO-CS algorithmAlgorithms20158292308336640910.3390/a8020292 KarayiannisNVenetsanopoulosANArtificial neural networks: learning algorithms, performance evaluation, and applications2013New YorkSpringer Science & Business Media0817.68121 KausarNPalaniappanSAlGhamdiBSSamirBBDeyNAbdullahASystematic analysis of applied data mining based optimization algorithms in clinical attribute extraction and classification for diagnosis of cardiac patientsAppl Intell Optim Biol Med Ser Intell Syst Ref Libr201596217231 GuptaRKewalramaniMGoelAPrediction of concrete strength using neural-expert systemJ Mater Civ Eng200618346246610.1061/(ASCE)0899-1561(2006)18:3(462) RojasRNeural networks: a systematic introduction2013BerlinSpringer Science & Business Media0861.68072 CiancioCAmbrogioG GagliardiFMusmannoRHeuristic techniques to optimize neural network architecture in manufacturing applicationsNeural Comput Appl2015 Chakraborty S, Samanta S, Mukherjee A, Dey N, Chaudhuri SS (2013) Particle swarm optimization based parameter optimization technique in medical information hiding. In: 2013 IEEE international conference on computational intelligence and computing research (ICCIC), Madurai, 26–28 Dec 2013 ParkHSAdeliHDistributed neural dynamics algorithms for optimization of large steel structuresJ Struct Eng1997123788088810.1061/(ASCE)0733-9445(1997)123:7(880) GrafWFreitagSKaliskeMSickertJURecurrent neural networks for uncertain time-dependent structural behaviorComput Aided Civ Infrastruct Eng201025532233310.1111/j.1467-8667.2009.00645.x SiddiqueeMSAHossainMMADevelopment of a sequential artificial neural network for predicting river water levels based on Brahmaputra and Ganges water levelsNeural Comput Appl20152681979199010.1007/s00521-015-1871-6 GaoSNingBDongHAdaptive neural control with intercepted adaptation for time-delay saturated nonlinear systemsNeural Comput Appl20152681849185710.1007/s00521-015-1855-6 MukherjeeADespandeJMModeling initial design process using artificial neural networksJ Comput Civ Eng19959319420010.1061/(ASCE)0887-3801(1995)9:3(194) ArslanMHCeylanMKoyuncuTAn ANN approaches on estimating earthquake performances of existing RC buildingsNeural Netw World201222544310.14311/NNW.2012.22.027 MirjaliliSZSaremiSMirjaliliSMDesigning evolutionary feedforward neural networks using social spider optimization algorithmNeural Comput Appl20152681919192810.1007/s00521-015-1847-6 KiaASensoySClassification of earthquake-induced damage for R/C slab column frames using multiclass SVM and its combination with MLP neural networkMath Probl Eng2014201411410.1155/2014/734072 ZhangTOn the consistency of feature selection using greedy least squares regressionJ Mach Learn Res20091055556824917491235.62096 McEntireDADisaster response and recovery: strategies and tactics for resilience2014HobokenJohn Wiley & Sons Dash RN, Subudhi B, Das S. (2010) A comparison between MLP NN and RBF NN techniques for the detection of stator inter-turn fault of an induction motor. In: 2010 International conference on industrial electronics, control and robotics (IECR), pp 251–256 ErdemHPrediction of moment capacity of reinforced concrete slabs in fire using artificial neural networksAdv Eng Softw201041227027610.1016/j.advengsoft.2009.07.0061180.80060 CaoZChengLZhouCGuNWangXTanMSpiking neural network-based target tracking control for autonomous mobile robotsNeural Comput Appl20152681839184710.1007/s00521-015-1848-5 DA McEntire (2190_CR1) 2014 K Socha (2190_CR41) 2007; 16 A Kia (2190_CR57) 2014; 2014 R Rojas (2190_CR33) 2013 P Hajela (2190_CR13) 1991; 41 NT Nguyen (2190_CR42) 2009; 20 VL Berardi (2190_CR37) 2005; 14 B Chen (2190_CR4) 2010; 25 N Caglar (2190_CR6) 2008; 22 W Graf (2190_CR21) 2010; 25 MH Arslan (2190_CR58) 2015; 9 I Kameli (2190_CR36) 2011; 255 J MacIntyre (2190_CR44) 2013; 23 J-F Chen (2190_CR9) 2015; 8 AM Elazouni (2190_CR18) 1997; 11 DR Baughman (2190_CR32) 2014 A Joghataie (2190_CR28) 2008; 134 DÖ Faruk (2190_CR12) 2010; 23 X Jiang (2190_CR3) 2007; 71 ND Lagaros (2190_CR25) 2012; 44 S Gao (2190_CR51) 2015; 26 SJ Nanda (2190_CR10) 2014; 16 I Guyon (2190_CR39) 2003; 3 N Dey (2190_CR46) 2013; 5 MSA Siddiquee (2190_CR49) 2015; 26 MNS Hadi (2190_CR19) 2003; 81 M Uddi (2190_CR27) 2015; 44 MH Arslan (2190_CR56) 2012; 22 M Bagci (2190_CR23) 2010; 15 CA CoelloCoello (2190_CR35) 2005; 30 AT Azar (2190_CR45) 2013; 195 MH Arslan (2190_CR55) 2010; 32 HS Park (2190_CR17) 1997; 123 N Kausar (2190_CR52) 2015; 96 2190_CR47 MM Fayyadh (2190_CR2) 2011; 6 J Han (2190_CR7) 2005 H Adeli (2190_CR14) 1995; 57 H Maizir (2190_CR26) 2013; 2202 R Gupta (2190_CR20) 2006; 18 M Jakubek (2190_CR24) 2012; 19 B Stratman (2190_CR5) 2011; 18 Z Cao (2190_CR50) 2015; 26 T Zhang (2190_CR38) 2009; 10 2190_CR34 N Karayiannis (2190_CR40) 2013 S Pierce (2190_CR8) 2006; 293 C Ciancio (2190_CR53) 2015 2190_CR30 B Rahmanian (2190_CR11) 2012; 43 V Plevris (2190_CR29) 2011; 26 H Adeli (2190_CR16) 1997; 123 A Mukherjee (2190_CR15) 1995; 9 SZ Mirjalili (2190_CR54) 2015; 26 AJ Maren (2190_CR31) 2014 H Erdem (2190_CR22) 2010; 41 S Dehuri (2190_CR43) 2010; 19 SM Awan (2190_CR48) 2014; 25 |
| References_xml | – reference: CaglarNElmasMYamanZDSaribiyikMNeural networks in 3-dimensional dynamic analysis of reinforced concrete buildingsConstr Build Mater200822578880010.1016/j.conbuildmat.2007.01.029 – reference: StratmanBMahadevanSLiCBiswasGIdentification of critical inspection samples among railroad wheels by similarity-based agglomerative clusteringIntegr Comput Aided Eng2011183203219 – reference: ChenJ-FDoQHHsiehH-NTraining artificial neural networks by a hybrid PSO-CS algorithmAlgorithms20158292308336640910.3390/a8020292 – reference: GuyonIElisseeffAAn introduction to variable and feature selectionJ Mach Learn Res20033115711821102.68556 – reference: AdeliHParkHSA neural dynamics model for structural optimization—theoryComput Struct1995573383390134595210.1016/0045-7949(95)00048-L0900.73502 – reference: ZhangTOn the consistency of feature selection using greedy least squares regressionJ Mach Learn Res20091055556824917491235.62096 – reference: Standard, Indian (2000) ‘IS-456. 2000’ Plain and Reinforced Concrete-Code of Practice. Bureau of Indian Standards Manak Bhavan. 9 Bahadur Shah Zafar Marg New Delhi 110002 – reference: ElazouniAMNosairIAMohieldinYAMohamedAGEstimating resource requirements at conceptual stage using neural networksJ Comput Civ Eng199711421722310.1061/(ASCE)0887-3801(1997)11:4(217) – reference: ArslanMHCeylanMKoyuncuTAn ANN approaches on estimating earthquake performances of existing RC buildingsNeural Netw World201222544310.14311/NNW.2012.22.027 – reference: ArslanMHAn evaluation of effective design parameters on earthquake performance of RC buildings using neural networksEng Struct20103271888189810.1016/j.engstruct.2010.03.010 – reference: NandaSJPandaGA survey on nature inspired metaheuristic algorithms for partitional clusteringSwarm Evolut Comput20141611810.1016/j.swevo.2013.11.003 – reference: GaoSNingBDongHAdaptive neural control with intercepted adaptation for time-delay saturated nonlinear systemsNeural Comput Appl20152681849185710.1007/s00521-015-1855-6 – reference: MukherjeeADespandeJMModeling initial design process using artificial neural networksJ Comput Civ Eng19959319420010.1061/(ASCE)0887-3801(1995)9:3(194) – reference: MarenAJHarstonCTPapRMHandbook of neural computing applications2014San DiegoAcademic Press0778.68010 – reference: Dash RN, Subudhi B, Das S. (2010) A comparison between MLP NN and RBF NN techniques for the detection of stator inter-turn fault of an induction motor. In: 2010 International conference on industrial electronics, control and robotics (IECR), pp 251–256 – reference: RahmanianBPakizehMMansooriSAAEsfandyariMJafariDMaddahHMaskookiAPrediction of MEUF process performance using artificial neural networks and ANFIS approachesJ Taiwan Inst Chem Eng201243455856510.1016/j.jtice.2012.01.002 – reference: CaoZChengLZhouCGuNWangXTanMSpiking neural network-based target tracking control for autonomous mobile robotsNeural Comput Appl20152681839184710.1007/s00521-015-1848-5 – reference: HajelaPBerkeLNeurobiological computational models in structural analysis and designComput Struct199141465766710.1016/0045-7949(91)90178-O0752.73053 – reference: KarayiannisNVenetsanopoulosANArtificial neural networks: learning algorithms, performance evaluation, and applications2013New YorkSpringer Science & Business Media0817.68121 – reference: SiddiqueeMSAHossainMMADevelopment of a sequential artificial neural network for predicting river water levels based on Brahmaputra and Ganges water levelsNeural Comput Appl20152681979199010.1007/s00521-015-1871-6 – reference: RojasRNeural networks: a systematic introduction2013BerlinSpringer Science & Business Media0861.68072 – reference: ArslanMHCeylanMKoyuncuTDetermining earthquake performances of existing reinforced concrete buildings by using ANNWorld Acad Sci Eng Technol Int J Civ Environ Struct Constr Archit Eng201598921925 – reference: UddiMJameelMAbdul RazakHApplication of artificial neural network in fixed offshore structuresIndian J Mar Sci2015443 – reference: HanJKamberMData mining: concepts and techniques20052San FranciscoMorgan and Kaufmann285378 – reference: AwanSMAslamMKhanZASaeedHAn efficient model based on artificial bee colony optimization algorithm with neural networks for electric load forecastingNeural Comput Appl2014257–81967197810.1007/s00521-014-1685-y – reference: MirjaliliSZSaremiSMirjaliliSMDesigning evolutionary feedforward neural networks using social spider optimization algorithmNeural Comput Appl20152681919192810.1007/s00521-015-1847-6 – reference: GrafWFreitagSKaliskeMSickertJURecurrent neural networks for uncertain time-dependent structural behaviorComput Aided Civ Infrastruct Eng201025532233310.1111/j.1467-8667.2009.00645.x – reference: DehuriSChoSBA hybrid genetic based functional link artificial neural network with a statistical comparison of classifiers over multiple datasetsNeural Comput Appl201019231732810.1007/s00521-009-0310-y – reference: AzarATEl-SaidSABalasVEOlariuTLinguistic hedges fuzzy feature selection for differential diagnosis of Erythemato-Squamous diseasesSoft Comput Appl AISC201319548750010.1007/978-3-642-33941-7_43 – reference: BaughmanDRLiuYANeural networks in bioprocessing and chemical engineering2014San DiegoAcademic press – reference: DeyNSamantaSYangX-SChaudhriSSDasAOptimization of scaling factors in electrocardiogram signal watermarking using cuckoo searchInt J Bio Inspired Comput (IJBIC)20135531532610.1504/IJBIC.2013.057193 – reference: Chakraborty S, Samanta S, Mukherjee A, Dey N, Chaudhuri SS (2013) Particle swarm optimization based parameter optimization technique in medical information hiding. In: 2013 IEEE international conference on computational intelligence and computing research (ICCIC), Madurai, 26–28 Dec 2013 – reference: ErdemHPrediction of moment capacity of reinforced concrete slabs in fire using artificial neural networksAdv Eng Softw201041227027610.1016/j.advengsoft.2009.07.0061180.80060 – reference: NguyenNTLimCPJainLCBalasVETheoretical advances and applications of intelligent paradigmsJ Intell Fuzzy Syst20092012 – reference: PierceSWordenKMansonGA novel information-gap technique to assess reliability of neural network-based damage detectionJ Sound Vib20062931–29611110.1016/j.jsv.2005.09.029 – reference: ChenBLiuWMobile agent computing paradigm for building a flexible structural health monitoring sensor networkComput Aided Civil Infrastruct Eng201025750451610.1111/j.1467-8667.2010.00656.x – reference: ParkHSAdeliHDistributed neural dynamics algorithms for optimization of large steel structuresJ Struct Eng1997123788088810.1061/(ASCE)0733-9445(1997)123:7(880) – reference: BagciMNeural network model for moment-curvature relationship of reinforced concrete sectionsMath Comput Appl2010151667805802297 – reference: FayyadhMMAbdul RazakHStiffness reduction index for detection of damage location: analytical studyInt J Phys Sci20116921942204 – reference: KausarNPalaniappanSAlGhamdiBSSamirBBDeyNAbdullahASystematic analysis of applied data mining based optimization algorithms in clinical attribute extraction and classification for diagnosis of cardiac patientsAppl Intell Optim Biol Med Ser Intell Syst Ref Libr201596217231 – reference: JiangXAdeliHPseudospectra, MUSIC, and dynamic wavelet neural network for damage detection of highrise buildingsInt J Numer Meth Eng200771560662910.1002/nme.19641194.74343 – reference: JakubekMNeural network prediction of load capacity for eccentrically loaded reinforced concrete columnsComput Assist Methods Eng Sci201219339349 – reference: JoghataieAMojtabaFDynamic analysis of nonlinear frames by Prandtl neural networksJ Eng Mech20081341196196910.1061/(ASCE)0733-9399(2008)134:11(961) – reference: FarukDÖA hybrid neural network and ARIMA model for water quality time series predictionEng Appl Artif Intell2010234586594272916010.1016/j.engappai.2009.09.015 – reference: BerardiVLKlineDMRevisiting squared-error and cross-entropy functions for training neural network classifiersNeural Comput Appl200514431031810.1007/s00521-005-0467-y – reference: HadiMNSNeural network applications in concrete structuresComput Struct200381637338110.1016/S0045-7949(02)00451-0 – reference: AdeliHKarimANeural network model for optimization of cold-formed steel beamsJ Struct Eng1997123111535154310.1061/(ASCE)0733-9445(1997)123:11(1535) – reference: LagarosNDPapadrakakisMNeural network based prediction schemes of the non-linear seismic response of 3D buildingsAdv Eng Softw20124419211510.1016/j.advengsoft.2011.05.033 – reference: McEntireDADisaster response and recovery: strategies and tactics for resilience2014HobokenJohn Wiley & Sons – reference: CiancioCAmbrogioG GagliardiFMusmannoRHeuristic techniques to optimize neural network architecture in manufacturing applicationsNeural Comput Appl2015 – reference: GuptaRKewalramaniMGoelAPrediction of concrete strength using neural-expert systemJ Mater Civ Eng200618346246610.1061/(ASCE)0899-1561(2006)18:3(462) – reference: KameliIMiriMRajiAPrediction of target displacement of reinforced concrete frames using artificial neural networksAdv Mater Res20112552345234910.4028/www.scientific.net/AMR.255-260.2345 – reference: MaizirHKassimKANeural network application in prediction of axial bearing capacity of driven pilesProc Int Multiconf Eng Comput Sci2013220215155 – reference: CoelloCoelloCAPulidoGTMultiobjective structural optimization using a microgenetic algorithmStruct Multidiscip Optim200530538840310.1007/s00158-005-0527-z – reference: KiaASensoySClassification of earthquake-induced damage for R/C slab column frames using multiclass SVM and its combination with MLP neural networkMath Probl Eng2014201411410.1155/2014/734072 – reference: SochaKBlumCAn ant colony optimization algorithm for continuous optimization: application to feed-forward neural network trainingNeural Comput Appl200716323524710.1007/s00521-007-0084-z – reference: PlevrisVPapadrakakisMA hybrid particle swarm-gradient algorithm for global structural optimizationComput Aided Civ Infrastruct Eng20112614868 – reference: MacIntyreJApplications of neural computing in the twenty-first century and 21 years of neural computing and applicationsNeural Comput Appl2013233–465766510.1007/s00521-013-1471-2 – ident: 2190_CR34 doi: 10.1109/IECR.2010.5720163 – volume-title: Neural networks: a systematic introduction year: 2013 ident: 2190_CR33 – volume: 30 start-page: 388 issue: 5 year: 2005 ident: 2190_CR35 publication-title: Struct Multidiscip Optim doi: 10.1007/s00158-005-0527-z – volume: 26 start-page: 1919 issue: 8 year: 2015 ident: 2190_CR54 publication-title: Neural Comput Appl doi: 10.1007/s00521-015-1847-6 – volume: 18 start-page: 462 issue: 3 year: 2006 ident: 2190_CR20 publication-title: J Mater Civ Eng doi: 10.1061/(ASCE)0899-1561(2006)18:3(462) – volume: 19 start-page: 317 issue: 2 year: 2010 ident: 2190_CR43 publication-title: Neural Comput Appl doi: 10.1007/s00521-009-0310-y – ident: 2190_CR47 doi: 10.1109/ICCIC.2013.6724173 – volume: 22 start-page: 443 issue: 5 year: 2012 ident: 2190_CR56 publication-title: Neural Netw World doi: 10.14311/NNW.2012.22.027 – ident: 2190_CR30 – volume: 19 start-page: 339 year: 2012 ident: 2190_CR24 publication-title: Comput Assist Methods Eng Sci – volume: 71 start-page: 606 issue: 5 year: 2007 ident: 2190_CR3 publication-title: Int J Numer Meth Eng doi: 10.1002/nme.1964 – volume: 195 start-page: 487 year: 2013 ident: 2190_CR45 publication-title: Soft Comput Appl AISC doi: 10.1007/978-3-642-33941-7_43 – volume: 134 start-page: 961 issue: 11 year: 2008 ident: 2190_CR28 publication-title: J Eng Mech doi: 10.1061/(ASCE)0733-9399(2008)134:11(961) – volume: 44 start-page: 92 issue: 1 year: 2012 ident: 2190_CR25 publication-title: Adv Eng Softw doi: 10.1016/j.advengsoft.2011.05.033 – volume-title: Neural networks in bioprocessing and chemical engineering year: 2014 ident: 2190_CR32 – volume: 293 start-page: 96 issue: 1–2 year: 2006 ident: 2190_CR8 publication-title: J Sound Vib doi: 10.1016/j.jsv.2005.09.029 – volume: 23 start-page: 586 issue: 4 year: 2010 ident: 2190_CR12 publication-title: Eng Appl Artif Intell doi: 10.1016/j.engappai.2009.09.015 – volume: 11 start-page: 217 issue: 4 year: 1997 ident: 2190_CR18 publication-title: J Comput Civ Eng doi: 10.1061/(ASCE)0887-3801(1997)11:4(217) – start-page: 285 volume-title: Data mining: concepts and techniques year: 2005 ident: 2190_CR7 – volume: 41 start-page: 657 issue: 4 year: 1991 ident: 2190_CR13 publication-title: Comput Struct doi: 10.1016/0045-7949(91)90178-O – volume: 14 start-page: 310 issue: 4 year: 2005 ident: 2190_CR37 publication-title: Neural Comput Appl doi: 10.1007/s00521-005-0467-y – volume: 43 start-page: 558 issue: 4 year: 2012 ident: 2190_CR11 publication-title: J Taiwan Inst Chem Eng doi: 10.1016/j.jtice.2012.01.002 – volume: 5 start-page: 315 issue: 5 year: 2013 ident: 2190_CR46 publication-title: Int J Bio Inspired Comput (IJBIC) doi: 10.1504/IJBIC.2013.057193 – volume: 96 start-page: 217 year: 2015 ident: 2190_CR52 publication-title: Appl Intell Optim Biol Med Ser Intell Syst Ref Libr – volume: 32 start-page: 1888 issue: 7 year: 2010 ident: 2190_CR55 publication-title: Eng Struct doi: 10.1016/j.engstruct.2010.03.010 – volume: 9 start-page: 194 issue: 3 year: 1995 ident: 2190_CR15 publication-title: J Comput Civ Eng doi: 10.1061/(ASCE)0887-3801(1995)9:3(194) – volume: 18 start-page: 203 issue: 3 year: 2011 ident: 2190_CR5 publication-title: Integr Comput Aided Eng doi: 10.3233/ICA-2011-0372 – volume: 26 start-page: 1849 issue: 8 year: 2015 ident: 2190_CR51 publication-title: Neural Comput Appl doi: 10.1007/s00521-015-1855-6 – volume-title: Handbook of neural computing applications year: 2014 ident: 2190_CR31 – volume: 26 start-page: 1979 issue: 8 year: 2015 ident: 2190_CR49 publication-title: Neural Comput Appl doi: 10.1007/s00521-015-1871-6 – volume: 3 start-page: 1157 year: 2003 ident: 2190_CR39 publication-title: J Mach Learn Res – volume: 9 start-page: 921 issue: 8 year: 2015 ident: 2190_CR58 publication-title: World Acad Sci Eng Technol Int J Civ Environ Struct Constr Archit Eng – volume: 16 start-page: 235 issue: 3 year: 2007 ident: 2190_CR41 publication-title: Neural Comput Appl doi: 10.1007/s00521-007-0084-z – volume: 123 start-page: 880 issue: 7 year: 1997 ident: 2190_CR17 publication-title: J Struct Eng doi: 10.1061/(ASCE)0733-9445(1997)123:7(880) – volume: 44 start-page: 3 year: 2015 ident: 2190_CR27 publication-title: Indian J Mar Sci – volume: 57 start-page: 383 issue: 3 year: 1995 ident: 2190_CR14 publication-title: Comput Struct doi: 10.1016/0045-7949(95)00048-L – volume: 2014 start-page: 1 year: 2014 ident: 2190_CR57 publication-title: Math Probl Eng doi: 10.1155/2014/734072 – volume-title: Artificial neural networks: learning algorithms, performance evaluation, and applications year: 2013 ident: 2190_CR40 – volume: 20 start-page: 1 year: 2009 ident: 2190_CR42 publication-title: J Intell Fuzzy Syst doi: 10.3233/IFS-2009-0410 – volume: 6 start-page: 2194 issue: 9 year: 2011 ident: 2190_CR2 publication-title: Int J Phys Sci – volume: 81 start-page: 373 issue: 6 year: 2003 ident: 2190_CR19 publication-title: Comput Struct doi: 10.1016/S0045-7949(02)00451-0 – volume: 2202 start-page: 51 issue: 1 year: 2013 ident: 2190_CR26 publication-title: Proc Int Multiconf Eng Comput Sci – volume-title: Disaster response and recovery: strategies and tactics for resilience year: 2014 ident: 2190_CR1 – volume: 41 start-page: 270 issue: 2 year: 2010 ident: 2190_CR22 publication-title: Adv Eng Softw doi: 10.1016/j.advengsoft.2009.07.006 – volume: 255 start-page: 2345 year: 2011 ident: 2190_CR36 publication-title: Adv Mater Res doi: 10.4028/www.scientific.net/AMR.255-260.2345 – volume: 25 start-page: 1967 issue: 7–8 year: 2014 ident: 2190_CR48 publication-title: Neural Comput Appl doi: 10.1007/s00521-014-1685-y – volume: 22 start-page: 788 issue: 5 year: 2008 ident: 2190_CR6 publication-title: Constr Build Mater doi: 10.1016/j.conbuildmat.2007.01.029 – year: 2015 ident: 2190_CR53 publication-title: Neural Comput Appl doi: 10.1007/s00521-015-1994-9 – volume: 123 start-page: 1535 issue: 11 year: 1997 ident: 2190_CR16 publication-title: J Struct Eng doi: 10.1061/(ASCE)0733-9445(1997)123:11(1535) – volume: 15 start-page: 66 issue: 1 year: 2010 ident: 2190_CR23 publication-title: Math Comput Appl – volume: 26 start-page: 48 issue: 1 year: 2011 ident: 2190_CR29 publication-title: Comput Aided Civ Infrastruct Eng – volume: 26 start-page: 1839 issue: 8 year: 2015 ident: 2190_CR50 publication-title: Neural Comput Appl doi: 10.1007/s00521-015-1848-5 – volume: 25 start-page: 504 issue: 7 year: 2010 ident: 2190_CR4 publication-title: Comput Aided Civil Infrastruct Eng doi: 10.1111/j.1467-8667.2010.00656.x – volume: 10 start-page: 555 year: 2009 ident: 2190_CR38 publication-title: J Mach Learn Res – volume: 8 start-page: 292 year: 2015 ident: 2190_CR9 publication-title: Algorithms doi: 10.3390/a8020292 – volume: 23 start-page: 657 issue: 3–4 year: 2013 ident: 2190_CR44 publication-title: Neural Comput Appl doi: 10.1007/s00521-013-1471-2 – volume: 16 start-page: 1 year: 2014 ident: 2190_CR10 publication-title: Swarm Evolut Comput doi: 10.1016/j.swevo.2013.11.003 – volume: 25 start-page: 322 issue: 5 year: 2010 ident: 2190_CR21 publication-title: Comput Aided Civ Infrastruct Eng doi: 10.1111/j.1467-8667.2009.00645.x |
| SSID | ssj0004685 |
| Score | 2.5452156 |
| Snippet | Faulty structural design may cause multistory reinforced concrete (RC) buildings to collapse suddenly. All attempts are directed to avoid structural failure as... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 2005 |
| SubjectTerms | Accuracy Algorithms Artificial Intelligence Artificial neural networks Classifiers Collapse Computational Biology/Bioinformatics Computational Science and Engineering Computer Science Concrete construction Data Mining and Knowledge Discovery Feature extraction Hazards Image Processing and Computer Vision Learning theory Machine learning Multistory buildings Neural networks Original Article Particle swarm optimization Predictions Probability and Statistics in Computer Science Reinforced concrete Root-mean-square errors Structural design Structural failure |
| Title | Particle swarm optimization trained neural network for structural failure prediction of multistoried RC buildings |
| URI | https://link.springer.com/article/10.1007/s00521-016-2190-2 https://www.proquest.com/docview/1918020950 |
| Volume | 28 |
| WOSCitedRecordID | wos000405528300008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 1433-3058 dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0004685 issn: 0941-0643 databaseCode: P5Z dateStart: 20120101 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1433-3058 dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0004685 issn: 0941-0643 databaseCode: BENPR dateStart: 20120101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVAVX databaseName: Springer Standard Collection customDbUrl: eissn: 1433-3058 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004685 issn: 0941-0643 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB609eDF-sRqLXvwpASaTfPYo5YWTyXUB8VL2OwDBE1rI_r3nd1sahUV9Jpkh2Rndh6ZmW8ATlHFBbEQsef7TBlQ7dDLpdBekuR9tKd9lTBth03E43EynbLU9XGXdbV7nZK0mnrZ7Gb-YJrQN_Ko6X9GvdtEa5eY0zi5vltphrRzODFsMSU9_aBOZX5H4rMx-vAwvyRFra0Ztf71ltuw5VxLclHJwg6sqWIXWvXYBuJO8R48p05cSPnGF09khlrjybVjEjsyQklicC6RWFFViRN0bUkFNWsva_5gytnJfGHyPHbhTBNbnGhRR5DAZEByN3K73Ifb0fBmcOW5yQueCBL64mlpIuNA04j7oUCnK2Sh4n4gMZxFf08oGsWoKnjeU5pFhs2-ZBqjGxn0MaDiwQE0ilmhDoFIX_hKhlQFGgUhjpnkgkmDhksjHfOkDb2aBZlwsOTmUx-zJaCy3dLMlKKZLc1oG86WS-YVJsdvD3dqvmbueJYZBqkJ-sks7LXhvObjyu2fiB396elj2KTGCbDlgh1oIJfUCWyIV-TFogvNy-E4nXRhPQ3vu1aG3wFZvel5 |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwEA8yBX1xfuJ0ah58Ugpr0q88ynBMnGPMKXsraT5AcN1cRf99L2k6p6igr21ztLnLffTufofQGag4GgsRe77PlAHVDr1MCu0lSRaAPQ1UwrQdNhH3-8l4zAauj7uoqt2rlKTV1ItmN_MH04S-kUdM_zPo3dUADJap4xvePSw1Q9o5nBC2mJKegFapzO9IfDZGHx7ml6SotTWd-r_ecgttOtcSX5aysI1WVL6D6tXYBuxO8S56HjhxwcUbn0_wFLTGxLVjYjsyQklscC6BWF5WiWNwbXEJNWsva_5oytnxbG7yPHbhVGNbnGhRR4DAsI0zN3K72EP3natRu-u5yQueoAl58bQ0kTHVJOJ-KMDpClmouE8lhLPg7wlFohhUBc9aSrPIsNmXTEN0I2kAARWn-6iWT3N1gLD0ha9kSBTVIAhxzCQXTBo0XBLpmCcN1KpYkAoHS24-9SldACrbLU1NKZrZ0pQ00PliyazE5Pjt4WbF19QdzyKFIDUBP5mFrQa6qPi4dPsnYod_evoUrXdHt720d92_OUIbxDgEtnSwiWrAMXWM1sQr8GV-YiX4HYHC6cM |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF5ERbxYn1itugdPSmiTzWuPUi2KUoovegvbfYBg09oU_fvObDa1igriNckOyc7s7nyZmW8IOYYtjiVSJp7vc42k2pE3UNJ4aToI4TwNdcqNbTaRdLtpv897rs9pUWW7VyHJsqYBWZryaXOsTHNW-IZ_MxEGx16AtdCwBy-F2DMI4frd41xhpO3JCRAG03tCVoU1vxPx-WD68Da_BEjtudOp_fuN18macznpWWkjG2RB55ukVrVzoG51b5GXnjMjWryJyZCOYDcZujJNaltJaEWR_xKE5WX2OAWXl5YUtPayEU-Y5k7HE4z_2IEjQ23SomUjAQG3bTpwrbiLbfLQubhvX3quI4MnWRpMPaMQMTMTxMKPJDhjEY-08JkCmAt-oNRBnMAWIgYtbXiM6vcVN4B6FAsBaAm2QxbzUa53CVW-9LWKAs0MGEiScCUkV8iSG8QmEWmdtCp1ZNLRleOnPmczomU7pRmmqOGUZkGdnMyGjEuujt8eblQ6ztyyLTIAryn4zzxq1clppdO52z8J2_vT00dkpXfeyW6uutf7ZDVAP8FmFDbIIihMH5Bl-QpqmRxaY34Hzsjypw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Particle+swarm+optimization+trained+neural+network+for+structural+failure+prediction+of+multistoried+RC+buildings&rft.jtitle=Neural+computing+%26+applications&rft.au=Chatterjee%2C+Sankhadeep&rft.au=Sarkar%2C+Sarbartha&rft.au=Hore%2C+Sirshendu&rft.au=Dey%2C+Nilanjan&rft.date=2017-08-01&rft.pub=Springer+Nature+B.V&rft.issn=0941-0643&rft.eissn=1433-3058&rft.volume=28&rft.issue=8&rft.spage=2005&rft.epage=2016&rft_id=info:doi/10.1007%2Fs00521-016-2190-2&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0941-0643&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0941-0643&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0941-0643&client=summon |