Strong convergence result for solving monotone variational inequalities in Hilbert space

In this paper, we study strong convergence of the algorithm for solving classical variational inequalities problem with Lipschitz-continuous and monotone mapping in real Hilbert space. The algorithm is inspired by Tseng’s extragradient method and the viscosity method with a simple step size. A stron...

Full description

Saved in:
Bibliographic Details
Published in:Numerical algorithms Vol. 80; no. 3; pp. 741 - 752
Main Authors: Yang, Jun, Liu, Hongwei
Format: Journal Article
Language:English
Published: New York Springer US 01.03.2019
Springer Nature B.V
Subjects:
ISSN:1017-1398, 1572-9265
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this paper, we study strong convergence of the algorithm for solving classical variational inequalities problem with Lipschitz-continuous and monotone mapping in real Hilbert space. The algorithm is inspired by Tseng’s extragradient method and the viscosity method with a simple step size. A strong convergence theorem for our algorithm is proved without any requirement of additional projections and the knowledge of the Lipschitz constant of the mapping. Finally, we provide some numerical experiments to show the efficiency and advantage of the proposed algorithm.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1017-1398
1572-9265
DOI:10.1007/s11075-018-0504-4