Distribution network path planning method and system based on artificial intelligence optimization algorithm

Planning the most efficient, cost-effective, and reliable pathways for transmitting electricity from electrical substations to consumers is known as distribution network path planning. It’s not an easy task, but it’s necessary to meet the changing needs of the load and include renewable energy sourc...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Discover applied sciences Ročník 7; číslo 10; s. 1074 - 18
Hlavní autoři: Jiang, Shaoyan, Zheng, Jiaxin, Du, Lifeng, Su, Shaoying, Tan, Hanming
Médium: Journal Article
Jazyk:angličtina
Vydáno: Cham Springer International Publishing 26.09.2025
Springer Nature B.V
Springer
Témata:
ISSN:3004-9261, 2523-3963, 3004-9261, 2523-3971
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Planning the most efficient, cost-effective, and reliable pathways for transmitting electricity from electrical substations to consumers is known as distribution network path planning. It’s not an easy task, but it’s necessary to meet the changing needs of the load and include renewable energy sources. A computerized model of the electrical system that includes power cables, nodes (such as transformers and substations), and the capacity, impedance, and position of each component. A basic topic with diverse applications, the route planning issue is a staple in many domains. Scholarly interest in finding a solution to the route optimization issue using deep reinforcement learning technologies has grown in recent years, making it a popular avenue for path planning problems. In this research, we will examine a power distribution optimization route approach, use deep reinforcement learning to address the continuous route planning issue, and do experiments in a Miniworld maze. In a study that compared Deep Deterministic Policy Gradient (DDPG) to genetic algorithms, Binary Swarm Optimization, while the historical average approach, it was found that the latter had a small and less than ideal accuracy rate, was easy to calculate, and showed little change in accuracy with increasing data. A neural network representation of the reward function is used to suggest a reward shaping DDPG algorithm that optimizes the reward functionality dynamically. The genetic algorithms accuracy hovers around 70%; it degrades with increasing training size. Eventually stabilizing at about 83%, the forecasting accuracy rate increased in tandem with the training system’s expansion, leading to a deeper learning model with a higher training level.
AbstractList Planning the most efficient, cost-effective, and reliable pathways for transmitting electricity from electrical substations to consumers is known as distribution network path planning. It’s not an easy task, but it’s necessary to meet the changing needs of the load and include renewable energy sources. A computerized model of the electrical system that includes power cables, nodes (such as transformers and substations), and the capacity, impedance, and position of each component. A basic topic with diverse applications, the route planning issue is a staple in many domains. Scholarly interest in finding a solution to the route optimization issue using deep reinforcement learning technologies has grown in recent years, making it a popular avenue for path planning problems. In this research, we will examine a power distribution optimization route approach, use deep reinforcement learning to address the continuous route planning issue, and do experiments in a Miniworld maze. In a study that compared Deep Deterministic Policy Gradient (DDPG) to genetic algorithms, Binary Swarm Optimization, while the historical average approach, it was found that the latter had a small and less than ideal accuracy rate, was easy to calculate, and showed little change in accuracy with increasing data. A neural network representation of the reward function is used to suggest a reward shaping DDPG algorithm that optimizes the reward functionality dynamically. The genetic algorithms accuracy hovers around 70%; it degrades with increasing training size. Eventually stabilizing at about 83%, the forecasting accuracy rate increased in tandem with the training system’s expansion, leading to a deeper learning model with a higher training level.
Abstract Planning the most efficient, cost-effective, and reliable pathways for transmitting electricity from electrical substations to consumers is known as distribution network path planning. It’s not an easy task, but it’s necessary to meet the changing needs of the load and include renewable energy sources. A computerized model of the electrical system that includes power cables, nodes (such as transformers and substations), and the capacity, impedance, and position of each component. A basic topic with diverse applications, the route planning issue is a staple in many domains. Scholarly interest in finding a solution to the route optimization issue using deep reinforcement learning technologies has grown in recent years, making it a popular avenue for path planning problems. In this research, we will examine a power distribution optimization route approach, use deep reinforcement learning to address the continuous route planning issue, and do experiments in a Miniworld maze. In a study that compared Deep Deterministic Policy Gradient (DDPG) to genetic algorithms, Binary Swarm Optimization, while the historical average approach, it was found that the latter had a small and less than ideal accuracy rate, was easy to calculate, and showed little change in accuracy with increasing data. A neural network representation of the reward function is used to suggest a reward shaping DDPG algorithm that optimizes the reward functionality dynamically. The genetic algorithms accuracy hovers around 70%; it degrades with increasing training size. Eventually stabilizing at about 83%, the forecasting accuracy rate increased in tandem with the training system’s expansion, leading to a deeper learning model with a higher training level.
ArticleNumber 1074
Author Jiang, Shaoyan
Du, Lifeng
Su, Shaoying
Zheng, Jiaxin
Tan, Hanming
Author_xml – sequence: 1
  givenname: Shaoyan
  surname: Jiang
  fullname: Jiang, Shaoyan
  email: ShaoyanJiang436@outlook.com
  organization: Zhongshan Power Supply Bureau of Guangdong Power Grid Co., Ltd
– sequence: 2
  givenname: Jiaxin
  surname: Zheng
  fullname: Zheng, Jiaxin
  organization: Zhongshan Power Supply Bureau of Guangdong Power Grid Co., Ltd
– sequence: 3
  givenname: Lifeng
  surname: Du
  fullname: Du, Lifeng
  organization: Zhongshan Power Supply Bureau of Guangdong Power Grid Co., Ltd
– sequence: 4
  givenname: Shaoying
  surname: Su
  fullname: Su, Shaoying
  organization: Zhongshan Power Supply Bureau of Guangdong Power Grid Co., Ltd
– sequence: 5
  givenname: Hanming
  surname: Tan
  fullname: Tan, Hanming
  organization: Zhongshan Power Supply Bureau of Guangdong Power Grid Co., Ltd
BookMark eNp9kUuP1DAQhCO0SCzL_gFOljgH_HZ8RMtrpZW4wNnqOJ2Mh8QOtkdo-fVkJgg4cepWq-rrkup5cxVTxKZ5yehrRql5UySXireUq5YabW0rnjTXglLZWq7Z1T_7s-a2lCOlVAhqjLLXzfwulJpDf6ohRRKx_kj5G1mhHsg6Q4whTmTBekgDgTiQ8lgqLqSHggPZDJBrGIMPMJMQK85zmDB6JGmtYQk_4UKFeUo51MPyonk6wlzw9ve8ab5-eP_l7lP78Pnj_d3bh9aLjtcWzcgs6g56jRoEhQ7GQQJ2zAKVSgOzIyjOJQxGge-k9cpYMJ2nemTKiJvmfucOCY5uzWGB_OgSBHc5pDy5c3A_ozOd6W3vh0ELLRlY6FEKKxXaDllPx431ametOX0_YanumE45bvGd4EpZKqU-f-S7yudUSsbxz1dG3bkkt5fktpLcpSQnNpPYTWUTxwnzX_R_XL8Aa92YgQ
Cites_doi 10.1109/ICPSAsia48933.2020.9208512
10.23919/CCC58697.2023.10240661
10.54097/r6fs0580
10.1109/APAP59666.2023.10348397
10.1109/ICPSAsia58343.2023.10294414
10.3390/en18051254
10.1109/ICPSAsia55496.2022.9949767
10.1109/CAC59555.2023.10451292
10.3390/en13123208
10.1109/CIEEC58067.2023.10166375
10.21203/rs.3.rs-2549934/v1
10.21203/rs.3.rs-2225000/v1
10.1109/CIEEC54735.2022.9846378
10.1186/s42400-024-00288-8
10.1109/CCDC58219.2023.10327235
10.1109/ISPCEM60569.2023.00006
10.1109/ACCESS.2020.3016565
10.1109/PSGEC62376.2024.10721107
10.1109/AIC57670.2023.10263828
10.1109/TSMC.2024.3449132
10.14569/IJACSA.2024.0150518
10.1109/LRA.2024.3457371
10.22541/au.169028989.90119932/v1
10.3390/a15020039
ContentType Journal Article
Copyright The Author(s) 2025
The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2025
– notice: The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
3V.
7XB
88I
8FE
8FG
8FK
ABJCF
ABUWG
AEUYN
AFKRA
ATCPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
D1I
DWQXO
GNUQQ
HCIFZ
KB.
L6V
M2P
M7S
PATMY
PCBAR
PDBOC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
PYCSY
Q9U
DOA
DOI 10.1007/s42452-025-07699-3
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
Natural Science Collection (ProQuest)
Earth, Atmospheric & Aquatic Science Collection (ProQuest)
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
Materials Science Database
ProQuest Engineering Collection
Science Database
Engineering Database
Environmental Science Database
Earth, Atmospheric & Aquatic Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
Environmental Science Collection
ProQuest Central Basic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
Materials Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Engineering Collection
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
Materials Science Database
ProQuest Central (New)
Engineering Collection
ProQuest Materials Science Collection
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
ProQuest SciTech Collection
Environmental Science Collection
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Environmental Science Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList
Publicly Available Content Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: KB.
  name: Materials Science Database
  url: http://search.proquest.com/materialsscijournals
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 3004-9261
2523-3971
EndPage 18
ExternalDocumentID oai_doaj_org_article_787b9bcdd63641a9abe43945e98e1b0f
10_1007_s42452_025_07699_3
GrantInformation_xml – fundername: Zhongshan Power Supply Bureau of Guangdong Power Grid Co.,Ltd Management Innovation Project
  grantid: 032000KK52220031
GroupedDBID AAJSJ
AASML
ADMLS
ALMA_UNASSIGNED_HOLDINGS
C6C
EBLON
GROUPED_DOAJ
M~E
SOJ
AAYXX
BGNMA
CITATION
M4Y
NU0
0R~
3V.
7XB
88I
8FE
8FG
8FK
AAHNG
AAKKN
ABDZT
ABECU
ABEEZ
ABFTV
ABHQN
ABJCF
ABKCH
ABMQK
ABTMW
ABUWG
ABXPI
ACACY
ACMLO
ACOKC
ACSTC
ACULB
ADKNI
ADURQ
ADYFF
AEJRE
AEUYN
AFGXO
AFKRA
AFQWF
AGDGC
AGJBK
AILAN
AITGF
AJZVZ
AMKLP
ATCPS
AXYYD
AZQEC
BAPOH
BENPR
BGLVJ
BHPHI
BKSAR
C24
CCPQU
D1I
DWQXO
EBS
FNLPD
GNUQQ
GNWQR
HCIFZ
J-C
KB.
KOV
L6V
M2P
M7S
NQJWS
OK1
PATMY
PCBAR
PDBOC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
PYCSY
Q9U
STPWE
TSG
UOJIU
UTJUX
VEKWB
VFIZW
ZMTXR
ID FETCH-LOGICAL-c382t-e7f19e68ab6e6a30a8afd4ae819a0456a19fa5224ad75ac849c579a78c06f1573
IEDL.DBID M2P
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001582498100020&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 3004-9261
2523-3963
IngestDate Mon Oct 13 19:21:25 EDT 2025
Wed Oct 08 14:21:30 EDT 2025
Sat Nov 29 07:25:52 EST 2025
Sat Sep 27 01:14:14 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords Optimization algorithm
Path planning
Distribution network
Artificial intelligence
DDPG model
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c382t-e7f19e68ab6e6a30a8afd4ae819a0456a19fa5224ad75ac849c579a78c06f1573
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://www.proquest.com/docview/3255904467?pq-origsite=%requestingapplication%
PQID 3255904467
PQPubID 5758472
PageCount 18
ParticipantIDs doaj_primary_oai_doaj_org_article_787b9bcdd63641a9abe43945e98e1b0f
proquest_journals_3255904467
crossref_primary_10_1007_s42452_025_07699_3
springer_journals_10_1007_s42452_025_07699_3
PublicationCentury 2000
PublicationDate 2025-09-26
PublicationDateYYYYMMDD 2025-09-26
PublicationDate_xml – month: 09
  year: 2025
  text: 2025-09-26
  day: 26
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: London
PublicationTitle Discover applied sciences
PublicationTitleAbbrev Discov Appl Sci
PublicationYear 2025
Publisher Springer International Publishing
Springer Nature B.V
Springer
Publisher_xml – name: Springer International Publishing
– name: Springer Nature B.V
– name: Springer
References 7699_CR17
7699_CR19
7699_CR18
7699_CR12
7699_CR15
7699_CR14
D Zhao (7699_CR16) 2020; 8
H Espino (7699_CR13) 2024; 9
7699_CR11
7699_CR3
M Zhang (7699_CR10) 2022; 15
7699_CR5
7699_CR6
7699_CR24
7699_CR23
7699_CR1
7699_CR2
7699_CR7
7699_CR8
7699_CR9
7699_CR20
J Liu (7699_CR4) 2024; 54
7699_CR22
7699_CR21
Y Yang (7699_CR25) 2024
References_xml – ident: 7699_CR22
  doi: 10.1109/ICPSAsia48933.2020.9208512
– ident: 7699_CR3
  doi: 10.23919/CCC58697.2023.10240661
– volume-title: Path planning under High-dimensional input States based on deep Q-Network
  year: 2024
  ident: 7699_CR25
  doi: 10.54097/r6fs0580
– ident: 7699_CR24
  doi: 10.1109/APAP59666.2023.10348397
– ident: 7699_CR7
  doi: 10.1109/ICPSAsia58343.2023.10294414
– ident: 7699_CR20
  doi: 10.3390/en18051254
– ident: 7699_CR6
– ident: 7699_CR18
  doi: 10.1109/ICPSAsia55496.2022.9949767
– ident: 7699_CR15
  doi: 10.1109/CAC59555.2023.10451292
– ident: 7699_CR8
  doi: 10.3390/en13123208
– ident: 7699_CR14
  doi: 10.1109/CIEEC58067.2023.10166375
– ident: 7699_CR23
  doi: 10.21203/rs.3.rs-2549934/v1
– ident: 7699_CR9
  doi: 10.21203/rs.3.rs-2225000/v1
– ident: 7699_CR5
  doi: 10.1109/CIEEC54735.2022.9846378
– ident: 7699_CR1
  doi: 10.1186/s42400-024-00288-8
– ident: 7699_CR17
  doi: 10.1109/CCDC58219.2023.10327235
– ident: 7699_CR2
  doi: 10.1109/ISPCEM60569.2023.00006
– volume: 8
  start-page: 151788
  year: 2020
  ident: 7699_CR16
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3016565
– ident: 7699_CR19
  doi: 10.1109/PSGEC62376.2024.10721107
– ident: 7699_CR21
  doi: 10.1109/AIC57670.2023.10263828
– volume: 54
  start-page: 7369
  year: 2024
  ident: 7699_CR4
  publication-title: IEEE Trans Syst Man Cybernetics: Syst
  doi: 10.1109/TSMC.2024.3449132
– ident: 7699_CR12
  doi: 10.14569/IJACSA.2024.0150518
– volume: 9
  start-page: 9542
  year: 2024
  ident: 7699_CR13
  publication-title: IEEE Rob Autom Lett
  doi: 10.1109/LRA.2024.3457371
– ident: 7699_CR11
  doi: 10.22541/au.169028989.90119932/v1
– volume: 15
  start-page: 39
  year: 2022
  ident: 7699_CR10
  publication-title: Algorithms
  doi: 10.3390/a15020039
SSID ssj0003307759
ssj0002793483
ssib051670015
Score 2.304308
Snippet Planning the most efficient, cost-effective, and reliable pathways for transmitting electricity from electrical substations to consumers is known as...
Abstract Planning the most efficient, cost-effective, and reliable pathways for transmitting electricity from electrical substations to consumers is known as...
SourceID doaj
proquest
crossref
springer
SourceType Open Website
Aggregation Database
Index Database
Publisher
StartPage 1074
SubjectTerms Accuracy
Algorithms
Alternative energy
Applied and Technical Physics
Artificial intelligence
Chemistry/Food Science
DDPG model
Deep learning
Disaster relief
Distribution centers
Distribution network
Earth Sciences
Efficiency
Electric cables
Electrical transmission
Electricity
Electricity distribution
Energy storage
Engineering
Environment
Genetic algorithms
Integer programming
Learning
Machine learning
Materials Science
Neural networks
Optimization
Optimization algorithm
Optimization techniques
Path planning
Power cables
Reinforcement
Renewable energy sources
Renewable resources
Route optimization
Route planning
Substations
Training
Training level
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA4iHryIouL6IgdvGmybNMkcfeJJPCjsLUzz0AXtyrr6-03S7roK4sVr25R0ZjoPJvN9hBwpjbaRPDCntWACbc00lBXzla18wmvRymayCXV7q4dDuFug-kpnwjp44E5wp9GgGmisc5JLUSJg49MwZ-1B-7IpQvK-hYKFYir54FilK1VDPyWTZ-VSi69iib01lu4AjH-LRBmw_1uW-aMxmuPN9TpZ6xNFetZtcIMs-XaTPF8mnNueooq23RFumliF6WvPPkQ7TmiKraMdTDNNkcrRuCB9bYcYQUcLUJx0HP3GSz-QSfH5cTwZTZ9etsjD9dX9xQ3r-RKY5bqaMq9CCV5qbKSXyAvUGJxAH4M-pswNSwgY8y2BTtVotQBbK0ClbSFDWSu-TZbbcet3CA0WLIcmFBC4iG9qRFwvwQoXyxOn6wE5nsnOvHawGGYOgJwlbaKkTZa04QNynsQ7fzJBWucLUdGmV7T5S9EDsj9Tjun_szfDU0WUetJqQE5mCvu6_fuWdv9jS3tktcoGBayS-2R5Onn3B2TFfkxHb5PDbJGf5uLlyw
  priority: 102
  providerName: Directory of Open Access Journals
Title Distribution network path planning method and system based on artificial intelligence optimization algorithm
URI https://link.springer.com/article/10.1007/s42452-025-07699-3
https://www.proquest.com/docview/3255904467
https://doaj.org/article/787b9bcdd63641a9abe43945e98e1b0f
Volume 7
WOSCitedRecordID wos001582498100020&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 3004-9261
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003307759
  issn: 3004-9261
  databaseCode: DOA
  dateStart: 20240101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 3004-9261
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003307759
  issn: 3004-9261
  databaseCode: M~E
  dateStart: 20240101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Earth, Atmospheric & Aquatic Science Database
  customDbUrl:
  eissn: 3004-9261
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002793483
  issn: 3004-9261
  databaseCode: PCBAR
  dateStart: 20190101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/eaasdb
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 3004-9261
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002793483
  issn: 3004-9261
  databaseCode: M7S
  dateStart: 20190101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Environmental Science Database
  customDbUrl:
  eissn: 3004-9261
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002793483
  issn: 3004-9261
  databaseCode: PATMY
  dateStart: 20190101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/environmentalscience
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Materials Science Database
  customDbUrl:
  eissn: 3004-9261
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002793483
  issn: 3004-9261
  databaseCode: KB.
  dateStart: 20190101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/materialsscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 3004-9261
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002793483
  issn: 3004-9261
  databaseCode: BENPR
  dateStart: 20190101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 3004-9261
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002793483
  issn: 3004-9261
  databaseCode: PIMPY
  dateStart: 20190101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database
  customDbUrl:
  eissn: 3004-9261
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002793483
  issn: 3004-9261
  databaseCode: M2P
  dateStart: 20190101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK
  customDbUrl:
  eissn: 3004-9261
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002793483
  issn: 3004-9261
  databaseCode: C24
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELag5QAH3oiFsvKBGxg2tuPHCXXLViDUVVRAKifL8aMUtdlld-HIb8fjOH0gwYWLIyW25WjG47HH830IPZfKulawSLxSnHDraqJ0RUmgjgbAa1HSZbIJOZ-royPdlAO3dblWOdjEbKj9wsEZ-WsGvi9EH-Wb5XcCrFEQXS0UGtfRdvJsKrjSdUCbQZ_qCnJQynL3LQfZNOMZmZOm_RdhSflKHk3OpoMgICXA75o291oTdmWtypD-V_zQP0KneUXav_O__3IX3S6-KN7tleceuha6--jWJYTCB-j0LQDrFk4s3PV3xjHQGONloTvCPQk1tp3HPS40hqXR49QA9LKHqMAnl7A_8SIZqrOSAYrt6XEa3Obr2UP0eX_2ae8dKQQNxDFFNyTIWOkglG1FEJZNrLLRcxuSl2HBVbSVjjY5eNx6WVunuHa11FYqNxGxqiV7hLa6RRceIxyddky3caIj46mnlqf2Qjvu037Iq3qEXgyiMMseh8OcIy5nwZkkOJMFZ9gITUFa5zUBQzu_WKyOTZmSJpmqVrfOe8EEr6y2bYA04TpoFap2EkdoZ5CeKRN7bS5EN0IvB_lffP77kJ78u7en6CbNmqcJFTtoa7P6EZ6hG-7n5mS9GqPt6WzeHI7ziUEqP0xfjbOqQyk_Qvlrlmo1e9PdQ3i-P2i-_AZcWQYd
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VggQceKMuFPABTmA1sR0_DggBpWrVsuqhSL0Zx3ZKqza77C4g_hS_EY-T9IEEtx64JrGV2J9nxhnP9wE8V9r5WvKGBq0FFc5XVJuS0cg8i8jXopXPYhNqPNb7-2Z3CX4NtTB4rHKwidlQh4nHf-RrHGNfzD6qN9OvFFWjMLs6SGh0sNiOP3-kLdv89dZ6mt8XjG182Hu_SXtVAeq5ZgsaVVOaKLWrZZSOF067JggXk2t0GN-40jQuRSXCBVU5r4XxlTJOaV_IpqwUT_1egasCmcXwqCDbHfBblVjz0rvXo5zUM1xkJlCW9nuUJ7D3dTu5eg-TjoyinmyhpDGUX_CNWULgQtz7R6o2e8CN2__b2N2BW32sTd52i-MuLMX2Htw8x8B4H47XkTi41_wibXcmnqBMM5n2ck6kE9kmrg2k470m6PoDSQ1w3XUUHOTwHLcpmSRDfNJXuBJ3fJAGY_Hl5AF8upTPfQjL7aSNK0Aabzw3dVOYhovUUy1Se2m8CGm_F3Q1gpfD1NtpxzNiTxmlM1BsAorNQLF8BO8QHadPIkd4vjCZHdje5NhkimtT-xAkl6J0xtURy6CraHQs66IZweqAFtsbrrk9g8oIXg14O7v991d69O_ensH1zb2PO3Zna7z9GG6wjHpDmVyF5cXsW3wC1_z3xeF89jQvKQKfLxuHvwF4vVqm
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Jb9QwFH4qU4TgwFrEQAEf4ARWE9vxckAIGEaMCqM5gFROwfFSitrMMDOA-Gv8OmzH6YIEtx64ZrES53uL8_y-D-CRkNo0nHpspWSYaVNhqUqCHTHERb4WKUwSmxDTqdzbU7MN-NX3wsRtlb1PTI7azk38R75DY-4bq49ix-dtEbPR-PniK44KUrHS2stpdBDZdT9_hOXb6tlkFL71Y0LGr9-_eoOzwgA2VJI1dsKXynGpG-64poWW2lumXQiTOuY6ulRehwyFaSsqbSRTphJKC2kK7stK0DDuBdgMKTkjA9icTd7NPvZorsrYAZOD7ZdU4lOUJV5QElZ_mAbo5y6e1MsXS5AER3XZQnClMD0TKZOgwJks-I_CbYqH42v_80xeh6s5C0cvOrO5ARuuvQlXTnEz3oLDUaQUzmpgqO12y6Mo4IwWWegJdfLbSLcWdYzYKCYFFoUbokV25Bzo4BTrKZoHF32Ue1-RPtwPk7H-fLQFH87ldW_DoJ237g4gb5ShqvGF8pSFkRoW7ufKMBtWglZWQ3jSw6BedAwk9THXdAJNHUBTJ9DUdAgvI1KOr4zs4enAfLlfZ2dUByfdqMZYyylnpVa6cbFBunJKurIp_BC2e-TU2aWt6hPYDOFpj72T039_pLv_Hu0hXArwq99Oprv34DJJBqAw4dswWC-_uftw0XxfH6yWD7J9Ifh03kD8DcEAZO8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Distribution+network+path+planning+method+and+system+based+on+artificial+intelligence+optimization+algorithm&rft.jtitle=Discover+applied+sciences&rft.au=Jiang%2C+Shaoyan&rft.au=Zheng%2C+Jiaxin&rft.au=Du%2C+Lifeng&rft.au=Su%2C+Shaoying&rft.date=2025-09-26&rft.pub=Springer+International+Publishing&rft.eissn=3004-9261&rft.volume=7&rft.issue=10&rft_id=info:doi/10.1007%2Fs42452-025-07699-3&rft.externalDocID=10_1007_s42452_025_07699_3
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=3004-9261&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=3004-9261&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=3004-9261&client=summon