Distribution network path planning method and system based on artificial intelligence optimization algorithm
Planning the most efficient, cost-effective, and reliable pathways for transmitting electricity from electrical substations to consumers is known as distribution network path planning. It’s not an easy task, but it’s necessary to meet the changing needs of the load and include renewable energy sourc...
Uloženo v:
| Vydáno v: | Discover applied sciences Ročník 7; číslo 10; s. 1074 - 18 |
|---|---|
| Hlavní autoři: | , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Cham
Springer International Publishing
26.09.2025
Springer Nature B.V Springer |
| Témata: | |
| ISSN: | 3004-9261, 2523-3963, 3004-9261, 2523-3971 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Planning the most efficient, cost-effective, and reliable pathways for transmitting electricity from electrical substations to consumers is known as distribution network path planning. It’s not an easy task, but it’s necessary to meet the changing needs of the load and include renewable energy sources. A computerized model of the electrical system that includes power cables, nodes (such as transformers and substations), and the capacity, impedance, and position of each component. A basic topic with diverse applications, the route planning issue is a staple in many domains. Scholarly interest in finding a solution to the route optimization issue using deep reinforcement learning technologies has grown in recent years, making it a popular avenue for path planning problems. In this research, we will examine a power distribution optimization route approach, use deep reinforcement learning to address the continuous route planning issue, and do experiments in a Miniworld maze. In a study that compared Deep Deterministic Policy Gradient (DDPG) to genetic algorithms, Binary Swarm Optimization, while the historical average approach, it was found that the latter had a small and less than ideal accuracy rate, was easy to calculate, and showed little change in accuracy with increasing data. A neural network representation of the reward function is used to suggest a reward shaping DDPG algorithm that optimizes the reward functionality dynamically. The genetic algorithms accuracy hovers around 70%; it degrades with increasing training size. Eventually stabilizing at about 83%, the forecasting accuracy rate increased in tandem with the training system’s expansion, leading to a deeper learning model with a higher training level. |
|---|---|
| AbstractList | Planning the most efficient, cost-effective, and reliable pathways for transmitting electricity from electrical substations to consumers is known as distribution network path planning. It’s not an easy task, but it’s necessary to meet the changing needs of the load and include renewable energy sources. A computerized model of the electrical system that includes power cables, nodes (such as transformers and substations), and the capacity, impedance, and position of each component. A basic topic with diverse applications, the route planning issue is a staple in many domains. Scholarly interest in finding a solution to the route optimization issue using deep reinforcement learning technologies has grown in recent years, making it a popular avenue for path planning problems. In this research, we will examine a power distribution optimization route approach, use deep reinforcement learning to address the continuous route planning issue, and do experiments in a Miniworld maze. In a study that compared Deep Deterministic Policy Gradient (DDPG) to genetic algorithms, Binary Swarm Optimization, while the historical average approach, it was found that the latter had a small and less than ideal accuracy rate, was easy to calculate, and showed little change in accuracy with increasing data. A neural network representation of the reward function is used to suggest a reward shaping DDPG algorithm that optimizes the reward functionality dynamically. The genetic algorithms accuracy hovers around 70%; it degrades with increasing training size. Eventually stabilizing at about 83%, the forecasting accuracy rate increased in tandem with the training system’s expansion, leading to a deeper learning model with a higher training level. Abstract Planning the most efficient, cost-effective, and reliable pathways for transmitting electricity from electrical substations to consumers is known as distribution network path planning. It’s not an easy task, but it’s necessary to meet the changing needs of the load and include renewable energy sources. A computerized model of the electrical system that includes power cables, nodes (such as transformers and substations), and the capacity, impedance, and position of each component. A basic topic with diverse applications, the route planning issue is a staple in many domains. Scholarly interest in finding a solution to the route optimization issue using deep reinforcement learning technologies has grown in recent years, making it a popular avenue for path planning problems. In this research, we will examine a power distribution optimization route approach, use deep reinforcement learning to address the continuous route planning issue, and do experiments in a Miniworld maze. In a study that compared Deep Deterministic Policy Gradient (DDPG) to genetic algorithms, Binary Swarm Optimization, while the historical average approach, it was found that the latter had a small and less than ideal accuracy rate, was easy to calculate, and showed little change in accuracy with increasing data. A neural network representation of the reward function is used to suggest a reward shaping DDPG algorithm that optimizes the reward functionality dynamically. The genetic algorithms accuracy hovers around 70%; it degrades with increasing training size. Eventually stabilizing at about 83%, the forecasting accuracy rate increased in tandem with the training system’s expansion, leading to a deeper learning model with a higher training level. |
| ArticleNumber | 1074 |
| Author | Jiang, Shaoyan Du, Lifeng Su, Shaoying Zheng, Jiaxin Tan, Hanming |
| Author_xml | – sequence: 1 givenname: Shaoyan surname: Jiang fullname: Jiang, Shaoyan email: ShaoyanJiang436@outlook.com organization: Zhongshan Power Supply Bureau of Guangdong Power Grid Co., Ltd – sequence: 2 givenname: Jiaxin surname: Zheng fullname: Zheng, Jiaxin organization: Zhongshan Power Supply Bureau of Guangdong Power Grid Co., Ltd – sequence: 3 givenname: Lifeng surname: Du fullname: Du, Lifeng organization: Zhongshan Power Supply Bureau of Guangdong Power Grid Co., Ltd – sequence: 4 givenname: Shaoying surname: Su fullname: Su, Shaoying organization: Zhongshan Power Supply Bureau of Guangdong Power Grid Co., Ltd – sequence: 5 givenname: Hanming surname: Tan fullname: Tan, Hanming organization: Zhongshan Power Supply Bureau of Guangdong Power Grid Co., Ltd |
| BookMark | eNp9kUuP1DAQhCO0SCzL_gFOljgH_HZ8RMtrpZW4wNnqOJ2Mh8QOtkdo-fVkJgg4cepWq-rrkup5cxVTxKZ5yehrRql5UySXireUq5YabW0rnjTXglLZWq7Z1T_7s-a2lCOlVAhqjLLXzfwulJpDf6ohRRKx_kj5G1mhHsg6Q4whTmTBekgDgTiQ8lgqLqSHggPZDJBrGIMPMJMQK85zmDB6JGmtYQk_4UKFeUo51MPyonk6wlzw9ve8ab5-eP_l7lP78Pnj_d3bh9aLjtcWzcgs6g56jRoEhQ7GQQJ2zAKVSgOzIyjOJQxGge-k9cpYMJ2nemTKiJvmfucOCY5uzWGB_OgSBHc5pDy5c3A_ozOd6W3vh0ELLRlY6FEKKxXaDllPx431ametOX0_YanumE45bvGd4EpZKqU-f-S7yudUSsbxz1dG3bkkt5fktpLcpSQnNpPYTWUTxwnzX_R_XL8Aa92YgQ |
| Cites_doi | 10.1109/ICPSAsia48933.2020.9208512 10.23919/CCC58697.2023.10240661 10.54097/r6fs0580 10.1109/APAP59666.2023.10348397 10.1109/ICPSAsia58343.2023.10294414 10.3390/en18051254 10.1109/ICPSAsia55496.2022.9949767 10.1109/CAC59555.2023.10451292 10.3390/en13123208 10.1109/CIEEC58067.2023.10166375 10.21203/rs.3.rs-2549934/v1 10.21203/rs.3.rs-2225000/v1 10.1109/CIEEC54735.2022.9846378 10.1186/s42400-024-00288-8 10.1109/CCDC58219.2023.10327235 10.1109/ISPCEM60569.2023.00006 10.1109/ACCESS.2020.3016565 10.1109/PSGEC62376.2024.10721107 10.1109/AIC57670.2023.10263828 10.1109/TSMC.2024.3449132 10.14569/IJACSA.2024.0150518 10.1109/LRA.2024.3457371 10.22541/au.169028989.90119932/v1 10.3390/a15020039 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2025 The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: The Author(s) 2025 – notice: The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | C6C AAYXX CITATION 3V. 7XB 88I 8FE 8FG 8FK ABJCF ABUWG AEUYN AFKRA ATCPS AZQEC BENPR BGLVJ BHPHI BKSAR CCPQU D1I DWQXO GNUQQ HCIFZ KB. L6V M2P M7S PATMY PCBAR PDBOC PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS PYCSY Q9U DOA |
| DOI | 10.1007/s42452-025-07699-3 |
| DatabaseName | Springer Nature OA Free Journals CrossRef ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials ProQuest Central Technology Collection Natural Science Collection (ProQuest) Earth, Atmospheric & Aquatic Science Collection (ProQuest) ProQuest One Community College ProQuest Materials Science Collection ProQuest Central ProQuest Central Student SciTech Premium Collection Materials Science Database ProQuest Engineering Collection Science Database Engineering Database Environmental Science Database Earth, Atmospheric & Aquatic Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection Environmental Science Collection ProQuest Central Basic DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Central Essentials Materials Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central Earth, Atmospheric & Aquatic Science Collection ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Engineering Collection Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection Materials Science Database ProQuest Central (New) Engineering Collection ProQuest Materials Science Collection Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection ProQuest SciTech Collection Environmental Science Collection ProQuest One Academic UKI Edition Materials Science & Engineering Collection Environmental Science Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) |
| DatabaseTitleList | Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: KB. name: Materials Science Database url: http://search.proquest.com/materialsscijournals sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 3004-9261 2523-3971 |
| EndPage | 18 |
| ExternalDocumentID | oai_doaj_org_article_787b9bcdd63641a9abe43945e98e1b0f 10_1007_s42452_025_07699_3 |
| GrantInformation_xml | – fundername: Zhongshan Power Supply Bureau of Guangdong Power Grid Co.,Ltd Management Innovation Project grantid: 032000KK52220031 |
| GroupedDBID | AAJSJ AASML ADMLS ALMA_UNASSIGNED_HOLDINGS C6C EBLON GROUPED_DOAJ M~E SOJ AAYXX BGNMA CITATION M4Y NU0 0R~ 3V. 7XB 88I 8FE 8FG 8FK AAHNG AAKKN ABDZT ABECU ABEEZ ABFTV ABHQN ABJCF ABKCH ABMQK ABTMW ABUWG ABXPI ACACY ACMLO ACOKC ACSTC ACULB ADKNI ADURQ ADYFF AEJRE AEUYN AFGXO AFKRA AFQWF AGDGC AGJBK AILAN AITGF AJZVZ AMKLP ATCPS AXYYD AZQEC BAPOH BENPR BGLVJ BHPHI BKSAR C24 CCPQU D1I DWQXO EBS FNLPD GNUQQ GNWQR HCIFZ J-C KB. KOV L6V M2P M7S NQJWS OK1 PATMY PCBAR PDBOC PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS PYCSY Q9U STPWE TSG UOJIU UTJUX VEKWB VFIZW ZMTXR |
| ID | FETCH-LOGICAL-c382t-e7f19e68ab6e6a30a8afd4ae819a0456a19fa5224ad75ac849c579a78c06f1573 |
| IEDL.DBID | M2P |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001582498100020&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 3004-9261 2523-3963 |
| IngestDate | Mon Oct 13 19:21:25 EDT 2025 Wed Oct 08 14:21:30 EDT 2025 Sat Nov 29 07:25:52 EST 2025 Sat Sep 27 01:14:14 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 10 |
| Keywords | Optimization algorithm Path planning Distribution network Artificial intelligence DDPG model |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c382t-e7f19e68ab6e6a30a8afd4ae819a0456a19fa5224ad75ac849c579a78c06f1573 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| OpenAccessLink | https://www.proquest.com/docview/3255904467?pq-origsite=%requestingapplication% |
| PQID | 3255904467 |
| PQPubID | 5758472 |
| PageCount | 18 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_787b9bcdd63641a9abe43945e98e1b0f proquest_journals_3255904467 crossref_primary_10_1007_s42452_025_07699_3 springer_journals_10_1007_s42452_025_07699_3 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-09-26 |
| PublicationDateYYYYMMDD | 2025-09-26 |
| PublicationDate_xml | – month: 09 year: 2025 text: 2025-09-26 day: 26 |
| PublicationDecade | 2020 |
| PublicationPlace | Cham |
| PublicationPlace_xml | – name: Cham – name: London |
| PublicationTitle | Discover applied sciences |
| PublicationTitleAbbrev | Discov Appl Sci |
| PublicationYear | 2025 |
| Publisher | Springer International Publishing Springer Nature B.V Springer |
| Publisher_xml | – name: Springer International Publishing – name: Springer Nature B.V – name: Springer |
| References | 7699_CR17 7699_CR19 7699_CR18 7699_CR12 7699_CR15 7699_CR14 D Zhao (7699_CR16) 2020; 8 H Espino (7699_CR13) 2024; 9 7699_CR11 7699_CR3 M Zhang (7699_CR10) 2022; 15 7699_CR5 7699_CR6 7699_CR24 7699_CR23 7699_CR1 7699_CR2 7699_CR7 7699_CR8 7699_CR9 7699_CR20 J Liu (7699_CR4) 2024; 54 7699_CR22 7699_CR21 Y Yang (7699_CR25) 2024 |
| References_xml | – ident: 7699_CR22 doi: 10.1109/ICPSAsia48933.2020.9208512 – ident: 7699_CR3 doi: 10.23919/CCC58697.2023.10240661 – volume-title: Path planning under High-dimensional input States based on deep Q-Network year: 2024 ident: 7699_CR25 doi: 10.54097/r6fs0580 – ident: 7699_CR24 doi: 10.1109/APAP59666.2023.10348397 – ident: 7699_CR7 doi: 10.1109/ICPSAsia58343.2023.10294414 – ident: 7699_CR20 doi: 10.3390/en18051254 – ident: 7699_CR6 – ident: 7699_CR18 doi: 10.1109/ICPSAsia55496.2022.9949767 – ident: 7699_CR15 doi: 10.1109/CAC59555.2023.10451292 – ident: 7699_CR8 doi: 10.3390/en13123208 – ident: 7699_CR14 doi: 10.1109/CIEEC58067.2023.10166375 – ident: 7699_CR23 doi: 10.21203/rs.3.rs-2549934/v1 – ident: 7699_CR9 doi: 10.21203/rs.3.rs-2225000/v1 – ident: 7699_CR5 doi: 10.1109/CIEEC54735.2022.9846378 – ident: 7699_CR1 doi: 10.1186/s42400-024-00288-8 – ident: 7699_CR17 doi: 10.1109/CCDC58219.2023.10327235 – ident: 7699_CR2 doi: 10.1109/ISPCEM60569.2023.00006 – volume: 8 start-page: 151788 year: 2020 ident: 7699_CR16 publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3016565 – ident: 7699_CR19 doi: 10.1109/PSGEC62376.2024.10721107 – ident: 7699_CR21 doi: 10.1109/AIC57670.2023.10263828 – volume: 54 start-page: 7369 year: 2024 ident: 7699_CR4 publication-title: IEEE Trans Syst Man Cybernetics: Syst doi: 10.1109/TSMC.2024.3449132 – ident: 7699_CR12 doi: 10.14569/IJACSA.2024.0150518 – volume: 9 start-page: 9542 year: 2024 ident: 7699_CR13 publication-title: IEEE Rob Autom Lett doi: 10.1109/LRA.2024.3457371 – ident: 7699_CR11 doi: 10.22541/au.169028989.90119932/v1 – volume: 15 start-page: 39 year: 2022 ident: 7699_CR10 publication-title: Algorithms doi: 10.3390/a15020039 |
| SSID | ssj0003307759 ssj0002793483 ssib051670015 |
| Score | 2.304308 |
| Snippet | Planning the most efficient, cost-effective, and reliable pathways for transmitting electricity from electrical substations to consumers is known as... Abstract Planning the most efficient, cost-effective, and reliable pathways for transmitting electricity from electrical substations to consumers is known as... |
| SourceID | doaj proquest crossref springer |
| SourceType | Open Website Aggregation Database Index Database Publisher |
| StartPage | 1074 |
| SubjectTerms | Accuracy Algorithms Alternative energy Applied and Technical Physics Artificial intelligence Chemistry/Food Science DDPG model Deep learning Disaster relief Distribution centers Distribution network Earth Sciences Efficiency Electric cables Electrical transmission Electricity Electricity distribution Energy storage Engineering Environment Genetic algorithms Integer programming Learning Machine learning Materials Science Neural networks Optimization Optimization algorithm Optimization techniques Path planning Power cables Reinforcement Renewable energy sources Renewable resources Route optimization Route planning Substations Training Training level |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA4iHryIouL6IgdvGmybNMkcfeJJPCjsLUzz0AXtyrr6-03S7roK4sVr25R0ZjoPJvN9hBwpjbaRPDCntWACbc00lBXzla18wmvRymayCXV7q4dDuFug-kpnwjp44E5wp9GgGmisc5JLUSJg49MwZ-1B-7IpQvK-hYKFYir54FilK1VDPyWTZ-VSi69iib01lu4AjH-LRBmw_1uW-aMxmuPN9TpZ6xNFetZtcIMs-XaTPF8mnNueooq23RFumliF6WvPPkQ7TmiKraMdTDNNkcrRuCB9bYcYQUcLUJx0HP3GSz-QSfH5cTwZTZ9etsjD9dX9xQ3r-RKY5bqaMq9CCV5qbKSXyAvUGJxAH4M-pswNSwgY8y2BTtVotQBbK0ClbSFDWSu-TZbbcet3CA0WLIcmFBC4iG9qRFwvwQoXyxOn6wE5nsnOvHawGGYOgJwlbaKkTZa04QNynsQ7fzJBWucLUdGmV7T5S9EDsj9Tjun_szfDU0WUetJqQE5mCvu6_fuWdv9jS3tktcoGBayS-2R5Onn3B2TFfkxHb5PDbJGf5uLlyw priority: 102 providerName: Directory of Open Access Journals |
| Title | Distribution network path planning method and system based on artificial intelligence optimization algorithm |
| URI | https://link.springer.com/article/10.1007/s42452-025-07699-3 https://www.proquest.com/docview/3255904467 https://doaj.org/article/787b9bcdd63641a9abe43945e98e1b0f |
| Volume | 7 |
| WOSCitedRecordID | wos001582498100020&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 3004-9261 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0003307759 issn: 3004-9261 databaseCode: DOA dateStart: 20240101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 3004-9261 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0003307759 issn: 3004-9261 databaseCode: M~E dateStart: 20240101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Earth, Atmospheric & Aquatic Science Database customDbUrl: eissn: 3004-9261 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002793483 issn: 3004-9261 databaseCode: PCBAR dateStart: 20190101 isFulltext: true titleUrlDefault: https://search.proquest.com/eaasdb providerName: ProQuest – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 3004-9261 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002793483 issn: 3004-9261 databaseCode: M7S dateStart: 20190101 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: Environmental Science Database customDbUrl: eissn: 3004-9261 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002793483 issn: 3004-9261 databaseCode: PATMY dateStart: 20190101 isFulltext: true titleUrlDefault: http://search.proquest.com/environmentalscience providerName: ProQuest – providerCode: PRVPQU databaseName: Materials Science Database customDbUrl: eissn: 3004-9261 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002793483 issn: 3004-9261 databaseCode: KB. dateStart: 20190101 isFulltext: true titleUrlDefault: http://search.proquest.com/materialsscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 3004-9261 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002793483 issn: 3004-9261 databaseCode: BENPR dateStart: 20190101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 3004-9261 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002793483 issn: 3004-9261 databaseCode: PIMPY dateStart: 20190101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVPQU databaseName: Science Database customDbUrl: eissn: 3004-9261 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002793483 issn: 3004-9261 databaseCode: M2P dateStart: 20190101 isFulltext: true titleUrlDefault: https://search.proquest.com/sciencejournals providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK customDbUrl: eissn: 3004-9261 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002793483 issn: 3004-9261 databaseCode: C24 dateStart: 20210101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELag5QAH3oiFsvKBGxg2tuPHCXXLViDUVVRAKifL8aMUtdlld-HIb8fjOH0gwYWLIyW25WjG47HH830IPZfKulawSLxSnHDraqJ0RUmgjgbAa1HSZbIJOZ-royPdlAO3dblWOdjEbKj9wsEZ-WsGvi9EH-Wb5XcCrFEQXS0UGtfRdvJsKrjSdUCbQZ_qCnJQynL3LQfZNOMZmZOm_RdhSflKHk3OpoMgICXA75o291oTdmWtypD-V_zQP0KneUXav_O__3IX3S6-KN7tleceuha6--jWJYTCB-j0LQDrFk4s3PV3xjHQGONloTvCPQk1tp3HPS40hqXR49QA9LKHqMAnl7A_8SIZqrOSAYrt6XEa3Obr2UP0eX_2ae8dKQQNxDFFNyTIWOkglG1FEJZNrLLRcxuSl2HBVbSVjjY5eNx6WVunuHa11FYqNxGxqiV7hLa6RRceIxyddky3caIj46mnlqf2Qjvu037Iq3qEXgyiMMseh8OcIy5nwZkkOJMFZ9gITUFa5zUBQzu_WKyOTZmSJpmqVrfOe8EEr6y2bYA04TpoFap2EkdoZ5CeKRN7bS5EN0IvB_lffP77kJ78u7en6CbNmqcJFTtoa7P6EZ6hG-7n5mS9GqPt6WzeHI7ziUEqP0xfjbOqQyk_Qvlrlmo1e9PdQ3i-P2i-_AZcWQYd |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VggQceKMuFPABTmA1sR0_DggBpWrVsuqhSL0Zx3ZKqza77C4g_hS_EY-T9IEEtx64JrGV2J9nxhnP9wE8V9r5WvKGBq0FFc5XVJuS0cg8i8jXopXPYhNqPNb7-2Z3CX4NtTB4rHKwidlQh4nHf-RrHGNfzD6qN9OvFFWjMLs6SGh0sNiOP3-kLdv89dZ6mt8XjG182Hu_SXtVAeq5ZgsaVVOaKLWrZZSOF067JggXk2t0GN-40jQuRSXCBVU5r4XxlTJOaV_IpqwUT_1egasCmcXwqCDbHfBblVjz0rvXo5zUM1xkJlCW9nuUJ7D3dTu5eg-TjoyinmyhpDGUX_CNWULgQtz7R6o2e8CN2__b2N2BW32sTd52i-MuLMX2Htw8x8B4H47XkTi41_wibXcmnqBMM5n2ck6kE9kmrg2k470m6PoDSQ1w3XUUHOTwHLcpmSRDfNJXuBJ3fJAGY_Hl5AF8upTPfQjL7aSNK0Aabzw3dVOYhovUUy1Se2m8CGm_F3Q1gpfD1NtpxzNiTxmlM1BsAorNQLF8BO8QHadPIkd4vjCZHdje5NhkimtT-xAkl6J0xtURy6CraHQs66IZweqAFtsbrrk9g8oIXg14O7v991d69O_ensH1zb2PO3Zna7z9GG6wjHpDmVyF5cXsW3wC1_z3xeF89jQvKQKfLxuHvwF4vVqm |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Jb9QwFH4qU4TgwFrEQAEf4ARWE9vxckAIGEaMCqM5gFROwfFSitrMMDOA-Gv8OmzH6YIEtx64ZrES53uL8_y-D-CRkNo0nHpspWSYaVNhqUqCHTHERb4WKUwSmxDTqdzbU7MN-NX3wsRtlb1PTI7azk38R75DY-4bq49ix-dtEbPR-PniK44KUrHS2stpdBDZdT9_hOXb6tlkFL71Y0LGr9-_eoOzwgA2VJI1dsKXynGpG-64poWW2lumXQiTOuY6ulRehwyFaSsqbSRTphJKC2kK7stK0DDuBdgMKTkjA9icTd7NPvZorsrYAZOD7ZdU4lOUJV5QElZ_mAbo5y6e1MsXS5AER3XZQnClMD0TKZOgwJks-I_CbYqH42v_80xeh6s5C0cvOrO5ARuuvQlXTnEz3oLDUaQUzmpgqO12y6Mo4IwWWegJdfLbSLcWdYzYKCYFFoUbokV25Bzo4BTrKZoHF32Ue1-RPtwPk7H-fLQFH87ldW_DoJ237g4gb5ShqvGF8pSFkRoW7ufKMBtWglZWQ3jSw6BedAwk9THXdAJNHUBTJ9DUdAgvI1KOr4zs4enAfLlfZ2dUByfdqMZYyylnpVa6cbFBunJKurIp_BC2e-TU2aWt6hPYDOFpj72T039_pLv_Hu0hXArwq99Oprv34DJJBqAw4dswWC-_uftw0XxfH6yWD7J9Ifh03kD8DcEAZO8 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Distribution+network+path+planning+method+and+system+based+on+artificial+intelligence+optimization+algorithm&rft.jtitle=Discover+applied+sciences&rft.au=Jiang%2C+Shaoyan&rft.au=Zheng%2C+Jiaxin&rft.au=Du%2C+Lifeng&rft.au=Su%2C+Shaoying&rft.date=2025-09-26&rft.pub=Springer+International+Publishing&rft.eissn=3004-9261&rft.volume=7&rft.issue=10&rft_id=info:doi/10.1007%2Fs42452-025-07699-3&rft.externalDocID=10_1007_s42452_025_07699_3 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=3004-9261&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=3004-9261&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=3004-9261&client=summon |