Shifted-Chebyshev-polynomial-based numerical algorithm for fractional order polymer visco-elastic rotating beam

In this paper, an effective numerical algorithm is proposed for the first time to solve the fractional visco-elastic rotating beam in the time domain. On the basis of fractional derivative Kelvin–Voigt and fractional derivative element constitutive models, the two governing equations of fractional v...

Full description

Saved in:
Bibliographic Details
Published in:Chaos, solitons and fractals Vol. 132; p. 109585
Main Authors: Wang, Lei, Chen, Yi-Ming
Format: Journal Article
Language:English
Published: Elsevier Ltd 01.03.2020
Elsevier
Subjects:
ISSN:0960-0779, 1873-2887
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract In this paper, an effective numerical algorithm is proposed for the first time to solve the fractional visco-elastic rotating beam in the time domain. On the basis of fractional derivative Kelvin–Voigt and fractional derivative element constitutive models, the two governing equations of fractional visco-elastic rotating beams are established. According to the approximation technique of shifted Chebyshev polynomials, the integer and fractional differential operator matrices of polynomials are derived. By means of the collocation method and matrix technique, the operator matrices of governing equations can be transformed into the algebraic equations. In addition, the convergence analysis is performed. In particular, unlike the existing results, we can get the displacement and the stress numerical solution of the governing equation directly in the time domain. Finally, the sensitivity of the algorithm is verified by numerical examples.
AbstractList In this paper, an effective numerical algorithm is proposed for the first time to solve the fractional visco-elastic rotating beam in the time domain. On the basis of fractional derivative Kelvin–Voigt and fractional derivative element constitutive models, the two governing equations of fractional visco-elastic rotating beams are established. According to the approximation technique of shifted Chebyshev polynomials, the integer and fractional differential operator matrices of polynomials are derived. By means of the collocation method and matrix technique, the operator matrices of governing equations can be transformed into the algebraic equations. In addition, the convergence analysis is performed. In particular, unlike the existing results, we can get the displacement and the stress numerical solution of the governing equation directly in the time domain. Finally, the sensitivity of the algorithm is verified by numerical examples.
In this paper, an effective numerical algorithm is proposed for the first time to solve the fractional visco-elastic rotating beam in the time domain. On the basis of fractional derivative Kelvin-Voigt and fractional derivative element con-stitutive models, the two governing equations of fractional visco-elastic rotating beams are established. According to the approximation technique of shifted Chebyshev polynomials, the integer and fractional differential operator matrices of polynomials are derived. By means of the collocation method and matrix technique, the operator matrices of governing equations can be transformed into the algebraic equations. In addition, the convergence analysis is performed. In particular, unlike the existing results, we can get the displacement and the stress numerical solution of the governing equation directly in the time domain. Finally, the sensitivity of the algorithm is verified by numerical examples.
ArticleNumber 109585
Author Wang, Lei
Chen, Yi-Ming
Author_xml – sequence: 1
  givenname: Lei
  surname: Wang
  fullname: Wang, Lei
  email: qiqiqiqiha@163.com
  organization: School of Sciences, Yanshan University, Qinhuangdao, Hebei 066004, PR China
– sequence: 2
  givenname: Yi-Ming
  surname: Chen
  fullname: Chen, Yi-Ming
  email: chenym@ysu.edu.cn
  organization: School of Sciences, Yanshan University, Qinhuangdao, Hebei 066004, PR China
BackLink https://hal.science/hal-02884947$$DView record in HAL
BookMark eNp9kLFu2zAQhonCBWoneYIsWjvQPVKyJA4dDKONAxjIkGQmTuTJoiGJBska8NtXqtulQ6YD7v7v7vCt2GL0IzH2KGAtQJTfTmvToY9rCUJNHbWpN5_YUtRVzmVdVwu2BFUCh6pSX9gqxhMACCjlkvnXzrWJLN911FxjRxd-9v119IPDnjcYyWbjr4GCM9hn2B99cKkbstaHrA1okvPjNPDBUshmcopmFxeN59RjTM5kwSdMbjxmDeFwzz632Ed6-Fvv2PvPH2-7PT-8PD3vtgdu8lomThUUTQNUW0IllKRCUq1MA1bKDVkqmlLkWNlWUN4UCrGkEqSp24pkmwPkd-zrbW-HvT4HN2C4ao9O77cHPfdgElOoorqIKatuWRN8jIFabdz8sh9TQNdrAXq2rE_6j2U9W9Y3yxOb_8f-O_Yx9f1G0aTg4ijoaByNhqwLZJK23n3I_wY05JyL
CitedBy_id crossref_primary_10_1016_j_apm_2022_06_008
crossref_primary_10_1016_j_chaos_2021_111633
crossref_primary_10_1016_j_chaos_2020_110342
crossref_primary_10_3390_sym15030594
crossref_primary_10_1080_00207160_2021_1924367
crossref_primary_10_1016_j_matcom_2022_04_035
crossref_primary_10_1080_17455030_2023_2177500
crossref_primary_10_1016_j_camwa_2022_06_012
crossref_primary_10_1016_j_chaos_2021_111372
crossref_primary_10_1007_s40096_022_00460_6
crossref_primary_10_1007_s00366_020_01125_5
crossref_primary_10_1007_s40096_021_00437_x
crossref_primary_10_3390_fractalfract9030192
crossref_primary_10_1002_mma_7306
crossref_primary_10_3390_fractalfract5010008
crossref_primary_10_1007_s00707_024_03954_7
crossref_primary_10_1016_j_cnsns_2024_108160
crossref_primary_10_1016_j_apnum_2021_03_007
crossref_primary_10_1080_02286203_2023_2231613
Cites_doi 10.1016/j.jsv.2010.09.017
10.1109/TAC.2015.2449151
10.1002/nme.2003
10.1122/1.549887
10.1080/00207160.2018.1438604
10.1016/j.compstruc.2013.02.011
10.1007/s10665-013-9642-9
10.1515/fca-2018-0079
10.1016/j.ijsolstr.2013.06.010
10.1016/j.apacoust.2019.05.008
10.1093/gji/ggu491
10.1016/j.ijnonlinmec.2015.05.004
10.1002/andp.200751907-803
10.1016/j.apm.2016.04.011
10.1364/AO.56.001591
10.1615/CritRevBiomedEng.v35.i6.10
10.1016/j.proeng.2017.09.041
10.1016/j.jsv.2006.06.040
10.1007/s00419-015-1019-2
10.1109/TFUZZ.2019.2895560
10.1016/j.camwa.2016.05.002
10.1016/j.physa.2006.04.034
10.1007/s11760-015-0856-3
10.1016/S0960-0779(98)00302-6
10.1002/nme.1840
10.1016/j.chaos.2006.07.051
10.1016/j.apm.2009.08.022
10.1016/j.jcp.2005.08.008
10.1038/srep03431
10.1016/j.ijmecsci.2014.03.007
10.1016/j.ijmecsci.2018.04.049
10.1007/s12206-016-0306-3
10.1016/j.jsv.2017.03.032
10.1016/j.compstruct.2015.06.038
10.1109/TFUZZ.2018.2883374
10.1016/j.jcp.2007.02.001
10.1016/j.jsv.2018.04.027
10.1016/j.jare.2015.06.004
ContentType Journal Article
Copyright 2019 Elsevier Ltd
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2019 Elsevier Ltd
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
1XC
VOOES
DOI 10.1016/j.chaos.2019.109585
DatabaseName CrossRef
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Mathematics
EISSN 1873-2887
ExternalDocumentID oai:HAL:hal-02884947v1
10_1016_j_chaos_2019_109585
S0960077919305429
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
29B
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABMAC
ABNEU
ABTAH
ABXDB
ABYKQ
ACDAQ
ACFVG
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
AEBSH
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AIVDX
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BBWZM
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HLZ
HMV
HVGLF
HZ~
IHE
J1W
KOM
LG9
M38
M41
MO0
N9A
NDZJH
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SBC
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SPD
SPG
SSQ
SSZ
T5K
WUQ
XPP
ZY4
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
1XC
VOOES
ID FETCH-LOGICAL-c382t-e704bb0e8dea9192e42e89cb0d225ede4b613a7df1e3b49aa6e602c8f7e2f3003
ISICitedReferencesCount 19
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000520892500051&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0960-0779
IngestDate Tue Oct 14 20:29:24 EDT 2025
Sat Nov 29 07:10:18 EST 2025
Tue Nov 18 21:56:20 EST 2025
Fri Feb 23 02:48:18 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Fractional visco-elastic rotating beam
Fractional governing equation
Approximation technique
Operator matrix
Numerical solution
Shifted Chebyshev polynomials
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c382t-e704bb0e8dea9192e42e89cb0d225ede4b613a7df1e3b49aa6e602c8f7e2f3003
OpenAccessLink https://hal.science/hal-02884947
ParticipantIDs hal_primary_oai_HAL_hal_02884947v1
crossref_citationtrail_10_1016_j_chaos_2019_109585
crossref_primary_10_1016_j_chaos_2019_109585
elsevier_sciencedirect_doi_10_1016_j_chaos_2019_109585
PublicationCentury 2000
PublicationDate March 2020
2020-03-00
2020-03
PublicationDateYYYYMMDD 2020-03-01
PublicationDate_xml – month: 03
  year: 2020
  text: March 2020
PublicationDecade 2020
PublicationTitle Chaos, solitons and fractals
PublicationYear 2020
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Chen, Liu, Li, Sun (bib0037) 2014; 238
Magdalena, Lewandowski (bib0019) 2017; 199
Tian, Su, Kai, Hua (bib0044) 2018; 426
Chen (bib0005) 2008; 36
Zaicenco (bib0040) 2015; 200
Lewandowski, Baum (bib0014) 2015; 85
Lewandowski, Pawlak (bib0010) 2011; 330
Lewandowski, Wielentejczyk (bib0013) 2017; 339
Kang, Zhou, Liu, Liu (bib0011) 2015
Bazoune (bib0045) 2014; 14
Xie, Yao, Gui, Zhao, Li (bib0033) 2018; 332
Permoon, Rashidinia, Parsa, Haddadpour, Salehi (bib0024) 2016; 30
Bahraini, Farid, Ghavanloo (bib0016) 2013; 27
Fernanda, Miguel, Higinio (bib0038) 2018; 21
Demir, Bildik, Snr (bib0023) 2014; 85
Xu, Jiang (bib0047) 2017; 73
Bagley, Torvik (bib0008) 1986; 30
Lorenzo, Hartley (bib0003) 2007; 35
Chen, Sun, Li, Fu (bib0034) 2013; 90
Suman, Kumar, Singh (bib0039) 2016; 10
Protasov, Jungers (bib0042) 2016; 61
Chang, Lin, Huang, Choi (bib0021) 2010; 34
Chen, Du (bib0049) 2019; 155
Gemant (bib0007) 1938; 25
Tadjeran, Meerschaert, Scheffler (bib0030) 2006; 213
Qiu, Sun, Rudas, Gao (bib0029) 2019
Wang, Xu, Wei, Xie (bib0035) 2018; 96
Srivatsa, Ganguli (bib0043) 2018; 142-143
Gioacchino, Mario, Giuseppe (bib0012) 2018; 131
Lin, Xu (bib0048) 2007; 255
Martin (bib0025) 2016; 40
Paola, Heuer, Pirrotta (bib0017) 2013; 50
Ramirez (bib0002) 2010; 16
Akritas, Antoniou, Ivanov (bib0026) 2000; 11
Friswell, Adhikari, Lei (bib0022) 2007; 71
Chen, Sun, Liu (bib0032) 2014; 244
Sweilam, Almekhlafi (bib0001) 2016; 7
Sun, Mou, Qiu, Wang, Gao (bib0027) 2019; 27
Banerjee, Su, Jackson (bib0046) 2006; 298
Kiasat, Zamani, Aghdam (bib0020) 2014; 83
Meng, Yi, Huang, Lei (bib0031) 2018; 336
Leung, Yang, Zhu, Guo (bib0009) 2013; 121
Xing, Guo (bib0041) 2017; 56
He, Rafiee, Mareishi, Liew (bib0018) 2015; 131
Du, Wang, Hu (bib0006) 2013; 3
Meerschaert, Scalas (bib0004) 2006; 370
Cortes, Elejabarrieta (bib0015) 2007; 69
Qiu, Sun, Wang, Gao (bib0028) 2019; 27
Chen, Liu, Liu, Boutat (bib0036) 2016
Ramirez (10.1016/j.chaos.2019.109585_bib0002) 2010; 16
Tian (10.1016/j.chaos.2019.109585_bib0044) 2018; 426
Chen (10.1016/j.chaos.2019.109585_bib0034) 2013; 90
He (10.1016/j.chaos.2019.109585_bib0018) 2015; 131
Protasov (10.1016/j.chaos.2019.109585_bib0042) 2016; 61
Chen (10.1016/j.chaos.2019.109585_bib0005) 2008; 36
Bagley (10.1016/j.chaos.2019.109585_bib0008) 1986; 30
Sweilam (10.1016/j.chaos.2019.109585_bib0001) 2016; 7
Lewandowski (10.1016/j.chaos.2019.109585_bib0014) 2015; 85
Cortes (10.1016/j.chaos.2019.109585_bib0015) 2007; 69
Banerjee (10.1016/j.chaos.2019.109585_bib0046) 2006; 298
Leung (10.1016/j.chaos.2019.109585_bib0009) 2013; 121
Bahraini (10.1016/j.chaos.2019.109585_bib0016) 2013; 27
Paola (10.1016/j.chaos.2019.109585_bib0017) 2013; 50
Lewandowski (10.1016/j.chaos.2019.109585_bib0010) 2011; 330
Chen (10.1016/j.chaos.2019.109585_bib0049) 2019; 155
Meerschaert (10.1016/j.chaos.2019.109585_bib0004) 2006; 370
Demir (10.1016/j.chaos.2019.109585_bib0023) 2014; 85
Gemant (10.1016/j.chaos.2019.109585_bib0007) 1938; 25
Permoon (10.1016/j.chaos.2019.109585_bib0024) 2016; 30
Qiu (10.1016/j.chaos.2019.109585_bib0029) 2019
Chen (10.1016/j.chaos.2019.109585_bib0032) 2014; 244
Fernanda (10.1016/j.chaos.2019.109585_bib0038) 2018; 21
Kiasat (10.1016/j.chaos.2019.109585_bib0020) 2014; 83
Chang (10.1016/j.chaos.2019.109585_bib0021) 2010; 34
Meng (10.1016/j.chaos.2019.109585_bib0031) 2018; 336
Xie (10.1016/j.chaos.2019.109585_bib0033) 2018; 332
Qiu (10.1016/j.chaos.2019.109585_bib0028) 2019; 27
Zaicenco (10.1016/j.chaos.2019.109585_bib0040) 2015; 200
Suman (10.1016/j.chaos.2019.109585_bib0039) 2016; 10
Lin (10.1016/j.chaos.2019.109585_bib0048) 2007; 255
Martin (10.1016/j.chaos.2019.109585_bib0025) 2016; 40
Tadjeran (10.1016/j.chaos.2019.109585_bib0030) 2006; 213
Lewandowski (10.1016/j.chaos.2019.109585_bib0013) 2017; 339
Srivatsa (10.1016/j.chaos.2019.109585_bib0043) 2018; 142-143
Gioacchino (10.1016/j.chaos.2019.109585_bib0012) 2018; 131
Chen (10.1016/j.chaos.2019.109585_bib0036) 2016
Du (10.1016/j.chaos.2019.109585_bib0006) 2013; 3
Friswell (10.1016/j.chaos.2019.109585_bib0022) 2007; 71
Magdalena (10.1016/j.chaos.2019.109585_bib0019) 2017; 199
Xu (10.1016/j.chaos.2019.109585_bib0047) 2017; 73
Lorenzo (10.1016/j.chaos.2019.109585_bib0003) 2007; 35
Chen (10.1016/j.chaos.2019.109585_bib0037) 2014; 238
Bazoune (10.1016/j.chaos.2019.109585_bib0045) 2014; 14
Kang (10.1016/j.chaos.2019.109585_bib0011) 2015
Sun (10.1016/j.chaos.2019.109585_bib0027) 2019; 27
Wang (10.1016/j.chaos.2019.109585_bib0035) 2018; 96
Xing (10.1016/j.chaos.2019.109585_bib0041) 2017; 56
Akritas (10.1016/j.chaos.2019.109585_bib0026) 2000; 11
References_xml – volume: 21
  start-page: 1506
  year: 2018
  end-page: 1523
  ident: bib0038
  article-title: Extrapolating for attaining high precision solutions for fractional partial differential equations[j]
  publication-title: Fract Calculus Appl Anal
– volume: 61
  start-page: 795
  year: 2016
  end-page: 798
  ident: bib0042
  article-title: Analysing the stability of linear systems via exponential chebyshev polynomials
  publication-title: IEEE Trans Autom Control
– volume: 85
  start-page: 1793
  year: 2015
  end-page: 1814
  ident: bib0014
  article-title: Dynamic characteristics of multilayered beams with viscoelastic layers described by the fractional zener model
  publication-title: Arch Appl Mech
– volume: 27
  start-page: 2152
  year: 2019
  end-page: 2161
  ident: bib0028
  article-title: Observer-based fuzzy adaptive event-triggered control for pure-feedback nonlinear systems with prescribed performance
  publication-title: IEEE Trans Fuzzy Syst
– volume: 155
  start-page: 1
  year: 2019
  end-page: 15
  ident: bib0049
  article-title: A fourier series solution for the transverse vibration of rotating beams with elastic boundary supports
  publication-title: Appl Acoust
– volume: 298
  start-page: 1034
  year: 2006
  end-page: 1054
  ident: bib0046
  article-title: Free vibration of rotating tapered beams using the dynamic stiffness method
  publication-title: J Sound Vib
– volume: 142-143
  start-page: 440
  year: 2018
  end-page: 455
  ident: bib0043
  article-title: Non-rotating beams isospectral to rotating rayleigh beams
  publication-title: Int J Mech Sci
– volume: 199
  start-page: 366
  year: 2017
  end-page: 371
  ident: bib0019
  article-title: Sensitivity analysis of dynamic characteristics of composite beams with viscoelastic layers
  publication-title: Proc Eng
– volume: 14
  start-page: 169
  year: 2014
  end-page: 179
  ident: bib0045
  article-title: Effect of tapering on natural frequencies of rotating beams
  publication-title: Shock Vib
– volume: 27
  start-page: 1063
  year: 2013
  end-page: 1070
  ident: bib0016
  article-title: Large deflection of viscoelastic beams using fractional derivative model
  publication-title: J Eng Math
– volume: 71
  start-page: 1365
  year: 2007
  end-page: 1386
  ident: bib0022
  article-title: Vibration analysis of beams with non-local foundations using the finite element method
  publication-title: Int J Numer Methods Eng
– volume: 40
  start-page: 7988
  year: 2016
  end-page: 7995
  ident: bib0025
  article-title: A modified variational iteration method for the analysis of viscoelastic beams
  publication-title: Appl Math Model
– volume: 213
  start-page: 205
  year: 2006
  end-page: 213
  ident: bib0030
  article-title: A second-order accurate numerical approximation for the fractional diffusion equation
  publication-title: J Comput Phys
– volume: 332
  start-page: 197
  year: 2018
  end-page: 208
  ident: bib0033
  article-title: A two-dimensional Chebyshev wavelets approach for solving the Fokker–Planck equations of time and space fractional derivatives type with variable coefficients
  publication-title: Appl Math Comput
– volume: 131
  start-page: 102
  year: 2018
  end-page: 110
  ident: bib0012
  article-title: On the dynamics of non-local fractional viscoelastic beams under stochastic agencies
  publication-title: Compos B: Eng
– volume: 3
  start-page: 3431
  year: 2013
  ident: bib0006
  article-title: Measuring memory with the order of fractional derivative
  publication-title: Sci Rep
– start-page: 1
  year: 2019
  end-page: 11
  ident: bib0029
  article-title: Command filter-based adaptive NN control for MIMO nonlinear systems with full-state constraints and actuator hysteresis
  publication-title: IEEE Trans Fuzzy Syst
– volume: 131
  start-page: 1111
  year: 2015
  end-page: 1123
  ident: bib0018
  article-title: Large amplitude vibration of fractionally damped viscoelastic CNTs/fiber/polymer multiscale composite beams
  publication-title: Compos Struct
– volume: 336
  start-page: 454
  year: 2018
  end-page: 464
  ident: bib0031
  article-title: Numerical solutions of nonlinear fractional differential equations by alternative Legendre polynomials
  publication-title: Appl Math Comput
– volume: 255
  start-page: 1533
  year: 2007
  end-page: 1552
  ident: bib0048
  article-title: Finite difference/spectral approximations for the time-fractional diffusion equation
  publication-title: J Comput Phys
– volume: 25
  start-page: 92
  year: 1938
  end-page: 96
  ident: bib0007
  article-title: On fractional differences
  publication-title: Phil Mag
– volume: 10
  start-page: 1041
  year: 2016
  end-page: 1048
  ident: bib0039
  article-title: A new method for higher-order linear phase FIR digital filter using shifted chebyshev polynomials
  publication-title: Signal Image Video Process
– volume: 16
  start-page: 543
  year: 2010
  end-page: 552
  ident: bib0002
  article-title: A variable order constitutive relation for viscoelasticity
  publication-title: Ann Phys
– volume: 50
  start-page: 3505
  year: 2013
  end-page: 3510
  ident: bib0017
  article-title: Fractional visco-elastic euler bernoulli beam[j]
  publication-title: Int J Solids Struct
– volume: 96
  start-page: 317
  year: 2018
  end-page: 336
  ident: bib0035
  article-title: Numerical solutions for systems of fractional order differential equations with bernoulli wavelets
  publication-title: Int J Comput Math
– volume: 244
  start-page: 847
  year: 2014
  end-page: 858
  ident: bib0032
  article-title: Numerical solution of fractional partial differential equations with variable coefficients using generalized fractional-order legendre functions
  publication-title: Appl Math Comput
– volume: 36
  start-page: 1305
  year: 2008
  end-page: 1314
  ident: bib0005
  article-title: Nonlinear dynamics and chaos in a fractional-order financial system[j]
  publication-title: Chaos Solitons and Fractals
– volume: 238
  start-page: 329
  year: 2014
  end-page: 341
  ident: bib0037
  article-title: Numerical solution for the variable order linear cable equation with Bernstein polynomials
  publication-title: Appl Math Comput
– volume: 339
  start-page: 228
  year: 2017
  end-page: 243
  ident: bib0013
  article-title: Nonlinear vibration of viscoelastic beams described using fractional order derivatives
  publication-title: J Sound Vib
– volume: 426
  start-page: 258
  year: 2018
  end-page: 277
  ident: bib0044
  article-title: A modified variational method for nonlinear vibration analysis of rotating beams including coriolis effects
  publication-title: J Sound Vib
– volume: 121
  start-page: 10
  year: 2013
  end-page: 21
  ident: bib0009
  article-title: Steady state response of fractionally damped nonlinear viscoelastic arches by residue harmonic homotopy
  publication-title: Comput Struct
– start-page: 20
  year: 2015
  end-page: 28
  ident: bib0011
  article-title: A fractional nonlinear creep model for coal considering damage effect and experimental validation
  publication-title: Int J Non-Linear Mech
– volume: 34
  start-page: 1482
  year: 2010
  end-page: 1497
  ident: bib0021
  article-title: Vibration and stability of an axially moving rayleigh beam
  publication-title: Appl Math Model
– volume: 83
  start-page: 133
  year: 2014
  end-page: 145
  ident: bib0020
  article-title: On the transient response of viscoelastic beams and plates on viscoelastic medium
  publication-title: Int J Mech Sci
– volume: 11
  start-page: 337
  year: 2000
  end-page: 344
  ident: bib0026
  article-title: Identification and prediction of discrete chaotic maps applying a Chebyshev neural network
  publication-title: Chaos Solitons Fractals
– volume: 370
  start-page: 114
  year: 2006
  end-page: 118
  ident: bib0004
  article-title: Coupled continuous time random walks in finance
  publication-title: Phys A Stat Mech Appl
– volume: 85
  start-page: 131
  year: 2014
  end-page: 147
  ident: bib0023
  article-title: Linear dynamical analysis of fractionally damped beams and rods
  publication-title: J Eng Math
– volume: 200
  start-page: 1466
  year: 2015
  end-page: 1482
  ident: bib0040
  article-title: Sensitivity analysis of a seismic risk scenario using sparse Chebyshev polynomial expansion
  publication-title: Geophys J Int
– volume: 30
  start-page: 3001
  year: 2016
  end-page: 3008
  ident: bib0024
  article-title: Application of radial basis functions and sinc method for solving the forced vibration of fractional viscoelastic beam
  publication-title: J Mech Sci Technol
– volume: 7
  start-page: 271
  year: 2016
  end-page: 283
  ident: bib0001
  article-title: Numerical study for multi-strain tuberculosis (TB) model of variable-order fractional derivatives
  publication-title: J Adv Res
– start-page: 1235
  year: 2016
  end-page: 1241
  ident: bib0036
  article-title: Numerical study of a class of variable order nonlinear fractional differential equation in terms of bernstein polynomials
  publication-title: Ain Shams Eng J
– volume: 30
  start-page: 133
  year: 1986
  end-page: 155
  ident: bib0008
  article-title: On the fractional calculus model of viscoelasticity behavior
  publication-title: J Rheol
– volume: 69
  start-page: 2173
  year: 2007
  end-page: 2195
  ident: bib0015
  article-title: Finite element formulations for transient dynamic analysis in structural systems with viscoelastic treatments containing fractional derivative models
  publication-title: Int J Numer Methods Eng
– volume: 56
  start-page: 1591
  year: 2017
  end-page: 1602
  ident: bib0041
  article-title: Temporal phase unwrapping for fringe projection profilometry aided by recursion of Chebyshev polynomials
  publication-title: Appl Opt
– volume: 90
  start-page: 359
  year: 2013
  end-page: 378
  ident: bib0034
  article-title: Numerical solution of nonlinear fractional integral differential equations by using the second kind Chebyshev wavelets
  publication-title: Comput Model Eng Sci
– volume: 73
  start-page: 1377
  year: 2017
  end-page: 1384
  ident: bib0047
  article-title: Creep constitutive models for viscoelastic materials based on fractional derivatives
  publication-title: Comput Math Appl
– volume: 330
  start-page: 923
  year: 2011
  end-page: 936
  ident: bib0010
  article-title: Dynamic analysis of frames with viscoelastic dampers modelled by rheological models with fractional derivatives
  publication-title: J Sound Vib
– volume: 35
  start-page: 447
  year: 2007
  end-page: 553
  ident: bib0003
  article-title: Initialization, conceptualization, and application in the generalized (fractional) calculus
  publication-title: Crit Rev Biomed Eng
– volume: 27
  start-page: 1587
  year: 2019
  end-page: 1601
  ident: bib0027
  article-title: Adaptive fuzzy control for non-triangular structural stochastic switched nonlinear systems with full state constraints
  publication-title: IEEE Trans Fuzzy Syst
– volume: 330
  start-page: 923
  issue: 5
  year: 2011
  ident: 10.1016/j.chaos.2019.109585_bib0010
  article-title: Dynamic analysis of frames with viscoelastic dampers modelled by rheological models with fractional derivatives
  publication-title: J Sound Vib
  doi: 10.1016/j.jsv.2010.09.017
– volume: 61
  start-page: 795
  issue: 3
  year: 2016
  ident: 10.1016/j.chaos.2019.109585_bib0042
  article-title: Analysing the stability of linear systems via exponential chebyshev polynomials
  publication-title: IEEE Trans Autom Control
  doi: 10.1109/TAC.2015.2449151
– volume: 131
  start-page: 102
  year: 2018
  ident: 10.1016/j.chaos.2019.109585_bib0012
  article-title: On the dynamics of non-local fractional viscoelastic beams under stochastic agencies
  publication-title: Compos B: Eng
– volume: 71
  start-page: 1365
  issue: 11
  year: 2007
  ident: 10.1016/j.chaos.2019.109585_bib0022
  article-title: Vibration analysis of beams with non-local foundations using the finite element method
  publication-title: Int J Numer Methods Eng
  doi: 10.1002/nme.2003
– volume: 30
  start-page: 133
  issue: 1
  year: 1986
  ident: 10.1016/j.chaos.2019.109585_bib0008
  article-title: On the fractional calculus model of viscoelasticity behavior
  publication-title: J Rheol
  doi: 10.1122/1.549887
– volume: 14
  start-page: 169
  issue: 14
  year: 2014
  ident: 10.1016/j.chaos.2019.109585_bib0045
  article-title: Effect of tapering on natural frequencies of rotating beams
  publication-title: Shock Vib
– volume: 96
  start-page: 317
  issue: 2
  year: 2018
  ident: 10.1016/j.chaos.2019.109585_bib0035
  article-title: Numerical solutions for systems of fractional order differential equations with bernoulli wavelets
  publication-title: Int J Comput Math
  doi: 10.1080/00207160.2018.1438604
– volume: 121
  start-page: 10
  issue: 5
  year: 2013
  ident: 10.1016/j.chaos.2019.109585_bib0009
  article-title: Steady state response of fractionally damped nonlinear viscoelastic arches by residue harmonic homotopy
  publication-title: Comput Struct
  doi: 10.1016/j.compstruc.2013.02.011
– volume: 85
  start-page: 131
  issue: 1
  year: 2014
  ident: 10.1016/j.chaos.2019.109585_bib0023
  article-title: Linear dynamical analysis of fractionally damped beams and rods
  publication-title: J Eng Math
  doi: 10.1007/s10665-013-9642-9
– volume: 21
  start-page: 1506
  issue: 6
  year: 2018
  ident: 10.1016/j.chaos.2019.109585_bib0038
  article-title: Extrapolating for attaining high precision solutions for fractional partial differential equations[j]
  publication-title: Fract Calculus Appl Anal
  doi: 10.1515/fca-2018-0079
– start-page: 1235
  year: 2016
  ident: 10.1016/j.chaos.2019.109585_bib0036
  article-title: Numerical study of a class of variable order nonlinear fractional differential equation in terms of bernstein polynomials
  publication-title: Ain Shams Eng J
– volume: 90
  start-page: 359
  issue: 5
  year: 2013
  ident: 10.1016/j.chaos.2019.109585_bib0034
  article-title: Numerical solution of nonlinear fractional integral differential equations by using the second kind Chebyshev wavelets
  publication-title: Comput Model Eng Sci
– volume: 336
  start-page: 454
  year: 2018
  ident: 10.1016/j.chaos.2019.109585_bib0031
  article-title: Numerical solutions of nonlinear fractional differential equations by alternative Legendre polynomials
  publication-title: Appl Math Comput
– volume: 50
  start-page: 3505
  issue: 22-23
  year: 2013
  ident: 10.1016/j.chaos.2019.109585_bib0017
  article-title: Fractional visco-elastic euler bernoulli beam[j]
  publication-title: Int J Solids Struct
  doi: 10.1016/j.ijsolstr.2013.06.010
– volume: 155
  start-page: 1
  year: 2019
  ident: 10.1016/j.chaos.2019.109585_bib0049
  article-title: A fourier series solution for the transverse vibration of rotating beams with elastic boundary supports
  publication-title: Appl Acoust
  doi: 10.1016/j.apacoust.2019.05.008
– volume: 238
  start-page: 329
  issue: 7
  year: 2014
  ident: 10.1016/j.chaos.2019.109585_bib0037
  article-title: Numerical solution for the variable order linear cable equation with Bernstein polynomials
  publication-title: Appl Math Comput
– volume: 200
  start-page: 1466
  issue: 3
  year: 2015
  ident: 10.1016/j.chaos.2019.109585_bib0040
  article-title: Sensitivity analysis of a seismic risk scenario using sparse Chebyshev polynomial expansion
  publication-title: Geophys J Int
  doi: 10.1093/gji/ggu491
– volume: 27
  start-page: 1063
  issue: 4
  year: 2013
  ident: 10.1016/j.chaos.2019.109585_bib0016
  article-title: Large deflection of viscoelastic beams using fractional derivative model
  publication-title: J Eng Math
– start-page: 20
  issue: 76
  year: 2015
  ident: 10.1016/j.chaos.2019.109585_bib0011
  article-title: A fractional nonlinear creep model for coal considering damage effect and experimental validation
  publication-title: Int J Non-Linear Mech
  doi: 10.1016/j.ijnonlinmec.2015.05.004
– volume: 16
  start-page: 543
  issue: 7-8
  year: 2010
  ident: 10.1016/j.chaos.2019.109585_bib0002
  article-title: A variable order constitutive relation for viscoelasticity
  publication-title: Ann Phys
  doi: 10.1002/andp.200751907-803
– volume: 40
  start-page: 7988
  issue: 17
  year: 2016
  ident: 10.1016/j.chaos.2019.109585_bib0025
  article-title: A modified variational iteration method for the analysis of viscoelastic beams
  publication-title: Appl Math Model
  doi: 10.1016/j.apm.2016.04.011
– volume: 56
  start-page: 1591
  issue: 6
  year: 2017
  ident: 10.1016/j.chaos.2019.109585_bib0041
  article-title: Temporal phase unwrapping for fringe projection profilometry aided by recursion of Chebyshev polynomials
  publication-title: Appl Opt
  doi: 10.1364/AO.56.001591
– volume: 244
  start-page: 847
  issue: 2
  year: 2014
  ident: 10.1016/j.chaos.2019.109585_bib0032
  article-title: Numerical solution of fractional partial differential equations with variable coefficients using generalized fractional-order legendre functions
  publication-title: Appl Math Comput
– volume: 35
  start-page: 447
  issue: 6
  year: 2007
  ident: 10.1016/j.chaos.2019.109585_bib0003
  article-title: Initialization, conceptualization, and application in the generalized (fractional) calculus
  publication-title: Crit Rev Biomed Eng
  doi: 10.1615/CritRevBiomedEng.v35.i6.10
– volume: 199
  start-page: 366
  year: 2017
  ident: 10.1016/j.chaos.2019.109585_bib0019
  article-title: Sensitivity analysis of dynamic characteristics of composite beams with viscoelastic layers
  publication-title: Proc Eng
  doi: 10.1016/j.proeng.2017.09.041
– volume: 298
  start-page: 1034
  issue: 4
  year: 2006
  ident: 10.1016/j.chaos.2019.109585_bib0046
  article-title: Free vibration of rotating tapered beams using the dynamic stiffness method
  publication-title: J Sound Vib
  doi: 10.1016/j.jsv.2006.06.040
– volume: 85
  start-page: 1793
  issue: 12
  year: 2015
  ident: 10.1016/j.chaos.2019.109585_bib0014
  article-title: Dynamic characteristics of multilayered beams with viscoelastic layers described by the fractional zener model
  publication-title: Arch Appl Mech
  doi: 10.1007/s00419-015-1019-2
– volume: 27
  start-page: 2152
  issue: 11
  year: 2019
  ident: 10.1016/j.chaos.2019.109585_bib0028
  article-title: Observer-based fuzzy adaptive event-triggered control for pure-feedback nonlinear systems with prescribed performance
  publication-title: IEEE Trans Fuzzy Syst
  doi: 10.1109/TFUZZ.2019.2895560
– volume: 73
  start-page: 1377
  issue: 6
  year: 2017
  ident: 10.1016/j.chaos.2019.109585_bib0047
  article-title: Creep constitutive models for viscoelastic materials based on fractional derivatives
  publication-title: Comput Math Appl
  doi: 10.1016/j.camwa.2016.05.002
– volume: 370
  start-page: 114
  issue: 1
  year: 2006
  ident: 10.1016/j.chaos.2019.109585_bib0004
  article-title: Coupled continuous time random walks in finance
  publication-title: Phys A Stat Mech Appl
  doi: 10.1016/j.physa.2006.04.034
– volume: 10
  start-page: 1041
  issue: 6
  year: 2016
  ident: 10.1016/j.chaos.2019.109585_bib0039
  article-title: A new method for higher-order linear phase FIR digital filter using shifted chebyshev polynomials
  publication-title: Signal Image Video Process
  doi: 10.1007/s11760-015-0856-3
– volume: 11
  start-page: 337
  issue: 1-3
  year: 2000
  ident: 10.1016/j.chaos.2019.109585_bib0026
  article-title: Identification and prediction of discrete chaotic maps applying a Chebyshev neural network
  publication-title: Chaos Solitons Fractals
  doi: 10.1016/S0960-0779(98)00302-6
– volume: 69
  start-page: 2173
  issue: 10
  year: 2007
  ident: 10.1016/j.chaos.2019.109585_bib0015
  article-title: Finite element formulations for transient dynamic analysis in structural systems with viscoelastic treatments containing fractional derivative models
  publication-title: Int J Numer Methods Eng
  doi: 10.1002/nme.1840
– volume: 25
  start-page: 92
  issue: 1
  year: 1938
  ident: 10.1016/j.chaos.2019.109585_bib0007
  article-title: On fractional differences
  publication-title: Phil Mag
– volume: 36
  start-page: 1305
  issue: 5
  year: 2008
  ident: 10.1016/j.chaos.2019.109585_bib0005
  article-title: Nonlinear dynamics and chaos in a fractional-order financial system[j]
  publication-title: Chaos Solitons and Fractals
  doi: 10.1016/j.chaos.2006.07.051
– volume: 34
  start-page: 1482
  issue: 6
  year: 2010
  ident: 10.1016/j.chaos.2019.109585_bib0021
  article-title: Vibration and stability of an axially moving rayleigh beam
  publication-title: Appl Math Model
  doi: 10.1016/j.apm.2009.08.022
– volume: 213
  start-page: 205
  issue: 1
  year: 2006
  ident: 10.1016/j.chaos.2019.109585_bib0030
  article-title: A second-order accurate numerical approximation for the fractional diffusion equation
  publication-title: J Comput Phys
  doi: 10.1016/j.jcp.2005.08.008
– volume: 3
  start-page: 3431
  issue: 7478
  year: 2013
  ident: 10.1016/j.chaos.2019.109585_bib0006
  article-title: Measuring memory with the order of fractional derivative
  publication-title: Sci Rep
  doi: 10.1038/srep03431
– volume: 83
  start-page: 133
  issue: 7-8
  year: 2014
  ident: 10.1016/j.chaos.2019.109585_bib0020
  article-title: On the transient response of viscoelastic beams and plates on viscoelastic medium
  publication-title: Int J Mech Sci
  doi: 10.1016/j.ijmecsci.2014.03.007
– start-page: 1
  year: 2019
  ident: 10.1016/j.chaos.2019.109585_bib0029
  article-title: Command filter-based adaptive NN control for MIMO nonlinear systems with full-state constraints and actuator hysteresis
  publication-title: IEEE Trans Fuzzy Syst
– volume: 142-143
  start-page: 440
  year: 2018
  ident: 10.1016/j.chaos.2019.109585_bib0043
  article-title: Non-rotating beams isospectral to rotating rayleigh beams
  publication-title: Int J Mech Sci
  doi: 10.1016/j.ijmecsci.2018.04.049
– volume: 30
  start-page: 3001
  issue: 7
  year: 2016
  ident: 10.1016/j.chaos.2019.109585_bib0024
  article-title: Application of radial basis functions and sinc method for solving the forced vibration of fractional viscoelastic beam
  publication-title: J Mech Sci Technol
  doi: 10.1007/s12206-016-0306-3
– volume: 339
  start-page: 228
  issue: 2
  year: 2017
  ident: 10.1016/j.chaos.2019.109585_bib0013
  article-title: Nonlinear vibration of viscoelastic beams described using fractional order derivatives
  publication-title: J Sound Vib
  doi: 10.1016/j.jsv.2017.03.032
– volume: 131
  start-page: 1111
  year: 2015
  ident: 10.1016/j.chaos.2019.109585_bib0018
  article-title: Large amplitude vibration of fractionally damped viscoelastic CNTs/fiber/polymer multiscale composite beams
  publication-title: Compos Struct
  doi: 10.1016/j.compstruct.2015.06.038
– volume: 27
  start-page: 1587
  issue: 8
  year: 2019
  ident: 10.1016/j.chaos.2019.109585_bib0027
  article-title: Adaptive fuzzy control for non-triangular structural stochastic switched nonlinear systems with full state constraints
  publication-title: IEEE Trans Fuzzy Syst
  doi: 10.1109/TFUZZ.2018.2883374
– volume: 255
  start-page: 1533
  issue: 2
  year: 2007
  ident: 10.1016/j.chaos.2019.109585_bib0048
  article-title: Finite difference/spectral approximations for the time-fractional diffusion equation
  publication-title: J Comput Phys
  doi: 10.1016/j.jcp.2007.02.001
– volume: 332
  start-page: 197
  year: 2018
  ident: 10.1016/j.chaos.2019.109585_bib0033
  article-title: A two-dimensional Chebyshev wavelets approach for solving the Fokker–Planck equations of time and space fractional derivatives type with variable coefficients
  publication-title: Appl Math Comput
– volume: 426
  start-page: 258
  year: 2018
  ident: 10.1016/j.chaos.2019.109585_bib0044
  article-title: A modified variational method for nonlinear vibration analysis of rotating beams including coriolis effects
  publication-title: J Sound Vib
  doi: 10.1016/j.jsv.2018.04.027
– volume: 7
  start-page: 271
  issue: 2
  year: 2016
  ident: 10.1016/j.chaos.2019.109585_bib0001
  article-title: Numerical study for multi-strain tuberculosis (TB) model of variable-order fractional derivatives
  publication-title: J Adv Res
  doi: 10.1016/j.jare.2015.06.004
SSID ssj0001062
Score 2.3960996
Snippet In this paper, an effective numerical algorithm is proposed for the first time to solve the fractional visco-elastic rotating beam in the time domain. On the...
SourceID hal
crossref
elsevier
SourceType Open Access Repository
Enrichment Source
Index Database
Publisher
StartPage 109585
SubjectTerms Approximation technique
Fractional governing equation
Fractional visco-elastic rotating beam
Mathematics
Numerical solution
Operator matrix
Shifted Chebyshev polynomials
Title Shifted-Chebyshev-polynomial-based numerical algorithm for fractional order polymer visco-elastic rotating beam
URI https://dx.doi.org/10.1016/j.chaos.2019.109585
https://hal.science/hal-02884947
Volume 132
WOSCitedRecordID wos000520892500051&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-2887
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001062
  issn: 0960-0779
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwELZYxwM8IDZAjF-yEA-g4Slx09h5rKqhgbYJaUOUp8hJLkumLqmaUm3_PXexkwIT44fES1RZjp3mvtifz5_vGHsVAm3fmJEYejoVgcwykeAyRBgZqSSIVObneZtsQh0f6-k0-uhkzU2bTkBVlb68jOb_1dRYhsamo7N_Ye6-USzA32h0vKLZ8fpHhj8pyhxppJgUQL5nWIl5Pbui08dmJmjSov1-u09D6uSzelEui4tWbpgv7DEHIqgUkpNSOFxh1d1V2aS1AGTabcjnmvbvq7PdBMzF9-x2Uhir2mtIVUciHHLLt62aWU_ePzsX9SGUa3GBHf2-lOKom0udKwLXnb0Wy_rHujMya0FS62gMsaKyKWP2wA6zWg2F1G6q7cZh6-i8NqZb98L5Xkr_gcR4EcXAGtlMPz8Fyz6h3qgz5KUepeLaYJtSjSI9YJvj9_vTD_0sjUvhdoepe7ouIlWr_bvW1a9Yy0bR-d9bPnJ6n91zCwk-tgDYYreg2mZ3j_oovM0223IDd8Nfu-jibx6w-vf44D0-eI8Pjvjga3zwFh_c4YP_gA_e4YMTPh6yT-_2TycHwmXdEOlQy6UA5QVJ4oHOwOBrlBBI0FGaeBkO_ZBBkCADNCrLfRji12xMCKEnU50rkPkQJ4lHbFDVFTxmPAyND-HIRLkfBQkonfkhqNx4Spo0zPQOk91bjVMXkp4yo8ziTnt4HremiMkUsTXFDnvb3zS3EVlurh525oodqbRkMUZ83XzjSzRu3wWFYT8YH8ZUhpxcB1GgVv6Tf239Kbuz_oKescFy8RWes9vpalk2ixcOrN8ANASsNw
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Shifted-Chebyshev-polynomial-based+numerical+algorithm+for+fractional+order+polymer+visco-elastic+rotating+beam&rft.jtitle=Chaos%2C+solitons+and+fractals&rft.au=Wang%2C+Lei&rft.au=Chen%2C+Yi-Ming&rft.date=2020-03-01&rft.pub=Elsevier+Ltd&rft.issn=0960-0779&rft.eissn=1873-2887&rft.volume=132&rft_id=info:doi/10.1016%2Fj.chaos.2019.109585&rft.externalDocID=S0960077919305429
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-0779&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-0779&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-0779&client=summon