Parallel distributed genetic fuzzy rule selection

Genetic fuzzy rule selection has been successfully used to design accurate and compact fuzzy rule-based classifiers. It is, however, very difficult to handle large data sets due to the increase in computational costs. This paper proposes a simple but effective idea to improve the scalability of gene...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Soft computing (Berlin, Germany) Ročník 13; číslo 5; s. 511 - 519
Hlavní autoři: Nojima, Yusuke, Ishibuchi, Hisao, Kuwajima, Isao
Médium: Journal Article
Jazyk:angličtina
Vydáno: Berlin/Heidelberg Springer-Verlag 01.03.2009
Springer Nature B.V
Témata:
ISSN:1432-7643, 1433-7479
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Genetic fuzzy rule selection has been successfully used to design accurate and compact fuzzy rule-based classifiers. It is, however, very difficult to handle large data sets due to the increase in computational costs. This paper proposes a simple but effective idea to improve the scalability of genetic fuzzy rule selection to large data sets. Our idea is based on its parallel distributed implementation. Both a training data set and a population are divided into subgroups (i.e., into training data subsets and sub-populations, respectively) for the use of multiple processors. We compare seven variants of the parallel distributed implementation with the original non-parallel algorithm through computational experiments on some benchmark data sets.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1432-7643
1433-7479
DOI:10.1007/s00500-008-0365-1