Parallel distributed genetic fuzzy rule selection
Genetic fuzzy rule selection has been successfully used to design accurate and compact fuzzy rule-based classifiers. It is, however, very difficult to handle large data sets due to the increase in computational costs. This paper proposes a simple but effective idea to improve the scalability of gene...
Gespeichert in:
| Veröffentlicht in: | Soft computing (Berlin, Germany) Jg. 13; H. 5; S. 511 - 519 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Berlin/Heidelberg
Springer-Verlag
01.03.2009
Springer Nature B.V |
| Schlagworte: | |
| ISSN: | 1432-7643, 1433-7479 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | Genetic fuzzy rule selection has been successfully used to design accurate and compact fuzzy rule-based classifiers. It is, however, very difficult to handle large data sets due to the increase in computational costs. This paper proposes a simple but effective idea to improve the scalability of genetic fuzzy rule selection to large data sets. Our idea is based on its parallel distributed implementation. Both a training data set and a population are divided into subgroups (i.e., into training data subsets and sub-populations, respectively) for the use of multiple processors. We compare seven variants of the parallel distributed implementation with the original non-parallel algorithm through computational experiments on some benchmark data sets. |
|---|---|
| Bibliographie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 1432-7643 1433-7479 |
| DOI: | 10.1007/s00500-008-0365-1 |