Calibration and Uncertainty for multiRater Volume Assessment in multiorgan Segmentation (CURVAS) challenge results

Deep learning (DL) has become the dominant approach for medical image segmentation, yet ensuring the reliability and clinical applicability of these models requires addressing key challenges such as annotation variability, calibration, and uncertainty estimation. This is why we created the Calibrati...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computers in biology and medicine Jg. 197; H. Pt B; S. 111024
Hauptverfasser: Riera-Marín, Meritxell, O.K., Sikha, Rodríguez-Comas, Júlia, May, Matthias Stefan, Pan, Zhaohong, Zhou, Xiang, Liang, Xiaokun, Erick, Franciskus Xaverius, Prenner, Andrea, Hémon, Cédric, Boussot, Valentin, Dillenseger, Jean-Louis, Nunes, Jean-Claude, Qayyum, Abdul, Mazher, Moona, Niederer, Steven A., Kushibar, Kaisar, Martín-Isla, Carlos, Radeva, Petia, Lekadir, Karim, Barfoot, Theodore, Garcia Peraza Herrera, Luis C., Glocker, Ben, Vercauteren, Tom, Gago, Lucas, Englemann, Justin, Kleiss, Joy-Marie, Aubanell, Anton, Antolin, Andreu, García-López, Javier, González Ballester, Miguel A., Galdrán, Adrián
Format: Journal Article
Sprache:Englisch
Veröffentlicht: United States Elsevier Ltd 01.10.2025
Elsevier
Schlagworte:
ISSN:0010-4825, 1879-0534, 1879-0534
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Deep learning (DL) has become the dominant approach for medical image segmentation, yet ensuring the reliability and clinical applicability of these models requires addressing key challenges such as annotation variability, calibration, and uncertainty estimation. This is why we created the Calibration and Uncertainty for multiRater Volume Assessment in multiorgan Segmentation (CURVAS), which highlights the critical role of multiple annotators in establishing a more comprehensive ground truth, emphasizing that segmentation is inherently subjective and that leveraging inter-annotator variability is essential for robust model evaluation. Seven teams participated in the challenge, submitting a variety of DL models evaluated using metrics such as Dice Similarity Coefficient (DSC), Expected Calibration Error (ECE), and Continuous Ranked Probability Score (CRPS). By incorporating consensus and dissensus ground truth, we assess how DL models handle uncertainty and whether their confidence estimates align with true segmentation performance. Our findings reinforce the importance of well-calibrated models, as better calibration is strongly correlated with the quality of the results. Furthermore, we demonstrate that segmentation models trained on diverse datasets and enriched with pre-trained knowledge exhibit greater robustness, particularly in cases deviating from standard anatomical structures. Notably, the best-performing models achieved high DSC and well-calibrated uncertainty estimates. This work underscores the need for multi-annotator ground truth, thorough calibration assessments, and uncertainty-aware evaluations to develop trustworthy and clinically reliable DL-based medical image segmentation models. •The CURVAS challenge assessed DL segmentation under annotation uncertainty.•Multi-rater CT annotations evaluated consensus and disagreement in three organs.•Metrics account for expert variability, enabling more reliable model assessment.•Calibration-aware models showed strong links between confidence and accuracy.•Volume estimation and robustness to ambiguity support clinical applicability.
AbstractList Deep learning (DL) has become the dominant approach for medical image segmentation, yet ensuring the reliability and clinical applicability of these models requires addressing key challenges such as annotation variability, calibration, and uncertainty estimation. This is why we created the Calibration and Uncertainty for multiRater Volume Assessment in multiorgan Segmentation (CURVAS), which highlights the critical role of multiple annotators in establishing a more comprehensive ground truth, emphasizing that segmentation is inherently subjective and that leveraging inter-annotator variability is essential for robust model evaluation. Seven teams participated in the challenge, submitting a variety of DL models evaluated using metrics such as Dice Similarity Coefficient (DSC), Expected Calibration Error (ECE), and Continuous Ranked Probability Score (CRPS). By incorporating consensus and dissensus ground truth, we assess how DL models handle uncertainty and whether their confidence estimates align with true segmentation performance. Our findings reinforce the importance of well-calibrated models, as better calibration is strongly correlated with the quality of the results. Furthermore, we demonstrate that segmentation models trained on diverse datasets and enriched with pre-trained knowledge exhibit greater robustness, particularly in cases deviating from standard anatomical structures. Notably, the best-performing models achieved high DSC and well-calibrated uncertainty estimates. This work underscores the need for multi-annotator ground truth, thorough calibration assessments, and uncertainty-aware evaluations to develop trustworthy and clinically reliable DL-based medical image segmentation models.
Deep learning (DL) has become the dominant approach for medical image segmentation, yet ensuring the reliability and clinical applicability of these models requires addressing key challenges such as annotation variability, calibration, and uncertainty estimation. This is why we created the Calibration and Uncertainty for multiRater Volume Assessment in multiorgan Segmentation (CURVAS), which highlights the critical role of multiple annotators in establishing a more comprehensive ground truth, emphasizing that segmentation is inherently subjective and that leveraging inter-annotator variability is essential for robust model evaluation. Seven teams participated in the challenge, submitting a variety of DL models evaluated using metrics such as Dice Similarity Coefficient (DSC), Expected Calibration Error (ECE), and Continuous Ranked Probability Score (CRPS). By incorporating consensus and dissensus ground truth, we assess how DL models handle uncertainty and whether their confidence estimates align with true segmentation performance. Our findings reinforce the importance of well-calibrated models, as better calibration is strongly correlated with the quality of the results. Furthermore, we demonstrate that segmentation models trained on diverse datasets and enriched with pre-trained knowledge exhibit greater robustness, particularly in cases deviating from standard anatomical structures. Notably, the best-performing models achieved high DSC and well-calibrated uncertainty estimates. This work underscores the need for multi-annotator ground truth, thorough calibration assessments, and uncertainty-aware evaluations to develop trustworthy and clinically reliable DL-based medical image segmentation models.Deep learning (DL) has become the dominant approach for medical image segmentation, yet ensuring the reliability and clinical applicability of these models requires addressing key challenges such as annotation variability, calibration, and uncertainty estimation. This is why we created the Calibration and Uncertainty for multiRater Volume Assessment in multiorgan Segmentation (CURVAS), which highlights the critical role of multiple annotators in establishing a more comprehensive ground truth, emphasizing that segmentation is inherently subjective and that leveraging inter-annotator variability is essential for robust model evaluation. Seven teams participated in the challenge, submitting a variety of DL models evaluated using metrics such as Dice Similarity Coefficient (DSC), Expected Calibration Error (ECE), and Continuous Ranked Probability Score (CRPS). By incorporating consensus and dissensus ground truth, we assess how DL models handle uncertainty and whether their confidence estimates align with true segmentation performance. Our findings reinforce the importance of well-calibrated models, as better calibration is strongly correlated with the quality of the results. Furthermore, we demonstrate that segmentation models trained on diverse datasets and enriched with pre-trained knowledge exhibit greater robustness, particularly in cases deviating from standard anatomical structures. Notably, the best-performing models achieved high DSC and well-calibrated uncertainty estimates. This work underscores the need for multi-annotator ground truth, thorough calibration assessments, and uncertainty-aware evaluations to develop trustworthy and clinically reliable DL-based medical image segmentation models.
AbstractDeep learning (DL) has become the dominant approach for medical image segmentation, yet ensuring the reliability and clinical applicability of these models requires addressing key challenges such as annotation variability, calibration, and uncertainty estimation. This is why we created the Calibration and Uncertainty for multiRater Volume Assessment in multiorgan Segmentation (CURVAS), which highlights the critical role of multiple annotators in establishing a more comprehensive ground truth, emphasizing that segmentation is inherently subjective and that leveraging inter-annotator variability is essential for robust model evaluation. Seven teams participated in the challenge, submitting a variety of DL models evaluated using metrics such as Dice Similarity Coefficient (DSC), Expected Calibration Error (ECE), and Continuous Ranked Probability Score (CRPS). By incorporating consensus and dissensus ground truth, we assess how DL models handle uncertainty and whether their confidence estimates align with true segmentation performance. Our findings reinforce the importance of well-calibrated models, as better calibration is strongly correlated with the quality of the results. Furthermore, we demonstrate that segmentation models trained on diverse datasets and enriched with pre-trained knowledge exhibit greater robustness, particularly in cases deviating from standard anatomical structures. Notably, the best-performing models achieved high DSC and well-calibrated uncertainty estimates. This work underscores the need for multi-annotator ground truth, thorough calibration assessments, and uncertainty-aware evaluations to develop trustworthy and clinically reliable DL-based medical image segmentation models.
Deep learning (DL) has become the dominant approach for medical image segmentation, yet ensuring the reliability and clinical applicability of these models requires addressing key challenges such as annotation variability, calibration, and uncertainty estimation. This is why we created the Calibration and Uncertainty for multiRater Volume Assessment in multiorgan Segmentation (CURVAS), which highlights the critical role of multiple annotators in establishing a more comprehensive ground truth, emphasizing that segmentation is inherently subjective and that leveraging inter-annotator variability is essential for robust model evaluation. Seven teams participated in the challenge, submitting a variety of DL models evaluated using metrics such as Dice Similarity Coefficient (DSC), Expected Calibration Error (ECE), and Continuous Ranked Probability Score (CRPS). By incorporating consensus and dissensus ground truth, we assess how DL models handle uncertainty and whether their confidence estimates align with true segmentation performance. Our findings reinforce the importance of well-calibrated models, as better calibration is strongly correlated with the quality of the results. Furthermore, we demonstrate that segmentation models trained on diverse datasets and enriched with pre-trained knowledge exhibit greater robustness, particularly in cases deviating from standard anatomical structures. Notably, the best-performing models achieved high DSC and well-calibrated uncertainty estimates. This work underscores the need for multi-annotator ground truth, thorough calibration assessments, and uncertainty-aware evaluations to develop trustworthy and clinically reliable DL-based medical image segmentation models. •The CURVAS challenge assessed DL segmentation under annotation uncertainty.•Multi-rater CT annotations evaluated consensus and disagreement in three organs.•Metrics account for expert variability, enabling more reliable model assessment.•Calibration-aware models showed strong links between confidence and accuracy.•Volume estimation and robustness to ambiguity support clinical applicability.
ArticleNumber 111024
Author O.K., Sikha
Riera-Marín, Meritxell
Dillenseger, Jean-Louis
Vercauteren, Tom
Boussot, Valentin
Kleiss, Joy-Marie
Antolin, Andreu
García-López, Javier
Zhou, Xiang
Barfoot, Theodore
Gago, Lucas
Mazher, Moona
Liang, Xiaokun
May, Matthias Stefan
Pan, Zhaohong
Hémon, Cédric
González Ballester, Miguel A.
Qayyum, Abdul
Nunes, Jean-Claude
Lekadir, Karim
Englemann, Justin
Martín-Isla, Carlos
Niederer, Steven A.
Rodríguez-Comas, Júlia
Erick, Franciskus Xaverius
Prenner, Andrea
Radeva, Petia
Aubanell, Anton
Garcia Peraza Herrera, Luis C.
Kushibar, Kaisar
Glocker, Ben
Galdrán, Adrián
Author_xml – sequence: 1
  givenname: Meritxell
  orcidid: 0000-0001-6221-5443
  surname: Riera-Marín
  fullname: Riera-Marín, Meritxell
  email: m.riera@sycaitechnologies.com
  organization: Sycai Technologies SL, Scientific and Technical Department, Barcelona, Spain
– sequence: 2
  givenname: Sikha
  orcidid: 0000-0002-3499-8062
  surname: O.K.
  fullname: O.K., Sikha
  organization: BCN Medtech, Universitat Pompeu Fabra, Barcelona, Spain
– sequence: 3
  givenname: Júlia
  orcidid: 0000-0002-4788-6668
  surname: Rodríguez-Comas
  fullname: Rodríguez-Comas, Júlia
  organization: Sycai Technologies SL, Scientific and Technical Department, Barcelona, Spain
– sequence: 4
  givenname: Matthias Stefan
  orcidid: 0000-0002-2540-850X
  surname: May
  fullname: May, Matthias Stefan
  organization: Universitätsklinikum Erlangen, Department of Radiology of the Uniklinikum Erlangen (UKER), Erlangen, Germany
– sequence: 5
  givenname: Zhaohong
  orcidid: 0009-0007-9566-4131
  surname: Pan
  fullname: Pan, Zhaohong
  organization: Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
– sequence: 6
  givenname: Xiang
  orcidid: 0009-0009-2843-4605
  surname: Zhou
  fullname: Zhou, Xiang
  organization: Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
– sequence: 7
  givenname: Xiaokun
  orcidid: 0000-0002-1207-5726
  surname: Liang
  fullname: Liang, Xiaokun
  organization: Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
– sequence: 8
  givenname: Franciskus Xaverius
  orcidid: 0000-0001-6004-7896
  surname: Erick
  fullname: Erick, Franciskus Xaverius
  organization: Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
– sequence: 9
  givenname: Andrea
  orcidid: 0009-0004-8485-7702
  surname: Prenner
  fullname: Prenner, Andrea
  organization: Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
– sequence: 10
  givenname: Cédric
  orcidid: 0009-0003-6669-5108
  surname: Hémon
  fullname: Hémon, Cédric
  organization: Université de Rennes 1, CLCC Eugène Marquis, and INSERM UMR 1099 LTSI, Rennes, France
– sequence: 11
  givenname: Valentin
  orcidid: 0009-0003-2465-5458
  surname: Boussot
  fullname: Boussot, Valentin
  organization: Université de Rennes 1, CLCC Eugène Marquis, and INSERM UMR 1099 LTSI, Rennes, France
– sequence: 12
  givenname: Jean-Louis
  orcidid: 0000-0001-8840-3944
  surname: Dillenseger
  fullname: Dillenseger, Jean-Louis
  organization: Université de Rennes 1, CLCC Eugène Marquis, and INSERM UMR 1099 LTSI, Rennes, France
– sequence: 13
  givenname: Jean-Claude
  orcidid: 0000-0001-6560-1518
  surname: Nunes
  fullname: Nunes, Jean-Claude
  organization: Université de Rennes 1, CLCC Eugène Marquis, and INSERM UMR 1099 LTSI, Rennes, France
– sequence: 14
  givenname: Abdul
  orcidid: 0000-0003-3102-1595
  surname: Qayyum
  fullname: Qayyum, Abdul
  organization: National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, United Kingdom
– sequence: 15
  givenname: Moona
  orcidid: 0000-0003-4444-5776
  surname: Mazher
  fullname: Mazher, Moona
  organization: Centre for Medical Image Computing, Department of Computer Science, University College London, London, United Kingdom
– sequence: 16
  givenname: Steven A.
  orcidid: 0000-0002-4612-6982
  surname: Niederer
  fullname: Niederer, Steven A.
  organization: Centre for Medical Image Computing, Department of Computer Science, University College London, London, United Kingdom
– sequence: 17
  givenname: Kaisar
  orcidid: 0000-0001-7507-5208
  surname: Kushibar
  fullname: Kushibar, Kaisar
  organization: Barcelona Artificial Intelligence in Medicine Lab (BCN-AIM), Facultat de Matemàtiques i Informàtica, Universitat de Barcelona, Barcelona, Spain
– sequence: 18
  givenname: Carlos
  orcidid: 0000-0003-4270-4009
  surname: Martín-Isla
  fullname: Martín-Isla, Carlos
  organization: Barcelona Artificial Intelligence in Medicine Lab (BCN-AIM), Facultat de Matemàtiques i Informàtica, Universitat de Barcelona, Barcelona, Spain
– sequence: 19
  givenname: Petia
  orcidid: 0000-0003-0047-5172
  surname: Radeva
  fullname: Radeva, Petia
  organization: AIBA, Facultat de Matemàtiques i Informàtica, and Institute of Neuroscience, Universitat de Barcelona, Barcelona, Spain
– sequence: 20
  givenname: Karim
  orcidid: 0000-0002-9456-1612
  surname: Lekadir
  fullname: Lekadir, Karim
  organization: Barcelona Artificial Intelligence in Medicine Lab (BCN-AIM), Facultat de Matemàtiques i Informàtica, Universitat de Barcelona, Barcelona, Spain
– sequence: 21
  givenname: Theodore
  orcidid: 0009-0005-2309-5238
  surname: Barfoot
  fullname: Barfoot, Theodore
  organization: King’s College London (KCL), London, United Kingdom
– sequence: 22
  givenname: Luis C.
  orcidid: 0000-0002-7362-0353
  surname: Garcia Peraza Herrera
  fullname: Garcia Peraza Herrera, Luis C.
  organization: King’s College London (KCL), London, United Kingdom
– sequence: 23
  givenname: Ben
  orcidid: 0000-0002-4897-9356
  surname: Glocker
  fullname: Glocker, Ben
  organization: King’s College London (KCL), London, United Kingdom
– sequence: 24
  givenname: Tom
  orcidid: 0000-0003-1794-0456
  surname: Vercauteren
  fullname: Vercauteren, Tom
  organization: King’s College London (KCL), London, United Kingdom
– sequence: 25
  givenname: Lucas
  orcidid: 0000-0002-4694-6120
  surname: Gago
  fullname: Gago, Lucas
  organization: Universitat de Barcelona (UB), Barcelona, Spain
– sequence: 26
  givenname: Justin
  orcidid: 0000-0002-5345-6023
  surname: Englemann
  fullname: Englemann, Justin
  organization: University of Edinburgh, Edinburgh, United Kingdom
– sequence: 27
  givenname: Joy-Marie
  orcidid: 0009-0001-2330-4248
  surname: Kleiss
  fullname: Kleiss, Joy-Marie
  organization: Universitätsklinikum Erlangen, Department of Radiology of the Uniklinikum Erlangen (UKER), Erlangen, Germany
– sequence: 28
  givenname: Anton
  orcidid: 0000-0002-3511-6025
  surname: Aubanell
  fullname: Aubanell, Anton
  organization: Hospital de Sant Pau i la Santa Creu, Diagnostic Imaging Department, Barcelona, Spain
– sequence: 29
  givenname: Andreu
  orcidid: 0000-0001-6973-4246
  surname: Antolin
  fullname: Antolin, Andreu
  organization: Hospital Universitari Vall d’Hebron, Department of Radiology, Institut de Diagnòstic per la Imatge (IDI), Barcelona, Spain
– sequence: 30
  givenname: Javier
  orcidid: 0000-0001-9241-8479
  surname: García-López
  fullname: García-López, Javier
  organization: Sycai Technologies SL, Scientific and Technical Department, Barcelona, Spain
– sequence: 31
  givenname: Miguel A.
  orcidid: 0000-0002-9227-6826
  surname: González Ballester
  fullname: González Ballester, Miguel A.
  organization: BCN Medtech, Universitat Pompeu Fabra, Barcelona, Spain
– sequence: 32
  givenname: Adrián
  orcidid: 0000-0002-5992-1520
  surname: Galdrán
  fullname: Galdrán, Adrián
  organization: TECNALIA, Basque Research and Technology Alliance (BRTA), Bizcaia, Spain
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40934552$$D View this record in MEDLINE/PubMed
https://hal.science/hal-05263956$$DView record in HAL
BookMark eNqNkk9r3DAQxUVJaTZpv0LRMTl4O5It_7mUbpc2KSwUst1chSyPt9ra0layA_vtK-MkhUIhp4GZ3zyG9-aCnFlnkRDKYMmA5R8OS-36Y21cj82SAxdLxhjw7BVZsLKoEhBpdkYWAAySrOTinFyEcACADFJ4Q84zqNJMCL4gfq06U3s1GGepsg3dWY1-UMYOJ9o6T_uxG8ydGtDTe9eNPdJVCBhCj3agxs5z5_fK0i3up-6sdbXe3d2vttdU_1Rdh3aP1GOIcHhLXreqC_jusV6S3dcvP9a3yeb7zbf1apPotORDgoCFqqta87ZgQhWqbFnFWA6FQp43TatygZVW0LSCC6WgFZohE1VRRUfSKr0k17NuPEAevemVP0mnjLxdbeTUA8HztBL5A4vs1cwevfs9Yhhkb4LGrlMW3RhkyrOqzIqyKCP6_hEd62j_s_KTpxEoZ0B7F4LH9hlhIKf45EH-jU9O8ck5vrj6eV7F6MuDQS-DNhgTaYxHPcjGmZeIfPxHRHfGGq26X3jCcHCjt9F3yWTgEuR2-pLpSbgAlhb5ZNyn_wu87IY_WabStQ
Cites_doi 10.1109/TMI.2019.2959609
10.1016/j.inffus.2021.05.008
10.1007/s10994-023-06336-7
10.1038/s41551-022-00988-x
10.1109/TMI.2004.828354
10.1016/j.artmed.2024.102830
10.1109/TPAMI.2021.3100536
10.1016/j.inffus.2024.102226
10.1111/j.1365-2753.2011.01705.x
10.1038/s41592-020-01008-z
10.1016/j.media.2024.103285
10.1016/j.media.2022.102642
10.1155/2023/1883597
10.1109/TMI.2009.2013851
ContentType Journal Article
Copyright 2025 Elsevier Ltd
Elsevier Ltd
Copyright © 2025 Elsevier Ltd. All rights reserved.
Attribution
Copyright_xml – notice: 2025 Elsevier Ltd
– notice: Elsevier Ltd
– notice: Copyright © 2025 Elsevier Ltd. All rights reserved.
– notice: Attribution
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
1XC
VOOES
DOI 10.1016/j.compbiomed.2025.111024
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE
MEDLINE - Academic



Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Computer Science
EISSN 1879-0534
EndPage 111024
ExternalDocumentID oai:HAL:hal-05263956v1
40934552
10_1016_j_compbiomed_2025_111024
S0010482525013769
1_s2_0_S0010482525013769
Genre Journal Article
GroupedDBID ---
--K
--M
--Z
-~X
.1-
.55
.DC
.FO
.GJ
.~1
0R~
1B1
1P~
1RT
1~.
1~5
29F
4.4
457
4G.
53G
5GY
5VS
7-5
71M
77I
7RV
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
8G5
8P~
9JN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYFN
AAYWO
ABBOA
ABFNM
ABJNI
ABMAC
ABMZM
ABOCM
ABUWG
ABWVN
ABXDB
ACDAQ
ACGFS
ACIEU
ACIUM
ACIWK
ACLOT
ACNNM
ACPRK
ACRLP
ACRPL
ACVFH
ACZNC
ADBBV
ADCNI
ADEZE
ADJOM
ADMUD
ADNMO
AEBSH
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFFHD
AFJKZ
AFKRA
AFPUW
AFRAH
AFRHN
AFTJW
AFXIZ
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AHMBA
AHZHX
AIALX
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
AOUOD
APXCP
ARAPS
ASPBG
AVWKF
AXJTR
AZFZN
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
BKEYQ
BKOJK
BLXMC
BNPGV
BPHCQ
BVXVI
CCPQU
CS3
DU5
DWQXO
EBS
EFJIC
EFKBS
EFLBG
EJD
EMOBN
EO8
EO9
EP2
EP3
EX3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
FYUFA
G-2
G-Q
GBLVA
GBOLZ
GNUQQ
GUQSH
HCIFZ
HLZ
HMCUK
HMK
HMO
HVGLF
HZ~
IHE
J1W
K6V
K7-
KOM
LK8
LX9
M1P
M29
M2O
M41
M7P
MO0
N9A
NAPCQ
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
P62
PC.
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
Q38
R2-
ROL
RPZ
RXW
SAE
SBC
SCC
SDF
SDG
SDP
SEL
SES
SEW
SPC
SPCBC
SSH
SSV
SSZ
SV3
T5K
TAE
UAP
UKHRP
WOW
WUQ
X7M
XPP
Z5R
ZGI
~G-
~HD
9DU
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
1XC
VOOES
ID FETCH-LOGICAL-c382t-e0e7ab9bc2f715a7a8f1911607ae26ddfa65e9ca0df525aa0f5c1e15979202393
ISSN 0010-4825
1879-0534
IngestDate Mon Oct 20 06:21:40 EDT 2025
Thu Oct 02 21:31:58 EDT 2025
Sun Oct 05 01:50:25 EDT 2025
Sat Nov 29 06:55:51 EST 2025
Sat Nov 08 18:04:51 EST 2025
Sat Oct 25 09:17:24 EDT 2025
Sat Nov 15 06:41:42 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue Pt B
Keywords Multiple expert annotations
Uncertainty
Multi-class image segmentation
Calibration
Abdominal CT
abdominal CT
Language English
License Copyright © 2025 Elsevier Ltd. All rights reserved.
Attribution: http://creativecommons.org/licenses/by
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c382t-e0e7ab9bc2f715a7a8f1911607ae26ddfa65e9ca0df525aa0f5c1e15979202393
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-4897-9356
0000-0001-7507-5208
0000-0002-2540-850X
0000-0003-3102-1595
0000-0002-5345-6023
0009-0003-6669-5108
0000-0002-4694-6120
0009-0009-2843-4605
0000-0001-8840-3944
0000-0002-3511-6025
0009-0001-2330-4248
0000-0002-4612-6982
0000-0003-1794-0456
0009-0003-2465-5458
0000-0001-6221-5443
0000-0002-3499-8062
0009-0005-2309-5238
0000-0001-6560-1518
0000-0002-1207-5726
0000-0001-6004-7896
0000-0002-7362-0353
0009-0004-8485-7702
0009-0007-9566-4131
0000-0003-4270-4009
0000-0003-0047-5172
0000-0002-9227-6826
0000-0003-4444-5776
0000-0001-6973-4246
0000-0001-9241-8479
0000-0002-9456-1612
0000-0002-4788-6668
0000-0002-5992-1520
OpenAccessLink https://hal.science/hal-05263956
PMID 40934552
PQID 3249847878
PQPubID 23479
PageCount 1
ParticipantIDs hal_primary_oai_HAL_hal_05263956v1
proquest_miscellaneous_3249847878
pubmed_primary_40934552
crossref_primary_10_1016_j_compbiomed_2025_111024
elsevier_sciencedirect_doi_10_1016_j_compbiomed_2025_111024
elsevier_clinicalkeyesjournals_1_s2_0_S0010482525013769
elsevier_clinicalkey_doi_10_1016_j_compbiomed_2025_111024
PublicationCentury 2000
PublicationDate 2025-10-01
PublicationDateYYYYMMDD 2025-10-01
PublicationDate_xml – month: 10
  year: 2025
  text: 2025-10-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Computers in biology and medicine
PublicationTitleAlternate Comput Biol Med
PublicationYear 2025
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Tuijn, Janssens, Robben, van den Bergh (b6) 2012; 18
Islam, Glocker (b3) 2021
Abdar, Pourpanah, Hussain, Rezazadegan, Liu, Ghavamzadeh, Fieguth, Cao, Khosravi, Acharya, Makarenkov, Nahavandi (b9) 2021; 76
Chen, Ding, Zhu, Xu, Ji, Wang, Zang, Li (b31) 2024
C CÇiçek, Abdulkadir, Lienkamp, Brox, Ronneberger (b33) 2016
Barfoot, Garcia Peraza Herrera, Glocker, Vercauteren (b41) 2024
Mehta, Rastegari (b44) 2022
Zhang, Zheng, Shi (b2) 2023; 2023
Silva Filho, Song, Perello-Nieto, Santos-Rodriguez, Kull, Flach (b15) 2023; 112
Zhou, Siddiquee, Tajbakhsh, Liang (b42) 2020; 39
Qu, Zhang, Qiao, Liu, Tang, Yuille, Zhou (b37) 2023
Loshchilov, Hutter (b46) 2019
Warfield, Zou, Wells (b23) 2004; 23
Chua, Kim, Choi, Lee, Deshpande, Schwab, Lev, Gonzalez, Gee, Do (b14) 2023; 7
Wasserthal, Breit, Meyer, Pradella, Hinck, Sauter, Heye, Boll, Cyriac, Yang, Bach, Segeroth (b18) 2023
W. Li, A. Yuille, Z. Zhou, How Well Do Supervised 3D Models Transfer to Medical Imaging Tasks?, in: The Twelfth International Conference on Learning Representations, 2024.
Franchi, Laurent, Legu’ery, Bursuc, Pilzer, Yao (b29) 2023
Li, Navarro, Ezhov, Bayat, Das, Kofler, Shit, Waldmannstetter, Paetzold, Hu, Wiestler, Zimmer, Amiranashvili, Prabhakar, Berger, Weidner, AlonsoBasant, Rashid, Baid, Adel, Ali, Baheti, Bai, Bhatt, Cetindag, Chen, Cheng, Dutand, Dular, Elattar, Feng, Gao, Huisman, Hu, Innani, Jiat, Karimi, Kuijf, Kwak, Le, Lia, Lin, Liu, Ma, Ma, Ma, Oksuz, Holland, Oliveira, Pal, Pei, Qiao, Saha, Selvan, Shen, Silva, Spiclin, Talbar, Wang, Wang, Wang, Wang, Xia, Xu, Yan, Yergin, Yu, Zeng, Zhang, Zhao, Zheng, Zukovec, Do, Becker, Simpson, Konukoglu, Jakab, Bakas, Joskowicz, Menze (b25) 2024
Guo, Pleiss, Sun, Weinberger (b12) 2017; vol. 70
Ji, Bai, Yang, Ge, Zhu, Zhang, Li, Zhang, Ma, Wan, Luo (b27) 2022
Jensen, Jørgensen, Jalaboi, Hansen, Olsen (b4) 2019
Tang, Yang, Li, Roth, Landman, Xu, Nath, Hatamizadeh (b34) 2022
Bernhardt, Ribeiro, Glocker (b11) 2022
Brachmann (b21) 2021
Ma, Zhang, Gu, Zhu, Ge, Zhang, An, Wang, Wang, Liu, Cao, Zhang, Liu, Wang, Li, He, Yang (b28) 2022; 44
Tan, Le (b43) 2019
Riera-Marín, García López, Kleiss, S. O K, Galdrán, May, González-Ballester, Rodráguez Comas, Schmidt, Hessman, Aubanell, Antolín (b49) 2024
SYCAI Technologies (b17) 2024
Huang, Miron, Hone, Li (b24) 2024
Smith (b47) 2018
DeVries, Taylor (b8) 2018
Qayyum, Razzak, Mazher, Lu, Niederer (b32) 2024; 106
Perez, Wang (b48) 2017
Zhou (b36) 2023
Bassi, Li, Tang, Isensee, Wang, Chen, Chou, Kirchhoff, Rokuss, Huang, Ye, He, Wald, Ulrich, Baumgartner, Roy, Maier-Hein, Jaeger, Ye, Xie, Zhang, Chen, Xia, Xing, Zhu, Sadegheih, Bozorgpour, Kumari, Azad, Merhof, Shi, Ma, Du, Bai, Huang, Zhao, Wang, Li, Gu, Dong, Yang, Mazurowski, Gupta, Wu, Zhuang, Chen, Roth, Xu, Blaschko, Decherchi, Cavalli, Yuille, Zhou (b40) 2024
Lin, Goyal, Girshick, He, Dollár (b45) 2017
Li, Qu, Chen, Bassi, Shi, Lai, Yu, Xue, Chen, Lin, Tang, Cao, Han, Zhang, Liu, Zhang, Ma, Wang, Zhang, Yuille, Zhou (b38) 2024; 97
Luo, Liao, Xiao, Chen, Song, Zhang, Li, Metaxas, Wang, Zhang (b26) 2022; 82
Heimann, van Ginneken, Styner, Arzhaeva, Aurich, Bauer, Beck, Becker, Beichel, Bekes, Bello, Binnig, Bischof, Bornik, Cashman, Chi, Cordova, Dawant, Fidrich, Furst, Furukawa, Grenacher, Hornegger, Kainmüller, Kitney, Kobatake, Lamecker, Lange, Lee, Lennon, Li, Li, Meinzer, Nemeth, Raicu, Rau, van Rikxoort, Rousson, Rusko, Saddi, Schmidt, Seghers, Shimizu, Slagmolen, Sorantin, Soza, Susomboon, Waite, Wimmer, Wolf (b22) 2009; 28
J. Nixon, M.W. Dusenberry, L. Zhang, G. Jerfel, D. Tran, Measuring Calibration in Deep Learning, in: Proceedings of the IEEE/CVF CVPR Workshops, 2019.
Isensee, Jaeger, Kohl, Petersen, Maier-Hein (b19) 2021; 18
Riera-Marín, López, Kleiss, S. O. K, Galdrán, May, González-Ballester, Rodríguez-Comas, Schmidt, Hessman, Aubanell, Antolín (b16) 2024
Liu, Zhang, Chen, Xiao, Lu, Landman, Yuan, Yuille, Tang, Zhou (b35) 2023
Ng, Guo, Biswas, Petersen, Piechnik, Neubauer, Wright (b7) 2022
Jungo, Meier, Ermis, Blatti-Moreno, Herrmann, Wiest, Reyes (b5) 2018
Westenberger (b20) 2021
Sudre, Anson, Ingala, Lane, Jimenez, Haider, Varsavsky, Tanno, Smith, Ourselin, Jäger, Cardoso (b1) 2019
Alkin, Beck, Pöppel, Hochreiter, Brandstetter (b30) 2024
Lambert, Forbes, Doyle, Dehaene, Dojat (b10) 2024; 150
Li (10.1016/j.compbiomed.2025.111024_b38) 2024; 97
10.1016/j.compbiomed.2025.111024_b13
Lin (10.1016/j.compbiomed.2025.111024_b45) 2017
Bernhardt (10.1016/j.compbiomed.2025.111024_b11) 2022
Ng (10.1016/j.compbiomed.2025.111024_b7) 2022
Zhang (10.1016/j.compbiomed.2025.111024_b2) 2023; 2023
Guo (10.1016/j.compbiomed.2025.111024_b12) 2017; vol. 70
Qayyum (10.1016/j.compbiomed.2025.111024_b32) 2024; 106
Zhou (10.1016/j.compbiomed.2025.111024_b36) 2023
DeVries (10.1016/j.compbiomed.2025.111024_b8) 2018
Abdar (10.1016/j.compbiomed.2025.111024_b9) 2021; 76
Ma (10.1016/j.compbiomed.2025.111024_b28) 2022; 44
Lambert (10.1016/j.compbiomed.2025.111024_b10) 2024; 150
Tuijn (10.1016/j.compbiomed.2025.111024_b6) 2012; 18
Huang (10.1016/j.compbiomed.2025.111024_b24) 2024
Franchi (10.1016/j.compbiomed.2025.111024_b29) 2023
Westenberger (10.1016/j.compbiomed.2025.111024_b20) 2021
Jungo (10.1016/j.compbiomed.2025.111024_b5) 2018
Ji (10.1016/j.compbiomed.2025.111024_b27) 2022
Alkin (10.1016/j.compbiomed.2025.111024_b30) 2024
Luo (10.1016/j.compbiomed.2025.111024_b26) 2022; 82
Riera-Marín (10.1016/j.compbiomed.2025.111024_b49) 2024
Smith (10.1016/j.compbiomed.2025.111024_b47) 2018
Islam (10.1016/j.compbiomed.2025.111024_b3) 2021
Heimann (10.1016/j.compbiomed.2025.111024_b22) 2009; 28
Jensen (10.1016/j.compbiomed.2025.111024_b4) 2019
Isensee (10.1016/j.compbiomed.2025.111024_b19) 2021; 18
Qu (10.1016/j.compbiomed.2025.111024_b37) 2023
C CÇiçek (10.1016/j.compbiomed.2025.111024_b33) 2016
Liu (10.1016/j.compbiomed.2025.111024_b35) 2023
Brachmann (10.1016/j.compbiomed.2025.111024_b21) 2021
Li (10.1016/j.compbiomed.2025.111024_b25) 2024
10.1016/j.compbiomed.2025.111024_b39
Zhou (10.1016/j.compbiomed.2025.111024_b42) 2020; 39
Tan (10.1016/j.compbiomed.2025.111024_b43) 2019
Chua (10.1016/j.compbiomed.2025.111024_b14) 2023; 7
SYCAI Technologies (10.1016/j.compbiomed.2025.111024_b17) 2024
Barfoot (10.1016/j.compbiomed.2025.111024_b41) 2024
Sudre (10.1016/j.compbiomed.2025.111024_b1) 2019
Chen (10.1016/j.compbiomed.2025.111024_b31) 2024
Bassi (10.1016/j.compbiomed.2025.111024_b40) 2024
Loshchilov (10.1016/j.compbiomed.2025.111024_b46) 2019
Mehta (10.1016/j.compbiomed.2025.111024_b44) 2022
Riera-Marín (10.1016/j.compbiomed.2025.111024_b16) 2024
Warfield (10.1016/j.compbiomed.2025.111024_b23) 2004; 23
Silva Filho (10.1016/j.compbiomed.2025.111024_b15) 2023; 112
Tang (10.1016/j.compbiomed.2025.111024_b34) 2022
Wasserthal (10.1016/j.compbiomed.2025.111024_b18) 2023
Perez (10.1016/j.compbiomed.2025.111024_b48) 2017
References_xml – year: 2021
  ident: b21
  article-title: Evaluation einer semi-automatischen Segmentierungsmethode für die Volumetrie des renalen Kortex, der Medulla und des gesamten Nierenparenchyms in nativen T1-gewichteten MR-Bildern
– year: 2024
  ident: b16
  article-title: CURVAS challenge dataset: Calibration and uncertainty for multirater volume assessment in multiorgan segmentation
  publication-title: Zenodo
– year: 2024
  ident: b24
  article-title: Segmenting medical images: From unet to Res-UNet and nnUNet
– volume: 97
  year: 2024
  ident: b38
  article-title: Abdomenatlas: a large-scale, detailed-annotated, and multi-center dataset for efficient transfer learning and open algorithmic benchmarking
  publication-title: Med. Image Anal.
– year: 2024
  ident: b31
  article-title: xLSTM-UNet can be an effective 2D and 3D medical image segmentation backbone with vision-LSTM (ViL) better than its mamba counterpart
– year: 2024
  ident: b49
  article-title: CURVAS: Calibration and uncertainty for multirater volume assessment in multiorgan segmentation
  publication-title: Zenodo
– start-page: 21095
  year: 2023
  end-page: 21107
  ident: b35
  article-title: CLIP-driven universal model for organ segmentation and tumor detection
  publication-title: 2023 IEEE/CVF International Conference on Computer Vision
– volume: vol. 70
  start-page: 1321
  year: 2017
  end-page: 1330
  ident: b12
  article-title: On calibration of modern neural networks
  publication-title: Proceedings of the 34th International Conference on Machine Learning
– start-page: 677
  year: 2021
  end-page: 688
  ident: b3
  article-title: Spatially varying label smoothing: Capturing uncertainty from expert annotations
  publication-title: Proceedings of IPMI 2021
– year: 2022
  ident: b11
  article-title: Failure detection in medical image classification: A reality check and benchmarking testbed
  publication-title: Trans. Mach. Learn. Res.
– year: 2024
  ident: b40
  article-title: Touchstone benchmark: Are we on the right way for evaluating AI algorithms for medical segmentation?
  publication-title: Conference on Neural Information Processing Systems
– start-page: 540
  year: 2019
  end-page: 548
  ident: b4
  article-title: Improving uncertainty estimation in convolutional neural networks using inter-rater agreement
  publication-title: Proceedings of MICCAI 2019
– volume: 150
  year: 2024
  ident: b10
  article-title: Trustworthy clinical AI solutions: A unified review of uncertainty quantification in deep learning models for medical image analysis
  publication-title: Artif. Intell. Med.
– start-page: 682
  year: 2018
  end-page: 690
  ident: b5
  article-title: On the effect of inter-observer variability for a reliable estimation of uncertainty of medical image segmentation
  publication-title: Proceedings of MICCAI 2018
– year: 2024
  ident: b17
  article-title: CURVAS challenge repository, GitHub repository
– volume: 23
  start-page: 903
  year: 2004
  end-page: 921
  ident: b23
  article-title: Simultaneous truth and performance level estimation (STAPLE): an algorithm for the validation of image segmentation
  publication-title: IEEE Trans. Med. Imaging
– year: 2018
  ident: b47
  article-title: A disciplined approach to neural network hyper-parameters: Part 1 – learning rate, batch size, momentum, and weight decay
– start-page: 20698
  year: 2022
  end-page: 20708
  ident: b34
  article-title: Self-supervised pre-training of swin transformers for 3D medical image analysis
  publication-title: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition
– year: 2023
  ident: b36
  article-title: AbdomenAtlas, GitHub repository
– reference: J. Nixon, M.W. Dusenberry, L. Zhang, G. Jerfel, D. Tran, Measuring Calibration in Deep Learning, in: Proceedings of the IEEE/CVF CVPR Workshops, 2019.
– volume: 18
  start-page: 203
  year: 2021
  end-page: 211
  ident: b19
  article-title: Nnu-net: A self-configuring method for deep learning-based biomedical image segmentation
  publication-title: Nature Methods
– year: 2022
  ident: b27
  article-title: AMOS: A large-scale abdominal multi-organ benchmark for versatile medical image segmentation
– year: 2023
  ident: b29
  article-title: Make me a BNN: A simple strategy for estimating Bayesian uncertainty from pre-trained models
– start-page: 6105
  year: 2019
  end-page: 6114
  ident: b43
  article-title: EfficientNet: Rethinking model scaling for convolutional neural networks
  publication-title: Proceedings of the 36th International Conference on Machine Learning
– year: 2024
  ident: b25
  article-title: QUBIQ: Uncertainty quantification for biomedical image segmentation challenge
– volume: 2023
  year: 2023
  ident: b2
  article-title: A soft label method for medical image segmentation with multirater annotations
  publication-title: Comput. Intell. Neurosci.
– volume: 82
  year: 2022
  ident: b26
  article-title: WORD: A large scale dataset, benchmark and clinical applicable study for abdominal organ segmentation from CT image
  publication-title: Med. Image Anal.
– volume: 44
  start-page: 6695
  year: 2022
  end-page: 6714
  ident: b28
  article-title: AbdomenCT-1K: Is abdominal organ segmentation a solved problem?
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 39
  start-page: 1856
  year: 2020
  end-page: 1867
  ident: b42
  article-title: UNet++: Redesigning skip connections to exploit multiscale features in image segmentation
  publication-title: IEEE Trans. Med. Imaging
– year: 2021
  ident: b20
  article-title: Automatische Gewebesegmentierung der Nieren und des Pankreas im Ganzkörper-MRT mittels Deep Learning
– year: 2018
  ident: b8
  article-title: Leveraging uncertainty estimates for predicting segmentation quality
– reference: W. Li, A. Yuille, Z. Zhou, How Well Do Supervised 3D Models Transfer to Medical Imaging Tasks?, in: The Twelfth International Conference on Learning Representations, 2024.
– year: 2022
  ident: b7
  article-title: Estimating uncertainty in neural networks for cardiac MRI segmentation: A benchmark study
  publication-title: IEEE Trans. Biomed. Eng.
– start-page: 2999
  year: 2017
  end-page: 3007
  ident: b45
  article-title: Focal loss for dense object detection
  publication-title: 2017 IEEE International Conference on Computer Vision
– year: 2023
  ident: b37
  article-title: AbdomenAtlas-8K: Annotating 8 000CT volumes for multi-organ segmentation in three weeks
– year: 2023
  ident: b18
  article-title: TotalSegmentator: Robust segmentation of 104 anatomic structures in CT images
  publication-title: Radiol.: Artif. Intell.
– volume: 76
  start-page: 243
  year: 2021
  end-page: 297
  ident: b9
  article-title: A review of uncertainty quantification in deep learning: Techniques, applications and challenges
  publication-title: Inf. Fusion
– year: 2017
  ident: b48
  article-title: The effectiveness of data augmentation in image classification using deep learning
– start-page: 424
  year: 2016
  end-page: 432
  ident: b33
  article-title: 3D U-Net: Learning Dense Volumetric Segmentation from Sparse Annotation
– start-page: 665
  year: 2019
  end-page: 673
  ident: b1
  article-title: Let’s agree to disagree: Learning highly debatable multirater labelling
  publication-title: Proceedings of MICCAI 2019
– volume: 7
  start-page: 711
  year: 2023
  end-page: 718
  ident: b14
  article-title: Tackling prediction uncertainty in machine learning for healthcare
  publication-title: Nat. Biomed. Eng.
– year: 2024
  ident: b30
  article-title: Vision-LSTM: xLSTM as generic vision backbone
– start-page: 139
  year: 2024
  end-page: 149
  ident: b41
  article-title: Average Calibration Error: A Differentiable Loss for Improved Reliability in Image Segmentation
– year: 2022
  ident: b44
  article-title: MobileViT: Light-weight, general-purpose, and mobile-friendly vision transformer
– volume: 18
  start-page: 887
  year: 2012
  end-page: 895
  ident: b6
  article-title: Reducing interrater variability and improving health care: a meta-analytical review
  publication-title: J. Eval. Clin. Pract.
– year: 2019
  ident: b46
  article-title: Decoupled weight decay regularization
– volume: 112
  start-page: 3211
  year: 2023
  end-page: 3260
  ident: b15
  article-title: Classifier calibration: a survey on how to assess and improve predicted class probabilities
  publication-title: Mach. Learn.
– volume: 106
  year: 2024
  ident: b32
  article-title: Unsupervised unpaired multiple fusion adaptation aided with self-attention generative adversarial network for scar tissues segmentation framework
  publication-title: Inf. Fusion
– volume: 28
  start-page: 1251
  year: 2009
  end-page: 1265
  ident: b22
  article-title: Comparison and evaluation of methods for liver segmentation from CT datasets
  publication-title: IEEE Trans. Med. Imaging
– year: 2018
  ident: 10.1016/j.compbiomed.2025.111024_b47
– start-page: 139
  year: 2024
  ident: 10.1016/j.compbiomed.2025.111024_b41
– year: 2017
  ident: 10.1016/j.compbiomed.2025.111024_b48
– volume: 39
  start-page: 1856
  issue: 6
  year: 2020
  ident: 10.1016/j.compbiomed.2025.111024_b42
  article-title: UNet++: Redesigning skip connections to exploit multiscale features in image segmentation
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2019.2959609
– year: 2021
  ident: 10.1016/j.compbiomed.2025.111024_b20
– year: 2022
  ident: 10.1016/j.compbiomed.2025.111024_b27
– start-page: 682
  year: 2018
  ident: 10.1016/j.compbiomed.2025.111024_b5
  article-title: On the effect of inter-observer variability for a reliable estimation of uncertainty of medical image segmentation
– year: 2024
  ident: 10.1016/j.compbiomed.2025.111024_b30
– volume: 76
  start-page: 243
  year: 2021
  ident: 10.1016/j.compbiomed.2025.111024_b9
  article-title: A review of uncertainty quantification in deep learning: Techniques, applications and challenges
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2021.05.008
– ident: 10.1016/j.compbiomed.2025.111024_b13
– year: 2024
  ident: 10.1016/j.compbiomed.2025.111024_b49
  article-title: CURVAS: Calibration and uncertainty for multirater volume assessment in multiorgan segmentation
  publication-title: Zenodo
– volume: 112
  start-page: 3211
  issue: 9
  year: 2023
  ident: 10.1016/j.compbiomed.2025.111024_b15
  article-title: Classifier calibration: a survey on how to assess and improve predicted class probabilities
  publication-title: Mach. Learn.
  doi: 10.1007/s10994-023-06336-7
– year: 2024
  ident: 10.1016/j.compbiomed.2025.111024_b17
– year: 2021
  ident: 10.1016/j.compbiomed.2025.111024_b21
– year: 2018
  ident: 10.1016/j.compbiomed.2025.111024_b8
– start-page: 6105
  year: 2019
  ident: 10.1016/j.compbiomed.2025.111024_b43
  article-title: EfficientNet: Rethinking model scaling for convolutional neural networks
– start-page: 677
  year: 2021
  ident: 10.1016/j.compbiomed.2025.111024_b3
  article-title: Spatially varying label smoothing: Capturing uncertainty from expert annotations
– volume: 7
  start-page: 711
  issue: 6
  year: 2023
  ident: 10.1016/j.compbiomed.2025.111024_b14
  article-title: Tackling prediction uncertainty in machine learning for healthcare
  publication-title: Nat. Biomed. Eng.
  doi: 10.1038/s41551-022-00988-x
– start-page: 665
  year: 2019
  ident: 10.1016/j.compbiomed.2025.111024_b1
  article-title: Let’s agree to disagree: Learning highly debatable multirater labelling
– year: 2022
  ident: 10.1016/j.compbiomed.2025.111024_b11
  article-title: Failure detection in medical image classification: A reality check and benchmarking testbed
  publication-title: Trans. Mach. Learn. Res.
– start-page: 20698
  year: 2022
  ident: 10.1016/j.compbiomed.2025.111024_b34
  article-title: Self-supervised pre-training of swin transformers for 3D medical image analysis
– year: 2023
  ident: 10.1016/j.compbiomed.2025.111024_b36
– year: 2022
  ident: 10.1016/j.compbiomed.2025.111024_b44
– volume: 23
  start-page: 903
  issue: 7
  year: 2004
  ident: 10.1016/j.compbiomed.2025.111024_b23
  article-title: Simultaneous truth and performance level estimation (STAPLE): an algorithm for the validation of image segmentation
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2004.828354
– volume: 150
  year: 2024
  ident: 10.1016/j.compbiomed.2025.111024_b10
  article-title: Trustworthy clinical AI solutions: A unified review of uncertainty quantification in deep learning models for medical image analysis
  publication-title: Artif. Intell. Med.
  doi: 10.1016/j.artmed.2024.102830
– year: 2024
  ident: 10.1016/j.compbiomed.2025.111024_b40
  article-title: Touchstone benchmark: Are we on the right way for evaluating AI algorithms for medical segmentation?
– year: 2024
  ident: 10.1016/j.compbiomed.2025.111024_b24
– year: 2019
  ident: 10.1016/j.compbiomed.2025.111024_b46
– start-page: 21095
  year: 2023
  ident: 10.1016/j.compbiomed.2025.111024_b35
  article-title: CLIP-driven universal model for organ segmentation and tumor detection
– volume: 44
  start-page: 6695
  issue: 10
  year: 2022
  ident: 10.1016/j.compbiomed.2025.111024_b28
  article-title: AbdomenCT-1K: Is abdominal organ segmentation a solved problem?
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2021.3100536
– volume: vol. 70
  start-page: 1321
  year: 2017
  ident: 10.1016/j.compbiomed.2025.111024_b12
  article-title: On calibration of modern neural networks
– year: 2023
  ident: 10.1016/j.compbiomed.2025.111024_b29
– volume: 106
  year: 2024
  ident: 10.1016/j.compbiomed.2025.111024_b32
  article-title: Unsupervised unpaired multiple fusion adaptation aided with self-attention generative adversarial network for scar tissues segmentation framework
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2024.102226
– year: 2024
  ident: 10.1016/j.compbiomed.2025.111024_b16
  article-title: CURVAS challenge dataset: Calibration and uncertainty for multirater volume assessment in multiorgan segmentation
  publication-title: Zenodo
– start-page: 2999
  year: 2017
  ident: 10.1016/j.compbiomed.2025.111024_b45
  article-title: Focal loss for dense object detection
– volume: 18
  start-page: 887
  issue: 4
  year: 2012
  ident: 10.1016/j.compbiomed.2025.111024_b6
  article-title: Reducing interrater variability and improving health care: a meta-analytical review
  publication-title: J. Eval. Clin. Pract.
  doi: 10.1111/j.1365-2753.2011.01705.x
– volume: 18
  start-page: 203
  year: 2021
  ident: 10.1016/j.compbiomed.2025.111024_b19
  article-title: Nnu-net: A self-configuring method for deep learning-based biomedical image segmentation
  publication-title: Nature Methods
  doi: 10.1038/s41592-020-01008-z
– volume: 97
  year: 2024
  ident: 10.1016/j.compbiomed.2025.111024_b38
  article-title: Abdomenatlas: a large-scale, detailed-annotated, and multi-center dataset for efficient transfer learning and open algorithmic benchmarking
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2024.103285
– year: 2023
  ident: 10.1016/j.compbiomed.2025.111024_b37
– volume: 82
  year: 2022
  ident: 10.1016/j.compbiomed.2025.111024_b26
  article-title: WORD: A large scale dataset, benchmark and clinical applicable study for abdominal organ segmentation from CT image
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2022.102642
– volume: 2023
  year: 2023
  ident: 10.1016/j.compbiomed.2025.111024_b2
  article-title: A soft label method for medical image segmentation with multirater annotations
  publication-title: Comput. Intell. Neurosci.
  doi: 10.1155/2023/1883597
– ident: 10.1016/j.compbiomed.2025.111024_b39
– start-page: 424
  year: 2016
  ident: 10.1016/j.compbiomed.2025.111024_b33
– year: 2023
  ident: 10.1016/j.compbiomed.2025.111024_b18
  article-title: TotalSegmentator: Robust segmentation of 104 anatomic structures in CT images
  publication-title: Radiol.: Artif. Intell.
– year: 2024
  ident: 10.1016/j.compbiomed.2025.111024_b25
– year: 2024
  ident: 10.1016/j.compbiomed.2025.111024_b31
– year: 2022
  ident: 10.1016/j.compbiomed.2025.111024_b7
  article-title: Estimating uncertainty in neural networks for cardiac MRI segmentation: A benchmark study
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 28
  start-page: 1251
  issue: 8
  year: 2009
  ident: 10.1016/j.compbiomed.2025.111024_b22
  article-title: Comparison and evaluation of methods for liver segmentation from CT datasets
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2009.2013851
– start-page: 540
  year: 2019
  ident: 10.1016/j.compbiomed.2025.111024_b4
  article-title: Improving uncertainty estimation in convolutional neural networks using inter-rater agreement
SSID ssj0004030
Score 2.422448
Snippet Deep learning (DL) has become the dominant approach for medical image segmentation, yet ensuring the reliability and clinical applicability of these models...
AbstractDeep learning (DL) has become the dominant approach for medical image segmentation, yet ensuring the reliability and clinical applicability of these...
SourceID hal
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 111024
SubjectTerms Abdominal CT
Artificial Intelligence
Bioengineering
Calibration
Computer Science
Deep Learning
Engineering Sciences
Humans
Image Processing, Computer-Assisted - methods
Imaging
Internal Medicine
Life Sciences
Medical Imaging
Multi-class image segmentation
Multiple expert annotations
Other
Signal and Image processing
Uncertainty
Title Calibration and Uncertainty for multiRater Volume Assessment in multiorgan Segmentation (CURVAS) challenge results
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0010482525013769
https://www.clinicalkey.es/playcontent/1-s2.0-S0010482525013769
https://dx.doi.org/10.1016/j.compbiomed.2025.111024
https://www.ncbi.nlm.nih.gov/pubmed/40934552
https://www.proquest.com/docview/3249847878
https://hal.science/hal-05263956
Volume 197
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: ScienceDirect
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLa6DSFeEHfKZTKIB9CUyUnrOBZPZQwNWAdqt6lvlpM4W8fIpqadCv-R_8TxJU4ZmxhIvESRm-M0Pp_P8eU7xwi96KaZpAXlQUZYHoD1I9ClaBR085zEnBcsZiZQeJvt7CSjEf_cav2oY2HOjllZJvM5P_2vqoYyULYOnf0LdftKoQDuQelwBbXD9UqK19FWqdOrXhXfA7WabX_HzTQUwoHUyRH3jWla6_nsnHr1w_xuDnsCQ3Lw1cUmlWa7d2-w3xvqhYSsPoNlDabrIFAtDnLrkyIM1XYxy9P5jfwB-GQZ9KXdrn9racXQRtO5OvbMj0_rH40FG46_HHofMjjJndDBTH0PNjTLyQBSF77pHY_9k335zcYkTaeHY1lpWlvheoRb7Iiop815Aw4F3cTGSnsDbhm-zgSD8SY2LPs372AXKo60ck9tdoN1_ZL1RuTXhNznHKWnL9bMuCPR1CR0TcLWtIRWIkY5-ImV3vvN0YcmUJd0bEyU-wpHLbOEw4v_1WXjpaVDTdy9bFZkRke7t9BNN63BPQvH26ilyjvoet_p-y6aLKASAxTwAioxoBI3qMQWlbhBJR6XuEElXkQlfmkx-Qp7RGKHyHto793m7sZW4I77CLJOEk0DRRSTKU-zqGAhlUwmRQiuOCZMqijO80LGVPFMkrygEZWSFDQLFQzHGY9MJr_7aLk8KdVDhHnKUgJmJk81cZZzSaRiMU9zBlIkJ20U1o0qTm1WF_EnpbYRr1tf1FHL4GcFgOsKsuwiWVU5u1GJUFSRIGJo8mUBMmBmEoLv52302ku6MbEd617xvc-h8f0n6lTyW71toct0nqcOp_FZ2EbPahQJ8C16w1CW6mRWCZhs8URn70ra6IGFl6-rS3inS2n06B-a8jG60XTuJ2h5Opmpp-hadjYdV5NVtMRGyarrOj8Bmvb-0A
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Calibration+and+Uncertainty+for+multiRater+Volume+Assessment+in+multiorgan+Segmentation+%28CURVAS%29+challenge+results&rft.jtitle=Computers+in+biology+and+medicine&rft.au=Riera-Mar%C3%ADn%2C+Meritxell&rft.au=O.K.%2C+Sikha&rft.au=Rodr%C3%ADguez-Comas%2C+J%C3%BAlia&rft.au=May%2C+Matthias+Stefan&rft.date=2025-10-01&rft.issn=0010-4825&rft.volume=197&rft.spage=111024&rft_id=info:doi/10.1016%2Fj.compbiomed.2025.111024&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_compbiomed_2025_111024
thumbnail_m http://cvtisr.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F00104825%2FS0010482525X00160%2Fcov150h.gif