Sequential Stub Matching for Asymptotically Uniform Generation of Directed Graphs with a Given Degree Sequence

We discuss sequential stub matching for directed graphs and show that this process can be used to sample simple digraphs with asymptotically equal probability. The process starts with an empty edge set and repeatedly adds edges to it with a certain state-dependent bias until the desired degree seque...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Annals of combinatorics Jg. 29; H. 2; S. 227 - 272
Hauptverfasser: van Ieperen, Femke, Kryven, Ivan
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Switzerland Springer Nature B.V 01.06.2025
Springer International Publishing
Schlagworte:
ISSN:0218-0006, 0219-3094
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract We discuss sequential stub matching for directed graphs and show that this process can be used to sample simple digraphs with asymptotically equal probability. The process starts with an empty edge set and repeatedly adds edges to it with a certain state-dependent bias until the desired degree sequence is fulfilled, whilst avoiding placing a double edge or self-loop. We show that uniform sampling is achieved in the sparse regime when the maximum degree $$d_\text {max}$$ d max is asymptotically dominated by $$m^{1/4}$$ m 1 / 4 , where m is the number of edges. The proof is based on deriving various combinatorial estimates related to the number of digraphs with a given degree sequence and controlling concentration of these estimates in large digraphs. This suggests that sequential stub matching can be viewed as a practical algorithm for almost uniform sampling of digraphs. We show that this algorithm can be implemented to feature a linear expected runtime O ( m ).
AbstractList We discuss sequential stub matching for directed graphs and show that this process can be used to sample simple digraphs with asymptotically equal probability. The process starts with an empty edge set and repeatedly adds edges to it with a certain state-dependent bias until the desired degree sequence is fulfilled, whilst avoiding placing a double edge or self-loop. We show that uniform sampling is achieved in the sparse regime when the maximum degree is asymptotically dominated by , where is the number of edges. The proof is based on deriving various combinatorial estimates related to the number of digraphs with a given degree sequence and controlling concentration of these estimates in large digraphs. This suggests that sequential stub matching can be viewed as a practical algorithm for almost uniform sampling of digraphs. We show that this algorithm can be implemented to feature a linear expected runtime ( ).
We discuss sequential stub matching for directed graphs and show that this process can be used to sample simple digraphs with asymptotically equal probability. The process starts with an empty edge set and repeatedly adds edges to it with a certain state-dependent bias until the desired degree sequence is fulfilled, whilst avoiding placing a double edge or self-loop. We show that uniform sampling is achieved in the sparse regime when the maximum degree $$d_\text {max}$$ dmax is asymptotically dominated by $$m^{1/4}$$ m1/4, where m is the number of edges. The proof is based on deriving various combinatorial estimates related to the number of digraphs with a given degree sequence and controlling concentration of these estimates in large digraphs. This suggests that sequential stub matching can be viewed as a practical algorithm for almost uniform sampling of digraphs. We show that this algorithm can be implemented to feature a linear expected runtime O(m).
We discuss sequential stub matching for directed graphs and show that this process can be used to sample simple digraphs with asymptotically equal probability. The process starts with an empty edge set and repeatedly adds edges to it with a certain state-dependent bias until the desired degree sequence is fulfilled, whilst avoiding placing a double edge or self-loop. We show that uniform sampling is achieved in the sparse regime when the maximum degree $$d_\text {max}$$ d max is asymptotically dominated by $$m^{1/4}$$ m 1 / 4 , where m is the number of edges. The proof is based on deriving various combinatorial estimates related to the number of digraphs with a given degree sequence and controlling concentration of these estimates in large digraphs. This suggests that sequential stub matching can be viewed as a practical algorithm for almost uniform sampling of digraphs. We show that this algorithm can be implemented to feature a linear expected runtime O ( m ).
We discuss sequential stub matching for directed graphs and show that this process can be used to sample simple digraphs with asymptotically equal probability. The process starts with an empty edge set and repeatedly adds edges to it with a certain state-dependent bias until the desired degree sequence is fulfilled, whilst avoiding placing a double edge or self-loop. We show that uniform sampling is achieved in the sparse regime when the maximum degree dmax is asymptotically dominated by m1/4, where m is the number of edges. The proof is based on deriving various combinatorial estimates related to the number of digraphs with a given degree sequence and controlling concentration of these estimates in large digraphs. This suggests that sequential stub matching can be viewed as a practical algorithm for almost uniform sampling of digraphs. We show that this algorithm can be implemented to feature a linear expected runtime O(m).
We discuss sequential stub matching for directed graphs and show that this process can be used to sample simple digraphs with asymptotically equal probability. The process starts with an empty edge set and repeatedly adds edges to it with a certain state-dependent bias until the desired degree sequence is fulfilled, whilst avoiding placing a double edge or self-loop. We show that uniform sampling is achieved in the sparse regime when the maximum degree d max is asymptotically dominated by m 1 / 4 , where m is the number of edges. The proof is based on deriving various combinatorial estimates related to the number of digraphs with a given degree sequence and controlling concentration of these estimates in large digraphs. This suggests that sequential stub matching can be viewed as a practical algorithm for almost uniform sampling of digraphs. We show that this algorithm can be implemented to feature a linear expected runtime O(m).We discuss sequential stub matching for directed graphs and show that this process can be used to sample simple digraphs with asymptotically equal probability. The process starts with an empty edge set and repeatedly adds edges to it with a certain state-dependent bias until the desired degree sequence is fulfilled, whilst avoiding placing a double edge or self-loop. We show that uniform sampling is achieved in the sparse regime when the maximum degree d max is asymptotically dominated by m 1 / 4 , where m is the number of edges. The proof is based on deriving various combinatorial estimates related to the number of digraphs with a given degree sequence and controlling concentration of these estimates in large digraphs. This suggests that sequential stub matching can be viewed as a practical algorithm for almost uniform sampling of digraphs. We show that this algorithm can be implemented to feature a linear expected runtime O(m).
Author Kryven, Ivan
van Ieperen, Femke
Author_xml – sequence: 1
  givenname: Femke
  surname: van Ieperen
  fullname: van Ieperen, Femke
– sequence: 2
  givenname: Ivan
  orcidid: 0000-0002-3964-2196
  surname: Kryven
  fullname: Kryven, Ivan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40454288$$D View this record in MEDLINE/PubMed
BookMark eNpdkU9v1DAQxS1URP_AF-CALHHhEhjbieOcUNXSLVKrHkrPluNMdl0l9mI7rfbbY7qlAk4ez_z05o3eMTnwwSMh7xl8ZgDtlwQAXFbA66p8WVPBK3IEnHWVgK4-eKpVGYE8JMcp3ZeqBcHfkMMa6qbmSh0Rf4s_F_TZmYne5qWn1ybbjfNrOoZIT9Nu3uaQnTXTtKN33pXuTFfoMZrsgqdhpOcuos040FU0202ijy5vqKEr94CenuM6ItL9FotvyevRTAnfPb8n5O7i24-zy-rqZvX97PSqskLxXA2DgFZ2xjIcGiMarHk_sBEVMATDRtG3fd2OA1hZ-tLKTo18ROhYhwMoK07I173udulnHGy5MJpJb6ObTdzpYJz-d-LdRq_Dg2acsa5VTVH49KwQQ_Gesp5dsjhNxmNYkhac1a1gwKCgH_9D78MSfbmvUI1UUqquK9SHvy29ePmTRQH4HrAxpBRxfEEY6N-B633gugSunwLXIH4Br0afCg
Cites_doi 10.1109/FOCS.2019.00084
10.1016/j.ejc.2021.103421
10.37236/9652
10.1016/j.tcs.2017.11.010
10.1002/jgt.20598
10.1016/S0195-6698(80)80030-8
10.1017/S0963548399003867
10.1016/0097-3165(78)90059-6
10.1002/(SICI)1098-2418(199907)14:4<293::AID-RSA1>3.0.CO;2-G
10.1038/ncomms12031
10.1002/rsa.20911
10.1007/s00453-009-9340-1
10.1109/INFCOM.2003.1209234
10.1002/rsa.21105
10.1007/978-3-642-16926-7_21
10.1088/1751-8113/43/19/195002
10.1016/j.dam.2014.10.012
10.1016/j.disc.2021.112566
10.1103/PhysRevE.90.052109
10.1002/rsa.10032
10.1007/978-3-540-31955-9_9
10.1016/j.dam.2020.12.004
10.1137/100799733
10.1371/journal.pone.0201995
10.2140/pjm.1960.10.831
10.37236/1926
10.37236/721
10.1007/s00440-022-01172-7
10.1016/j.jcta.2007.03.009
10.1017/9781009036214.005
10.1080/01621459.2012.758587
10.1080/15427951.2010.557277
10.1088/1367-2630/17/8/083052
10.1145/2488608.2488693
ContentType Journal Article
Copyright The Author(s) 2024.
The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
The Author(s) 2024 2024
Copyright_xml – notice: The Author(s) 2024.
– notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: The Author(s) 2024 2024
DBID AAYXX
CITATION
NPM
7X8
5PM
DOI 10.1007/s00026-024-00715-0
DatabaseName CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList PubMed

CrossRef

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 0219-3094
EndPage 272
ExternalDocumentID PMC12119785
40454288
10_1007_s00026_024_00715_0
Genre Journal Article
GroupedDBID -Y2
-~C
.86
.VR
06D
0R~
0VY
1N0
1SB
203
23M
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5VS
67Z
6NX
78A
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAPKM
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYXX
ABAKF
ABBBX
ABBRH
ABBXA
ABDBE
ABDBF
ABDZT
ABECU
ABFSG
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABRTQ
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACSTC
ACUHS
ACZOJ
ADHHG
ADHIR
ADHKG
ADKNI
ADKPE
ADPHR
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AETLH
AEVLU
AEXYK
AEZWR
AFBBN
AFDZB
AFFHD
AFGCZ
AFHIU
AFKRA
AFLOW
AFOHR
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGQPQ
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHPBZ
AHSBF
AHWEU
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AIXLP
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMVHM
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
ATHPR
AVWKF
AXYYD
AYFIA
AYJHY
AZFZN
AZQEC
B-.
B0M
BA0
BAPOH
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
CITATION
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DWQXO
EAD
EAP
EBLON
EBS
EIOEI
EJD
EMK
EPL
ESBYG
EST
ESX
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
J9A
JBSCW
JCJTX
JZLTJ
KDC
KOV
LAS
LLZTM
M2P
M4Y
M7S
MA-
MBV
N2Q
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
P2P
P9R
PF0
PHGZM
PHGZT
PQGLB
PT4
PT5
PTHSS
QOS
R89
R9I
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S27
S3B
SAP
SDH
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TN5
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
ZMTXR
~8M
~A9
AAYZH
AESKC
NPM
RIG
7X8
5PM
ID FETCH-LOGICAL-c382t-dd30769ac1ed5a35e42bd1fe801e0a1f3b7b47fd0c6bd16c698f2fe0919ed08c3
IEDL.DBID RSV
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001285475800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0218-0006
IngestDate Tue Nov 04 02:02:07 EST 2025
Fri Sep 05 15:57:49 EDT 2025
Wed Nov 26 05:25:18 EST 2025
Mon Jul 21 06:01:32 EDT 2025
Sat Nov 29 07:53:31 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Randomised approximation algorithms
Random graphs
Directed graphs
Language English
License The Author(s) 2024.
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c382t-dd30769ac1ed5a35e42bd1fe801e0a1f3b7b47fd0c6bd16c698f2fe0919ed08c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Communicated by Frédérique Bassino.
ORCID 0000-0002-3964-2196
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC12119785
PMID 40454288
PQID 3256866899
PQPubID 2043693
PageCount 46
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_12119785
proquest_miscellaneous_3214731010
proquest_journals_3256866899
pubmed_primary_40454288
crossref_primary_10_1007_s00026_024_00715_0
PublicationCentury 2000
PublicationDate 2025-06-01
PublicationDateYYYYMMDD 2025-06-01
PublicationDate_xml – month: 06
  year: 2025
  text: 2025-06-01
  day: 01
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Heidelberg
– name: Cham
PublicationTitle Annals of combinatorics
PublicationTitleAlternate Ann Comb
PublicationYear 2025
Publisher Springer Nature B.V
Springer International Publishing
Publisher_xml – name: Springer Nature B.V
– name: Springer International Publishing
References Charo I Del Genio (715_CR12) 2010; 5
Catherine Greenhill (715_CR24) 2018; 719
715_CR17
715_CR39
715_CR16
715_CR38
715_CR19
Pu Gao (715_CR21) 2021; 291
715_CR18
Anita Liebenau (715_CR35) 2023; 62
715_CR34
Martin Dyer (715_CR14) 2021; 344
715_CR37
715_CR36
715_CR31
715_CR30
715_CR11
715_CR33
715_CR10
715_CR32
715_CR2
Svante Janson (715_CR27) 2020; 57
715_CR1
Ravi Kannan (715_CR28) 1999; 14
Konstantin Tikhomirov (715_CR40) 2023; 185
P Erdos (715_CR15) 1960; 11
715_CR29
715_CR5
715_CR23
715_CR4
715_CR26
715_CR3
715_CR20
715_CR42
715_CR9
715_CR41
715_CR8
Béla Bollobás (715_CR7) 1980; 1
Catherine Greenhill (715_CR22) 2011; 18
Christoph Dürr (715_CR13) 2012; 26
Joseph Blitzstein (715_CR6) 2011; 6
Jacopo Grilli (715_CR25) 2016; 7
Jingfei Zhang (715_CR43) 2013; 108
References_xml – ident: 715_CR1
  doi: 10.1109/FOCS.2019.00084
– ident: 715_CR16
  doi: 10.1016/j.ejc.2021.103421
– ident: 715_CR41
– ident: 715_CR18
  doi: 10.37236/9652
– volume: 719
  start-page: 1
  year: 2018
  ident: 715_CR24
  publication-title: Theoretical Computer Science
  doi: 10.1016/j.tcs.2017.11.010
– ident: 715_CR8
  doi: 10.1002/jgt.20598
– volume: 1
  start-page: 311
  issue: 4
  year: 1980
  ident: 715_CR7
  publication-title: European Journal of Combinatorics
  doi: 10.1016/S0195-6698(80)80030-8
– ident: 715_CR39
  doi: 10.1017/S0963548399003867
– ident: 715_CR4
  doi: 10.1016/0097-3165(78)90059-6
– volume: 14
  start-page: 293
  issue: 4
  year: 1999
  ident: 715_CR28
  publication-title: Random Structures & Algorithms
  doi: 10.1002/(SICI)1098-2418(199907)14:4<293::AID-RSA1>3.0.CO;2-G
– ident: 715_CR29
– volume: 7
  start-page: 1
  issue: 1
  year: 2016
  ident: 715_CR25
  publication-title: Nature communications
  doi: 10.1038/ncomms12031
– volume: 57
  start-page: 3
  issue: 1
  year: 2020
  ident: 715_CR27
  publication-title: Random Structures & Algorithms
  doi: 10.1002/rsa.20911
– ident: 715_CR31
– ident: 715_CR37
– ident: 715_CR3
  doi: 10.1007/s00453-009-9340-1
– ident: 715_CR33
  doi: 10.1109/INFCOM.2003.1209234
– volume: 62
  start-page: 259
  issue: 2
  year: 2023
  ident: 715_CR35
  publication-title: Random Structures & Algorithms
  doi: 10.1002/rsa.21105
– ident: 715_CR5
  doi: 10.1007/978-3-642-16926-7_21
– ident: 715_CR17
– ident: 715_CR38
  doi: 10.1088/1751-8113/43/19/195002
– volume: 11
  start-page: 264
  year: 1960
  ident: 715_CR15
  publication-title: Mat. Lapok
– ident: 715_CR11
  doi: 10.1016/j.dam.2014.10.012
– volume: 344
  issue: 11
  year: 2021
  ident: 715_CR14
  publication-title: Discrete Mathematics
  doi: 10.1016/j.disc.2021.112566
– ident: 715_CR36
  doi: 10.1103/PhysRevE.90.052109
– ident: 715_CR42
  doi: 10.1002/rsa.10032
– ident: 715_CR34
  doi: 10.1007/978-3-540-31955-9_9
– volume: 291
  start-page: 143
  year: 2021
  ident: 715_CR21
  publication-title: Discrete Applied Mathematics
  doi: 10.1016/j.dam.2020.12.004
– ident: 715_CR32
– volume: 26
  start-page: 330
  issue: 1
  year: 2012
  ident: 715_CR13
  publication-title: SIAM Journal on Discrete Mathematics
  doi: 10.1137/100799733
– ident: 715_CR19
  doi: 10.1371/journal.pone.0201995
– ident: 715_CR20
  doi: 10.2140/pjm.1960.10.831
– ident: 715_CR10
  doi: 10.37236/1926
– volume: 5
  start-page: 1
  issue: 4
  year: 2010
  ident: 715_CR12
  publication-title: PLOS ONE
– volume: 18
  start-page: P234
  year: 2011
  ident: 715_CR22
  publication-title: Electronic Journal of Combinatorics
  doi: 10.37236/721
– volume: 185
  start-page: 89
  issue: 1–2
  year: 2023
  ident: 715_CR40
  publication-title: Probability Theory and Related Fields
  doi: 10.1007/s00440-022-01172-7
– ident: 715_CR9
  doi: 10.1016/j.jcta.2007.03.009
– ident: 715_CR23
  doi: 10.1017/9781009036214.005
– ident: 715_CR30
– volume: 108
  start-page: 1295
  issue: 504
  year: 2013
  ident: 715_CR43
  publication-title: Journal of the American Statistical Association
  doi: 10.1080/01621459.2012.758587
– volume: 6
  start-page: 489
  issue: 4
  year: 2011
  ident: 715_CR6
  publication-title: Internet mathematics
  doi: 10.1080/15427951.2010.557277
– ident: 715_CR2
  doi: 10.1088/1367-2630/17/8/083052
– ident: 715_CR26
  doi: 10.1145/2488608.2488693
SSID ssj0007032
Score 2.3294418
Snippet We discuss sequential stub matching for directed graphs and show that this process can be used to sample simple digraphs with asymptotically equal probability....
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
StartPage 227
SubjectTerms Algorithms
Codes
Combinatorial analysis
Estimates
Expected values
Graph theory
Graphs
Matching
Original Paper
Random variables
Sampling
Title Sequential Stub Matching for Asymptotically Uniform Generation of Directed Graphs with a Given Degree Sequence
URI https://www.ncbi.nlm.nih.gov/pubmed/40454288
https://www.proquest.com/docview/3256866899
https://www.proquest.com/docview/3214731010
https://pubmed.ncbi.nlm.nih.gov/PMC12119785
Volume 29
WOSCitedRecordID wos001285475800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLink Contemporary
  customDbUrl:
  eissn: 0219-3094
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0007032
  issn: 0218-0006
  databaseCode: RSV
  dateStart: 19971201
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB5RxIEeKJQWlgJyJW5gKU_HOaKWx4Giqgtob1Fij1UkmkUki8S_Z8YJUZfHgWtsOcmMx_ONZ_wZYE-jqYLUWUn-xUpOnMlSmVAaZ5WqCHDH_tT71Vl2fq4nk_z3Ahy8mcFnuk-KEyT5Esn-MJUcoIcq4usK_oyvhmWXpq5PGZDP4qPSqj8h8_oQ817oBbR8XiH5n8s5_vS-j12FlR5aisNuLqzBAtaf4eOvgZe1WYd67CunyapvxLidVYJafTGlIOwqDpuHf7ft1O9u3zwIgqOMaEXHTM0KFFMnujUSrThhqutG8EauKMUJr5riJ1L4jmLc12d_gcvjo4sfp7K_cUGaWEettJZMXuWlCdGmZZxiElU2dEhuDIMydHGVVUnmbGAUPVdG5dpFDglz5GgDbeKvsFhPa9wEkTiHHEu6FF2S5SkFwpgbVLbSmAY2HMH-kwaK245YoxgolL0UC5Ji4aVYBCPYflJS0RtZU8QE17RSFDGO4PvQTObBOY-yxumM-4RJRhA2pCE2Op0Or0uYfjDSegR6TttDB6benm-pr_96Cm5PjJfpdOtdf_ENliO-Pthv4mzDYns3wx1YMvftdXO3Cx-yid71k_oRnczvPA
linkProvider Springer Nature
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sequential+Stub+Matching+for+Asymptotically+Uniform+Generation+of+Directed+Graphs+with+a+Given+Degree+Sequence&rft.jtitle=Annals+of+combinatorics&rft.au=van+Ieperen%2C+Femke&rft.au=Kryven%2C+Ivan&rft.date=2025-06-01&rft.issn=0218-0006&rft.eissn=0219-3094&rft.volume=29&rft.issue=2&rft.spage=227&rft.epage=272&rft_id=info:doi/10.1007%2Fs00026-024-00715-0&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00026_024_00715_0
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0218-0006&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0218-0006&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0218-0006&client=summon