First-order methods of smooth convex optimization with inexact oracle

We introduce the notion of inexact first-order oracle and analyze the behavior of several first-order methods of smooth convex optimization used with such an oracle. This notion of inexact oracle naturally appears in the context of smoothing techniques, Moreau–Yosida regularization, Augmented Lagran...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Mathematical programming Ročník 146; číslo 1-2; s. 37 - 75
Hlavní autoři: Devolder, Olivier, Glineur, François, Nesterov, Yurii
Médium: Journal Article
Jazyk:angličtina
Vydáno: Berlin/Heidelberg Springer Berlin Heidelberg 01.08.2014
Springer Nature B.V
Témata:
ISSN:0025-5610, 1436-4646
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:We introduce the notion of inexact first-order oracle and analyze the behavior of several first-order methods of smooth convex optimization used with such an oracle. This notion of inexact oracle naturally appears in the context of smoothing techniques, Moreau–Yosida regularization, Augmented Lagrangians and many other situations. We derive complexity estimates for primal, dual and fast gradient methods, and study in particular their dependence on the accuracy of the oracle and the desired accuracy of the objective function. We observe that the superiority of fast gradient methods over the classical ones is no longer absolute when an inexact oracle is used. We prove that, contrary to simple gradient schemes, fast gradient methods must necessarily suffer from error accumulation. Finally, we show that the notion of inexact oracle allows the application of first-order methods of smooth convex optimization to solve non-smooth or weakly smooth convex problems.
Bibliografie:SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
content type line 23
ISSN:0025-5610
1436-4646
DOI:10.1007/s10107-013-0677-5