Sports behavior analysis technology based on GCN and domain knowledge graph

Abstract To improve the performance of sports behavior recognition, the spatial temporal graph convolutional network is introduced to analyze the spatial temporal features of sports behavior, achieving accurate action recognition. In the experimental results, the proposed graph convolutional network...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Discover Computing Ročník 28; číslo 1; s. 1 - 22
Hlavní autoři: Jiaojiao Hu, Shengnan Ran
Médium: Journal Article
Jazyk:angličtina
Vydáno: Springer 17.11.2025
Témata:
ISSN:2948-2992
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Abstract To improve the performance of sports behavior recognition, the spatial temporal graph convolutional network is introduced to analyze the spatial temporal features of sports behavior, achieving accurate action recognition. In the experimental results, the proposed graph convolutional network algorithm achieved accuracy of 95.20%, 93.80%, and 92.50% in single-person, multi-person, and complex scenes, respectively. The spatial temporal graph convolutional network achieved a recognition accuracy of 95.3% in sports behavior analysis, with a Top-5 accuracy of 98.4%, an average recognition time of 12.5 ms/frame, and a parameter count of only 12.5 million, demonstrating its advantages in real-time performance and model complexity. The results indicate that the framework combining the proposed graph convolutional network algorithm, improved Openpose estimation, and spatial temporal graph convolutional network can effectively capture the spatio-temporal features of sports behavior and significantly improve recognition performance.
AbstractList Abstract To improve the performance of sports behavior recognition, the spatial temporal graph convolutional network is introduced to analyze the spatial temporal features of sports behavior, achieving accurate action recognition. In the experimental results, the proposed graph convolutional network algorithm achieved accuracy of 95.20%, 93.80%, and 92.50% in single-person, multi-person, and complex scenes, respectively. The spatial temporal graph convolutional network achieved a recognition accuracy of 95.3% in sports behavior analysis, with a Top-5 accuracy of 98.4%, an average recognition time of 12.5 ms/frame, and a parameter count of only 12.5 million, demonstrating its advantages in real-time performance and model complexity. The results indicate that the framework combining the proposed graph convolutional network algorithm, improved Openpose estimation, and spatial temporal graph convolutional network can effectively capture the spatio-temporal features of sports behavior and significantly improve recognition performance.
Author Shengnan Ran
Jiaojiao Hu
Author_xml – sequence: 1
  fullname: Jiaojiao Hu
  organization: Leshan Normal University
– sequence: 2
  fullname: Shengnan Ran
  organization: Leshan Normal University
BookMark eNotjMtOwzAQRS0EEqX0B1j5BwKOH7FniSooFRUsgHU0jidpII0rO6Lq31MBq6tzdHSv2PkYR2LsphS3pRD2LpfCQlkIaQoBFnRxOGMzCdoVEkBeskXOvRdGWSUrIWbs-W0f05S5py1-9zFxHHE45j7ziZrtGIfYHbnHTIHHka-WL6cg8BB32I_8a4yHgUJHvEu4316zixaHTIv_nbOPx4f35VOxeV2tl_ebolFOTkXwDXjnNHgjSk3BSO-sthQwONsalLKUzoMiJ13ZiFAZbAFccEp5Q16qOVv__YaIn_U-9TtMxzpiX_-KmLoa09Q3A9XoUbXeVuAaqWUFAI3WRODJ4Ims-gGLHF3T
ContentType Journal Article
DBID DOA
DOI 10.1007/s10791-025-09794-w
DatabaseName DOAJ Directory of Open Access Journals
DatabaseTitleList
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
EISSN 2948-2992
EndPage 22
ExternalDocumentID oai_doaj_org_article_aba3fb7698c2426999c44ee9be5a6997
GroupedDBID AAJSJ
AASML
ABDBE
AEFQL
ALMA_UNASSIGNED_HOLDINGS
EBLON
GROUPED_DOAJ
JZLTJ
SOJ
ID FETCH-LOGICAL-c382t-dbc9b8849b5014ed52b8747edad87f5a22128b93e8281c0d65af998d833b5eb23
IEDL.DBID DOA
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001615828900002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Mon Nov 24 19:20:52 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c382t-dbc9b8849b5014ed52b8747edad87f5a22128b93e8281c0d65af998d833b5eb23
OpenAccessLink https://doaj.org/article/aba3fb7698c2426999c44ee9be5a6997
PageCount 22
ParticipantIDs doaj_primary_oai_doaj_org_article_aba3fb7698c2426999c44ee9be5a6997
PublicationCentury 2000
PublicationDate 2025-11-17
PublicationDateYYYYMMDD 2025-11-17
PublicationDate_xml – month: 11
  year: 2025
  text: 2025-11-17
  day: 17
PublicationDecade 2020
PublicationTitle Discover Computing
PublicationYear 2025
Publisher Springer
Publisher_xml – name: Springer
SSID ssib053732600
Score 2.4030347
Snippet Abstract To improve the performance of sports behavior recognition, the spatial temporal graph convolutional network is introduced to analyze the spatial...
SourceID doaj
SourceType Open Website
StartPage 1
SubjectTerms Domain knowledge graph
Improved openpose algorithm
P-GCN
Sports behavior
ST-GCN
Title Sports behavior analysis technology based on GCN and domain knowledge graph
URI https://doaj.org/article/aba3fb7698c2426999c44ee9be5a6997
Volume 28
WOSCitedRecordID wos001615828900002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07SwQxEA5yWNiIouKbFLbBvTw2SamHpyAcFgrXLXlMwMI9uVv17zvJrsdZ2VhmCVl2kuzMl8z3DSFXTvPKAP79xpAik17XzNkUGNQghB3LnNBYik3o2czM5_Zpo9RXzgnr5YF7w10770TCIawJhXZpbZASwHpQDluFR15puwGmcCUpoUVWXh9YMgNXTuckH65YZXERsq9fKv3FnUz3yO4QB9Kb_v37ZAvaA_JYao6v6A93nrpBMoR26xNwmv1OpIuW3k9m2CHSuHhDeE_Xp2O0iFAfkpfp3fPkgQ3VDlgQhncs-mC9MdL6fNUHUXFvMNaH6KLRSTmOTsZ4KwAx0jhUsVYuIVaKRgivEB-LIzJqFy0cZx52LU3AYMMIkKCdi1XAOCh4yxPu6XRCbvOXN--9oEWTJabLAzR8Mxi--cvwp_8xyBnZ4XlKcl6dPiejbvkBF2Q7fHavq-VlmdNvSSqnbA
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sports+behavior+analysis+technology+based+on+GCN+and+domain+knowledge+graph&rft.jtitle=Discover+Computing&rft.au=Jiaojiao+Hu&rft.au=Shengnan+Ran&rft.date=2025-11-17&rft.pub=Springer&rft.eissn=2948-2992&rft.volume=28&rft.issue=1&rft.spage=1&rft.epage=22&rft_id=info:doi/10.1007%2Fs10791-025-09794-w&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_aba3fb7698c2426999c44ee9be5a6997