Non-reciprocal photonics based on time modulation
Reciprocity is a fundamental principle in optics, requiring that the response of a transmission channel is symmetric when source and observation points are interchanged. It is of major significance because it poses fundamental constraints on the way we process optical signals. Non-reciprocal devices...
Uložené v:
| Vydané v: | Nature photonics Ročník 11; číslo 12; s. 774 - 783 |
|---|---|
| Hlavní autori: | , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
London
Nature Publishing Group UK
01.12.2017
Nature Publishing Group |
| Predmet: | |
| ISSN: | 1749-4885, 1749-4893 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Reciprocity is a fundamental principle in optics, requiring that the response of a transmission channel is symmetric when source and observation points are interchanged. It is of major significance because it poses fundamental constraints on the way we process optical signals. Non-reciprocal devices, which break this symmetry, have become fundamental in photonic systems. Today they require magnetic materials that are bulky, costly and cannot be integrated. This is in stark contrast with most photonic devices, including sources, modulators, switches, waveguides, interconnects and antennas, which may be realized at the nanoscale. Here, we review recent progress and opportunities offered by temporal modulation to break reciprocity, revealing its potential for compact, low-energy, integrated non-reciprocal devices, and discuss the future of this exciting research field.
The progress on non-reciprocal photonic devices enabled by temporal modulation is reviewed. |
|---|---|
| AbstractList | Reciprocity is a fundamental principle in optics, requiring that the response of a transmission channel is symmetric when source and observation points are interchanged. It is of major significance because it poses fundamental constraints on the way we process optical signals. Non-reciprocal devices, which break this symmetry, have become fundamental in photonic systems. Today they require magnetic materials that are bulky, costly and cannot be integrated. This is in stark contrast with most photonic devices, including sources, modulators, switches, waveguides, interconnects and antennas, which may be realized at the nanoscale. Here, we review recent progress and opportunities offered by temporal modulation to break reciprocity, revealing its potential for compact, low-energy, integrated non-reciprocal devices, and discuss the future of this exciting research field.
The progress on non-reciprocal photonic devices enabled by temporal modulation is reviewed. Reciprocity is a fundamental principle in optics, requiring that the response of a transmission channel is symmetric when source and observation points are interchanged. It is of major significance because it poses fundamental constraints on the way we process optical signals. Non-reciprocal devices, which break this symmetry, have become fundamental in photonic systems. Today they require magnetic materials that are bulky, costly and cannot be integrated. This is in stark contrast with most photonic devices, including sources, modulators, switches, waveguides, interconnects and antennas, which may be realized at the nanoscale. Here, we review recent progress and opportunities offered by temporal modulation to break reciprocity, revealing its potential for compact, low-energy, integrated non-reciprocal devices, and discuss the future of this exciting research field. |
| Author | Alù, Andrea Sounas, Dimitrios L. |
| Author_xml | – sequence: 1 givenname: Dimitrios L. surname: Sounas fullname: Sounas, Dimitrios L. organization: Department of Electrical and Computer Engineering, University of Texas at Austin – sequence: 2 givenname: Andrea surname: Alù fullname: Alù, Andrea email: alu@mail.utexas.edu organization: Department of Electrical and Computer Engineering, University of Texas at Austin |
| BookMark | eNp9kE1LAzEQhoNUsFV_gLcFz9FMsptNjlL8gqIXPYc0O6tbtklNtlD_vakrIoKeZg7vM_PyzMjEB4-EnAG7ACbUZSqhkpIyqCljFdDdAZlCXWpaKi0m37uqjsgspVXOCM35lMBD8DSi6zYxONsXm9cwBN-5VCxtwqYIvhi6NRbr0Gx7O3TBn5DD1vYJT7_mMXm-uX6a39HF4-39_GpBnVB8oI0S2FjQJQPZYq7IwaFmWtUMtdWNUiglq7TgTHGOtSoRHMdWsMbZpQRxTM7Hu7nZ2xbTYFZhG31-aUDXTIqyrGRO1WPKxZBSxNa4bvjsOUTb9QaY2fsxox-T_Zi9H7PLJPwiN7Fb2_j-L8NHJuWsf8H4o9Of0Af1enkX |
| CitedBy_id | crossref_primary_10_1103_PhysRevA_105_043703 crossref_primary_10_1126_science_adf1206 crossref_primary_10_3390_nano11092410 crossref_primary_10_1088_0256_307X_38_2_024202 crossref_primary_10_1038_s41566_018_0306_1 crossref_primary_10_1088_1367_2630_ad3d7a crossref_primary_10_1038_s41467_021_27903_3 crossref_primary_10_1088_1674_1056_abee0c crossref_primary_10_1103_PhysRevResearch_2_043046 crossref_primary_10_1093_nsr_nwab134 crossref_primary_10_1103_PhysRevLett_127_043603 crossref_primary_10_1364_OPTICA_555318 crossref_primary_10_1002_lpor_202200574 crossref_primary_10_1038_s41377_024_01513_2 crossref_primary_10_1063_5_0057558 crossref_primary_10_1038_s41377_019_0239_6 crossref_primary_10_1063_5_0186961 crossref_primary_10_1103_PhysRevResearch_6_043035 crossref_primary_10_1186_s11671_018_2818_5 crossref_primary_10_1103_PhysRevA_111_023702 crossref_primary_10_1088_1402_4896_adca64 crossref_primary_10_1109_TMTT_2019_2915074 crossref_primary_10_1515_nanoph_2022_0805 crossref_primary_10_1088_2040_8986_aaaa3e crossref_primary_10_1002_andp_202000196 crossref_primary_10_1007_s11467_019_0922_3 crossref_primary_10_1002_adom_202001594 crossref_primary_10_1038_s41534_024_00870_5 crossref_primary_10_1063_5_0020277 crossref_primary_10_1038_s41566_019_0375_9 crossref_primary_10_1038_s41467_019_12599_3 crossref_primary_10_1103_PhysRevLett_134_193602 crossref_primary_10_1109_TAP_2021_3102117 crossref_primary_10_1016_j_physb_2022_414210 crossref_primary_10_1088_1402_4896_acb7d3 crossref_primary_10_1103_PhysRevA_111_033507 crossref_primary_10_1038_s41566_023_01333_7 crossref_primary_10_1109_TAP_2019_2955219 crossref_primary_10_1049_ell2_70186 crossref_primary_10_1103_PhysRevB_103_144303 crossref_primary_10_1109_JMEMS_2019_2947903 crossref_primary_10_1016_j_ijleo_2025_172459 crossref_primary_10_1002_adom_202401127 crossref_primary_10_1515_nanoph_2020_0371 crossref_primary_10_1002_lpor_202401900 crossref_primary_10_1073_pnas_1915027116 crossref_primary_10_1038_s41566_022_00987_z crossref_primary_10_1109_TAP_2019_2925927 crossref_primary_10_1103_PhysRevLett_131_123801 crossref_primary_10_1103_PhysRevApplied_15_034056 crossref_primary_10_1103_PhysRevResearch_1_023014 crossref_primary_10_1002_pssr_202400116 crossref_primary_10_1063_5_0145291 crossref_primary_10_1109_TAP_2020_2967302 crossref_primary_10_1038_s41566_019_0418_2 crossref_primary_10_1063_1_5042577 crossref_primary_10_1007_s11468_020_01261_0 crossref_primary_10_1002_adma_202501711 crossref_primary_10_3390_photonics8050139 crossref_primary_10_1109_LAWP_2022_3198576 crossref_primary_10_1038_s41467_020_17550_5 crossref_primary_10_1109_LAWP_2020_3034830 crossref_primary_10_1109_MSSC_2021_3111389 crossref_primary_10_1016_j_jsv_2024_118757 crossref_primary_10_1002_adom_202102154 crossref_primary_10_1038_s41467_021_24138_0 crossref_primary_10_1088_0253_6102_71_8_1011 crossref_primary_10_1063_5_0264233 crossref_primary_10_1109_JSTQE_2021_3133445 crossref_primary_10_1088_1361_6633_ac45f9 crossref_primary_10_1103_PhysRevA_111_013713 crossref_primary_10_1515_nanoph_2024_0197 crossref_primary_10_1016_j_physrep_2023_01_001 crossref_primary_10_1109_LAWP_2018_2856258 crossref_primary_10_1016_j_physrep_2023_01_002 crossref_primary_10_1103_PhysRevApplied_18_024027 crossref_primary_10_1063_5_0204694 crossref_primary_10_1103_PhysRevApplied_12_054004 crossref_primary_10_1103_PhysRevA_111_013704 crossref_primary_10_1002_lpor_202200659 crossref_primary_10_1103_PhysRevApplied_12_054008 crossref_primary_10_1142_S0217979225501218 crossref_primary_10_1103_PhysRevApplied_20_054028 crossref_primary_10_1038_s41377_023_01177_4 crossref_primary_10_1038_s41598_019_39916_6 crossref_primary_10_1063_5_0131818 crossref_primary_10_1016_j_jsv_2023_118199 crossref_primary_10_1103_PhysRevApplied_13_064033 crossref_primary_10_1002_adma_202007966 crossref_primary_10_1002_adma_201904069 crossref_primary_10_1016_j_apm_2024_03_005 crossref_primary_10_1063_5_0012206 crossref_primary_10_1088_1367_2630_aaf47a crossref_primary_10_1063_1_5094736 crossref_primary_10_1109_LAWP_2023_3271774 crossref_primary_10_1038_s41377_025_01947_2 crossref_primary_10_3390_nano11112774 crossref_primary_10_1103_PhysRevA_111_023510 crossref_primary_10_1002_adfm_202503365 crossref_primary_10_1103_PhysRevResearch_3_L022006 crossref_primary_10_1088_1367_2630_ad91da crossref_primary_10_1103_PhysRevB_105_L100304 crossref_primary_10_1088_1742_6596_2015_1_012120 crossref_primary_10_1109_JLT_2021_3049501 crossref_primary_10_1002_adma_202309835 crossref_primary_10_1103_PhysRevResearch_6_033020 crossref_primary_10_1364_OME_550605 crossref_primary_10_1103_PhysRevResearch_6_023216 crossref_primary_10_1109_TMTT_2023_3311918 crossref_primary_10_1002_adma_201906352 crossref_primary_10_1002_adma_202402170 crossref_primary_10_1103_PhysRevApplied_22_054080 crossref_primary_10_1088_1367_2630_ab8aad crossref_primary_10_1088_1612_202X_ad914b crossref_primary_10_1038_s41377_021_00494_w crossref_primary_10_1002_qute_202400702 crossref_primary_10_1002_adom_202000075 crossref_primary_10_1103_PhysRevApplied_11_034017 crossref_primary_10_1088_0256_307X_40_10_104201 crossref_primary_10_1039_D2NR06449A crossref_primary_10_1121_10_0037209 crossref_primary_10_1038_s41467_025_62853_0 crossref_primary_10_1140_epjd_s10053_022_00541_0 crossref_primary_10_1103_PhysRevApplied_18_034080 crossref_primary_10_1177_10775463221146091 crossref_primary_10_1007_s00894_019_4118_0 crossref_primary_10_1557_mrs_2018_126 crossref_primary_10_1557_mrs_2018_124 crossref_primary_10_3390_photonics8040133 crossref_primary_10_3390_photonics9080585 crossref_primary_10_1557_mrs_2018_120 crossref_primary_10_1063_5_0104358 crossref_primary_10_1038_s42005_021_00790_2 crossref_primary_10_1103_PhysRevApplied_16_034033 crossref_primary_10_1103_PhysRevApplied_18_064008 crossref_primary_10_1103_PhysRevResearch_2_033517 crossref_primary_10_1109_TAP_2024_3415427 crossref_primary_10_1002_apxr_202300125 crossref_primary_10_1088_2040_8986_ab146f crossref_primary_10_1007_s11433_023_2348_x crossref_primary_10_1063_5_0034291 crossref_primary_10_1088_0256_307X_41_4_044205 crossref_primary_10_1103_PhysRevA_111_043714 crossref_primary_10_1038_s41598_023_48503_9 crossref_primary_10_1088_1361_6463_adc271 crossref_primary_10_1103_PhysRevApplied_21_034061 crossref_primary_10_1140_epjb_s10051_023_00553_8 crossref_primary_10_1103_1p4g_wt7h crossref_primary_10_1109_TMTT_2024_3359508 crossref_primary_10_1109_TAP_2018_2877394 crossref_primary_10_1364_PRJ_545282 crossref_primary_10_1038_s41377_024_01692_y crossref_primary_10_1002_adom_202000783 crossref_primary_10_1016_j_wavemoti_2024_103379 crossref_primary_10_1103_PhysRevApplied_11_054033 crossref_primary_10_1063_5_0097501 crossref_primary_10_1038_s41467_018_06477_7 crossref_primary_10_1002_adom_202201732 crossref_primary_10_1364_JOSAB_35_002387 crossref_primary_10_3788_PI_2023_R09 crossref_primary_10_1364_OE_563594 crossref_primary_10_1140_epjp_s13360_023_04828_y crossref_primary_10_1002_adfm_202504593 crossref_primary_10_1016_j_wavemoti_2025_103529 crossref_primary_10_1038_s41567_023_01993_w crossref_primary_10_1038_s41467_018_04187_8 crossref_primary_10_1109_TMTT_2022_3215617 crossref_primary_10_1038_s41566_018_0264_7 crossref_primary_10_1103_PhysRevB_111_L161111 crossref_primary_10_1002_lpor_202300446 crossref_primary_10_1016_j_jcp_2021_110594 crossref_primary_10_1103_PhysRevLett_127_253603 crossref_primary_10_1103_PhysRevLett_130_096902 crossref_primary_10_1109_LAWP_2018_2866913 crossref_primary_10_1103_PhysRevApplied_20_014027 crossref_primary_10_1002_advs_202404558 crossref_primary_10_1109_TMTT_2018_2859244 crossref_primary_10_1063_1_5132699 crossref_primary_10_1088_1612_202X_adca9b crossref_primary_10_1109_JMMCT_2022_3202990 crossref_primary_10_1088_2040_8986_aba941 crossref_primary_10_1103_PhysRevA_111_053514 crossref_primary_10_1038_s41377_021_00464_2 crossref_primary_10_1103_PhysRevApplied_11_054054 crossref_primary_10_1515_nanoph_2024_0525 crossref_primary_10_1140_epjqt_s40507_024_00301_6 crossref_primary_10_34133_research_0826 crossref_primary_10_1103_PhysRevLett_134_206701 crossref_primary_10_1103_PhysRevB_106_235418 crossref_primary_10_1103_PhysRevApplied_19_024031 crossref_primary_10_1016_j_ymssp_2025_113346 crossref_primary_10_1109_JPROC_2020_3012381 crossref_primary_10_1109_TAP_2018_2858200 crossref_primary_10_1103_PhysRevApplied_17_064048 crossref_primary_10_1038_s41598_019_53586_4 crossref_primary_10_1103_PhysRevApplied_18_014067 crossref_primary_10_1109_LAWP_2018_2870688 crossref_primary_10_1103_PhysRevLett_128_173901 crossref_primary_10_1103_PhysRevLett_127_153903 crossref_primary_10_3390_photonics7020028 crossref_primary_10_1103_PhysRevA_111_033715 crossref_primary_10_1038_s41467_018_06802_0 crossref_primary_10_1063_5_0051815 crossref_primary_10_1109_TMTT_2021_3072741 crossref_primary_10_1103_PhysRevApplied_17_054004 crossref_primary_10_1038_s41467_024_45416_7 crossref_primary_10_1121_1_5115018 crossref_primary_10_1002_adpr_202000168 crossref_primary_10_7498_aps_74_20250270 crossref_primary_10_1103_PhysRevApplied_11_064042 crossref_primary_10_1016_j_ijmecsci_2025_110377 crossref_primary_10_3788_LOP250431 crossref_primary_10_1103_PhysRevA_111_043510 crossref_primary_10_1038_s41467_020_14634_0 crossref_primary_10_3788_COL202321_113602 crossref_primary_10_1109_TMTT_2021_3079250 crossref_primary_10_1002_adom_202000100 crossref_primary_10_1103_PhysRevApplied_14_024032 crossref_primary_10_1063_5_0037771 crossref_primary_10_1088_1555_6611_add4ee crossref_primary_10_1088_1555_6611_abb1be crossref_primary_10_1109_ACCESS_2020_3030200 crossref_primary_10_32362_2500_316X_2022_10_4_55_64 crossref_primary_10_1002_lpor_202402078 crossref_primary_10_1016_j_chaos_2025_116019 crossref_primary_10_1109_MAP_2023_3236275 crossref_primary_10_1021_acsphotonics_5c00086 crossref_primary_10_1007_s12200_021_1125_4 crossref_primary_10_1103_PhysRevLett_134_033802 crossref_primary_10_1364_OL_555293 crossref_primary_10_1103_PhysRevLett_124_043902 crossref_primary_10_1515_nanoph_2024_0212 crossref_primary_10_1016_j_ijheatmasstransfer_2024_126570 crossref_primary_10_1016_j_jmmm_2021_168736 crossref_primary_10_1038_s41566_020_0606_0 crossref_primary_10_1002_lpor_202200717 crossref_primary_10_1038_s41534_021_00372_8 crossref_primary_10_1063_5_0050628 crossref_primary_10_1103_PhysRevApplied_19_014047 crossref_primary_10_1103_PhysRevApplied_16_064066 crossref_primary_10_1103_PhysRevResearch_5_043150 crossref_primary_10_1016_j_physb_2024_416329 crossref_primary_10_1063_5_0189615 crossref_primary_10_1109_LAWP_2018_2849654 crossref_primary_10_1063_5_0140483 crossref_primary_10_1186_s43593_022_00015_1 crossref_primary_10_1364_PRJ_485595 crossref_primary_10_1063_1_5135927 crossref_primary_10_7498_aps_74_20241565 crossref_primary_10_1016_j_rinp_2025_108421 crossref_primary_10_1007_s11433_023_2301_2 crossref_primary_10_1088_1361_6463_aaedfb crossref_primary_10_1103_PhysRevX_9_011008 crossref_primary_10_3390_photonics11040389 crossref_primary_10_1002_adpr_202500083 crossref_primary_10_1103_74rq_f642 crossref_primary_10_1109_LAWP_2018_2868044 crossref_primary_10_1016_j_optlaseng_2025_109149 crossref_primary_10_1364_PRJ_7_000630 crossref_primary_10_1103_PhysRevApplied_16_L041002 crossref_primary_10_1109_TMTT_2019_2943338 crossref_primary_10_1103_PhysRevApplied_11_064052 crossref_primary_10_1016_j_fmre_2022_09_007 crossref_primary_10_1103_PhysRevApplied_22_064020 crossref_primary_10_1007_s11128_025_04757_y crossref_primary_10_1103_PhysRevApplied_18_054044 crossref_primary_10_1002_adfm_202316745 crossref_primary_10_1063_5_0127081 crossref_primary_10_1016_j_optcom_2025_132487 crossref_primary_10_1515_nanoph_2022_0373 crossref_primary_10_1038_s41566_020_0603_3 crossref_primary_10_1109_ACCESS_2023_3325909 crossref_primary_10_1515_nanoph_2022_0253 crossref_primary_10_1103_PhysRevApplied_19_064002 crossref_primary_10_1103_298n_q3tq crossref_primary_10_1103_PhysRevApplied_13_044070 crossref_primary_10_1103_PhysRevApplied_16_024062 crossref_primary_10_1038_s41467_021_25881_0 crossref_primary_10_1088_2058_9565_ac6a04 crossref_primary_10_1080_00018732_2021_1876991 crossref_primary_10_1038_s42005_023_01141_z crossref_primary_10_1038_s41566_024_01424_z crossref_primary_10_1364_PRJ_406215 crossref_primary_10_1515_nanoph_2025_0322 crossref_primary_10_1038_s42005_021_00731_z crossref_primary_10_1103_PhysRevA_103_053522 crossref_primary_10_1140_epjp_s13360_025_06189_0 crossref_primary_10_1007_s11082_018_1661_3 crossref_primary_10_1038_s41467_023_43992_8 crossref_primary_10_1038_s41566_023_01261_6 crossref_primary_10_1088_1367_2630_ac6b4c crossref_primary_10_3390_photonics10101144 crossref_primary_10_1002_adma_202403659 crossref_primary_10_1103_67wh_1fxv crossref_primary_10_1038_s41565_018_0252_6 crossref_primary_10_1063_5_0054752 crossref_primary_10_1063_5_0187485 crossref_primary_10_1002_adom_202500347 crossref_primary_10_1103_PhysRevApplied_22_064001 crossref_primary_10_1063_5_0134993 crossref_primary_10_1088_0256_307X_41_7_074202 crossref_primary_10_3788_COL202523_052601 crossref_primary_10_1364_AO_507878 crossref_primary_10_1063_5_0151047 crossref_primary_10_1121_10_0001812 crossref_primary_10_1016_j_chaos_2025_117118 crossref_primary_10_1515_nanoph_2017_0132 crossref_primary_10_1002_adfm_201906635 crossref_primary_10_1038_s41467_025_62541_z crossref_primary_10_1038_s41467_021_22597_z crossref_primary_10_1103_PhysRevApplied_18_064064 crossref_primary_10_1117_1_OE_61_9_097103 crossref_primary_10_1002_adom_201900843 crossref_primary_10_1103_PhysRevApplied_16_014017 crossref_primary_10_1103_PhysRevApplied_15_064013 crossref_primary_10_1002_lpor_202501068 crossref_primary_10_1038_s41377_025_01844_8 crossref_primary_10_1109_MAP_2021_3115766 crossref_primary_10_1063_1_5085782 crossref_primary_10_3390_nano13050795 crossref_primary_10_1109_TAP_2019_2938674 crossref_primary_10_1038_s41598_022_12432_w crossref_primary_10_1109_MMM_2019_2891380 crossref_primary_10_1103_PhysRevResearch_7_013138 crossref_primary_10_1103_PhysRevApplied_19_064012 crossref_primary_10_1063_5_0017885 crossref_primary_10_1109_JPHOT_2018_2850321 crossref_primary_10_1038_s42005_024_01740_4 crossref_primary_10_1039_D4NR03341H crossref_primary_10_1515_nanoph_2021_0570 crossref_primary_10_1186_s43593_022_00025_z crossref_primary_10_3389_fphy_2022_894115 crossref_primary_10_1038_s41377_024_01686_w crossref_primary_10_1103_6hy3_jmk9 crossref_primary_10_1109_ACCESS_2022_3179493 crossref_primary_10_1016_j_newton_2025_100023 crossref_primary_10_1016_j_optcom_2021_127088 crossref_primary_10_1515_nanoph_2022_0451 crossref_primary_10_1063_5_0101731 crossref_primary_10_1103_PhysRevApplied_21_054027 crossref_primary_10_1088_1361_6633_aad6a8 crossref_primary_10_1038_s41598_025_03006_7 crossref_primary_10_1364_OE_560454 crossref_primary_10_1038_s41377_020_00413_5 crossref_primary_10_1007_s11468_020_01215_6 crossref_primary_10_1088_1361_648X_aaab24 crossref_primary_10_1002_advs_202001443 crossref_primary_10_1103_PhysRevB_111_054307 crossref_primary_10_1109_LAWP_2025_3528860 crossref_primary_10_1364_PRJ_384449 crossref_primary_10_1515_zna_2023_0302 crossref_primary_10_1038_s41566_025_01683_4 crossref_primary_10_1109_TAP_2019_2943712 crossref_primary_10_1109_MAP_2023_3261601 crossref_primary_10_1126_science_adf9621 crossref_primary_10_1103_w94c_xk6j crossref_primary_10_1109_TMTT_2019_2943291 crossref_primary_10_1515_nanoph_2022_0671 crossref_primary_10_1016_j_scib_2023_08_013 crossref_primary_10_1103_5v2w_yg7v crossref_primary_10_1109_ACCESS_2023_3286036 crossref_primary_10_1109_TAP_2019_2949134 crossref_primary_10_1002_adpr_202000104 crossref_primary_10_1016_j_optcom_2019_03_036 crossref_primary_10_1038_s41598_022_09626_7 crossref_primary_10_1364_PRJ_413286 crossref_primary_10_1038_s42005_022_01120_w crossref_primary_10_1126_science_abm9293 crossref_primary_10_1103_PhysRevApplied_10_064037 crossref_primary_10_1103_PhysRevResearch_3_033161 crossref_primary_10_1103_PhysRevApplied_14_044042 crossref_primary_10_1038_s41377_024_01543_w crossref_primary_10_1038_s41566_018_0254_9 crossref_primary_10_1038_s41377_019_0225_z crossref_primary_10_1038_s41467_022_30079_z crossref_primary_10_1038_s41467_019_11117_9 crossref_primary_10_1038_s41586_019_1061_2 crossref_primary_10_1088_1674_1056_ad0621 crossref_primary_10_1103_PhysRevApplied_23_024008 crossref_primary_10_1038_s41566_025_01663_8 crossref_primary_10_1039_D5MH00404G crossref_primary_10_1088_1402_4896_aca22a crossref_primary_10_1002_qute_202400007 crossref_primary_10_1109_JQE_2021_3071247 crossref_primary_10_1103_PhysRevApplied_11_014024 crossref_primary_10_1088_0256_307X_41_2_027201 crossref_primary_10_1515_nanoph_2023_0144 crossref_primary_10_1002_admt_202101362 crossref_primary_10_1002_lpor_202100449 crossref_primary_10_1038_s41566_022_01045_4 crossref_primary_10_1515_nanoph_2020_0414 crossref_primary_10_1109_LAWP_2018_2868790 crossref_primary_10_1016_j_optcom_2023_130113 crossref_primary_10_1109_JSTQE_2025_3590100 crossref_primary_10_1002_adom_202402052 crossref_primary_10_1103_PhysRevApplied_19_064072 crossref_primary_10_1088_1674_1056_ac3ecc crossref_primary_10_3390_nano12162785 crossref_primary_10_1088_1361_6463_ac94dc crossref_primary_10_1103_PhysRevA_111_013517 crossref_primary_10_1063_5_0207377 crossref_primary_10_1007_s10773_025_06004_7 crossref_primary_10_1021_acsphotonics_4c01785 crossref_primary_10_1016_j_optcom_2021_126861 crossref_primary_10_1063_5_0251657 crossref_primary_10_1088_1367_2630_adbc15 crossref_primary_10_1007_s11071_025_10992_w crossref_primary_10_1109_TAP_2019_2948528 crossref_primary_10_1103_PhysRevA_104_053529 crossref_primary_10_1063_5_0252629 crossref_primary_10_1103_PhysRevResearch_7_023214 crossref_primary_10_1038_s41377_022_00870_0 crossref_primary_10_1364_PRJ_444480 crossref_primary_10_1002_qute_202500063 crossref_primary_10_1103_PhysRevApplied_18_024002 crossref_primary_10_1103_PhysRevApplied_12_034012 crossref_primary_10_1002_adom_202403371 crossref_primary_10_1103_PhysRevApplied_19_044014 crossref_primary_10_1088_1674_1056_acae7a crossref_primary_10_1038_s41598_020_77489_x crossref_primary_10_1126_sciadv_adu4133 crossref_primary_10_1021_acsphotonics_3c00457 crossref_primary_10_1103_PhysRevApplied_17_014034 crossref_primary_10_1140_epjd_e2019_100404_1 crossref_primary_10_1103_PhysRevLett_126_204101 crossref_primary_10_3788_PI_2025_C01 crossref_primary_10_1103_PhysRevApplied_12_034001 crossref_primary_10_1103_213q_sqxf crossref_primary_10_3390_photonics12060563 crossref_primary_10_1038_s41928_018_0025_0 crossref_primary_10_1016_j_cej_2025_167537 crossref_primary_10_1103_PhysRevApplied_12_024026 crossref_primary_10_1103_PhysRevApplied_12_024027 crossref_primary_10_1038_s41467_025_59313_0 crossref_primary_10_1088_2040_8986_ac3a9d crossref_primary_10_1103_PhysRevApplied_13_044037 crossref_primary_10_1063_5_0063247 crossref_primary_10_1103_PhysRevResearch_6_023079 crossref_primary_10_1038_s41467_020_15273_1 crossref_primary_10_1038_s41566_020_00711_9 crossref_primary_10_1016_j_optcom_2019_06_029 crossref_primary_10_1103_fcs4_99zl crossref_primary_10_1103_PhysRevApplied_14_031002 crossref_primary_10_1126_science_adf1094 crossref_primary_10_1016_j_optcom_2022_128175 crossref_primary_10_1038_s41566_019_0511_6 crossref_primary_10_1103_PhysRevApplied_23_024040 crossref_primary_10_1103_PhysRevLett_128_213605 crossref_primary_10_1103_PhysRevB_103_214303 crossref_primary_10_1140_epjp_s13360_022_03364_5 crossref_primary_10_1016_j_revip_2025_100108 crossref_primary_10_1038_s41586_022_04929_1 crossref_primary_10_1103_PhysRevResearch_2_023003 crossref_primary_10_1109_TAP_2021_3070084 crossref_primary_10_1002_adma_202000250 crossref_primary_10_1364_OL_550398 crossref_primary_10_1109_TAP_2019_2938613 crossref_primary_10_1002_adma_202209123 crossref_primary_10_1016_j_eml_2025_102345 crossref_primary_10_1038_s41928_021_00658_x crossref_primary_10_1140_epjd_e2020_100641_y crossref_primary_10_1002_adom_201901285 crossref_primary_10_1007_s11433_022_2054_0 crossref_primary_10_1002_lpor_202300836 crossref_primary_10_1364_OL_562248 crossref_primary_10_1103_PhysRevApplied_13_044040 crossref_primary_10_1103_PhysRevApplied_17_034053 crossref_primary_10_1515_nanoph_2023_0126 crossref_primary_10_1103_PhysRevApplied_16_014044 crossref_primary_10_1103_PhysRevApplied_18_054067 crossref_primary_10_1103_PhysRevLett_128_083604 crossref_primary_10_1103_PhysRevResearch_3_043226 crossref_primary_10_1063_5_0042567 crossref_primary_10_3389_fphy_2022_896596 crossref_primary_10_1073_pnas_2217928120 crossref_primary_10_1088_1361_6463_abc19b crossref_primary_10_1088_2040_8986_ab0cec crossref_primary_10_1515_nanoph_2022_0820 crossref_primary_10_1016_j_optcom_2019_06_059 crossref_primary_10_1038_s42005_022_00851_0 crossref_primary_10_1063_5_0158334 crossref_primary_10_1515_nanoph_2025_0307 crossref_primary_10_1117_1_APN_3_6_066008 crossref_primary_10_1002_andp_202200231 crossref_primary_10_1002_advs_202203747 crossref_primary_10_1038_s42005_024_01700_y crossref_primary_10_1103_PhysRevApplied_13_054056 crossref_primary_10_1364_OPTICAQ_558274 crossref_primary_10_1364_PRJ_387672 crossref_primary_10_1103_PhysRevA_103_042418 |
| Cites_doi | 10.1038/ncomms13662 10.1103/PhysRevApplied.7.024028 10.1038/nphoton.2013.185 10.1103/PhysRevLett.110.223602 10.1038/nmat3520 10.1088/1367-2630/17/2/023024 10.1103/PhysRevB.79.081406 10.1145/2534169.2486033 10.1063/1.3615688 10.1109/LAWP.2015.2510818 10.1109/TMTT.1967.1126456 10.1103/PhysRevB.92.100304 10.1103/PhysRevApplied.7.064014 10.1038/nphoton.2014.177 10.1109/22.989957 10.1103/PhysRevB.82.235114 10.1364/OE.20.021235 10.1038/nphys3134 10.1038/nature12066 10.1038/nphys3236 10.1088/1367-2630/18/11/113029 10.1038/nphoton.2015.79 10.1364/OPTICA.2.000635 10.1109/50.588673 10.1038/srep40014 10.1364/OE.20.007672 10.1038/ncomms3407 10.1109/JRPROC.1960.287569 10.1038/s41467-017-00798-9 10.1126/science.1216682 10.1103/PhysRevLett.110.093901 10.1103/PhysRevLett.118.154302 10.1364/OE.19.008285 10.1038/nphoton.2008.273 10.1109/PROC.1965.4321 10.1038/nphoton.2013.274 10.1103/RevModPhys.17.343 10.1103/PhysRevLett.108.153901 10.1038/nphys1893 10.1038/s41598-017-02340-9 10.1109/PROC.1966.4617 10.1038/064577e0 10.1063/1.3127531 10.1109/TMTT.2014.2347935 10.1021/ph400058y 10.1103/PhysRevB.91.174306 10.1038/nphoton.2016.161 10.1073/pnas.1210923109 10.1038/ncomms7193 10.1103/RevModPhys.39.475 10.1038/nphys3930 10.1038/ncomms11217 10.1364/OE.23.010498 10.1038/nphoton.2012.236 10.1126/science.1246957 10.1109/JSTQE.2005.845620 10.1038/nphoton.2015.122 10.1364/OE.20.00A293 10.1038/nature03569 10.1088/0034-4885/67/5/R03 10.1364/OME.5.002459 10.1126/science.1231930 10.1103/PhysRevB.87.060301 10.1073/pnas.1517363113 10.1038/ncomms11744 10.1364/OE.22.004493 10.1109/TMTT.2013.2238246 10.1103/PhysRevLett.107.216601 10.1038/nature09035 10.1103/PhysRevLett.109.033901 10.1109/TAP.2016.2632735 10.1038/181332a0 10.1364/JOSAB.22.000240 10.1038/nphys4009 10.1038/nphoton.2014.248 10.1088/1367-2630/18/8/083047 10.1103/PhysRevApplied.4.034002 10.1038/nphoton.2011.180 10.1103/PhysRevLett.111.203901 10.1038/s41598-017-01494-w 10.1364/OE.21.014500 10.1038/s41467-017-00447-1 10.1038/nphoton.2011.309 10.1103/PhysRevX.7.031001 10.1109/PROC.1966.4616 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2017 Copyright Nature Publishing Group Dec 2017 |
| Copyright_xml | – notice: The Author(s) 2017 – notice: Copyright Nature Publishing Group Dec 2017 |
| DBID | AAYXX CITATION 7QO 7SP 7U5 8FD 8FE 8FG 8FH AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU DWQXO FR3 GNUQQ H8D HCIFZ L7M LK8 M7P P5Z P62 P64 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS |
| DOI | 10.1038/s41566-017-0051-x |
| DatabaseName | CrossRef Biotechnology Research Abstracts Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials Biological Science Collection ProQuest Central ProQuest Technology Collection Natural Science Collection ProQuest One Community College ProQuest Central Korea Engineering Research Database ProQuest Central Student Aerospace Database SciTech Premium Collection Advanced Technologies Database with Aerospace Biological Sciences ProQuest Biological Science Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China |
| DatabaseTitle | CrossRef ProQuest Central Student Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences Aerospace Database ProQuest One Sustainability Biotechnology Research Abstracts Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Central (New) Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Electronics & Communications Abstracts ProQuest Technology Collection Biological Science Database ProQuest SciTech Collection Biotechnology and BioEngineering Abstracts Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Solid State and Superconductivity Abstracts Engineering Research Database ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | ProQuest Central Student |
| Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences Physics |
| EISSN | 1749-4893 |
| EndPage | 783 |
| ExternalDocumentID | 10_1038_s41566_017_0051_x |
| GroupedDBID | -~X 0R~ 123 29M 39C 4.4 5M7 5S5 70F 8FE 8FG 8FH 8R4 8R5 AARCD AAYZH ABAWZ ABDBF ABFSG ABJNI ABLJU ABZEH ACBWK ACGFS ACIWK ACPRK ACSTC ACUHS ADBBV AENEX AEUYN AEZWR AFANA AFBBN AFHIU AFKRA AFRAH AFSHS AFWHJ AGAYW AHBCP AHOSX AHSBF AHWEU AIBTJ AIXLP ALFFA ALMA_UNASSIGNED_HOLDINGS ALPWD ARAPS ARMCB ASPBG ATHPR AVWKF AXYYD AZFZN BBNVY BENPR BGLVJ BHPHI BKKNO CCPQU CS3 DU5 EBS EE. EJD ESX EXGXG F5P FEDTE FQGFK FSGXE HCIFZ HVGLF HZ~ I-F LK8 M7P NFIDA NNMJJ O9- ODYON P2P P62 PHGZM PHGZT PQGLB Q2X RNS RNT RNTTT SHXYY SIXXV SNYQT SOJ TAOOD TBHMF TDRGL TSG TUS ~8M AAYXX AFFHD AGSTI CITATION 7QO 7SP 7U5 8FD AZQEC DWQXO FR3 GNUQQ H8D L7M P64 PKEHL PQEST PQQKQ PQUKI PRINS |
| ID | FETCH-LOGICAL-c382t-d83eda194016fe03821ce909870e9a9d88e66059320822e784e1c2ef30dcab613 |
| IEDL.DBID | M7P |
| ISICitedReferencesCount | 793 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000416786100013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1749-4885 |
| IngestDate | Wed Jul 16 16:08:34 EDT 2025 Sat Nov 29 04:48:26 EST 2025 Tue Nov 18 21:08:05 EST 2025 Mon Jul 21 06:06:48 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 12 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c382t-d83eda194016fe03821ce909870e9a9d88e66059320822e784e1c2ef30dcab613 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Literature Review-3 |
| PQID | 1970634456 |
| PQPubID | 546300 |
| PageCount | 10 |
| ParticipantIDs | proquest_journals_1970634456 crossref_citationtrail_10_1038_s41566_017_0051_x crossref_primary_10_1038_s41566_017_0051_x springer_journals_10_1038_s41566_017_0051_x |
| PublicationCentury | 2000 |
| PublicationDate | 2017-12-01 |
| PublicationDateYYYYMMDD | 2017-12-01 |
| PublicationDate_xml | – month: 12 year: 2017 text: 2017-12-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London |
| PublicationTitle | Nature photonics |
| PublicationTitleAbbrev | Nature Photon |
| PublicationYear | 2017 |
| Publisher | Nature Publishing Group UK Nature Publishing Group |
| Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group |
| References | Hafezi, Mittal, Fan, Migdall, Taylor (CR9) 2013; 7 Kamal, Clarke, Devoret (CR60) 2011; 7 Bergeal (CR56) 2010; 465 Brenner (CR24) 1967; 15 Kodera, Sounas, Caloz (CR18) 2013; 61 Xu, Schmidt, Pradhan, Lipson (CR28) 2005; 435 Bhandare (CR27) 2005; 11 Pant (CR70) 2011; 19 Shen (CR78) 2016; 10 Fang, Fan (CR96) 2013; 111 Dong (CR39) 2015; 23 Casimir (CR15) 1945; 17 Lu, Joannopoulos, Soljačić (CR7) 2014; 8 Barzilai, Gerosa (CR64) 1966; 113 Tzuang, Feng, Nussenzveig, Fan, Lipson (CR52) 2014; 8 Kamal (CR21) 1960; 48 Qin, Xu, Wang (CR32) 2014; 62 Fang (CR83) 2017; 13 Kitagawa, Berg, Rudner, Demler (CR94) 2010; 82 Jalas (CR2) 2013; 7 Bharadia, McMilin, Katti (CR6) 2013; 43 Cullen (CR20) 1958; 181 Roushan (CR89) 2016; 13 Sounas, Alù (CR45) 2014; 1 Doerr, Chen, Vermeulen (CR55) 2014; 22 Fan (CR3) 2012; 335 Anderson, Newcomb (CR22) 1965; 53 Li, Eggleton, Fang, Fan (CR53) 2014; 5 Fleury, Sounas, Alù (CR49) 2015; 91 Traitini, Ruzzene (CR42) 2016; 18 Kang, Butsch, Russell (CR72) 2011; 5 Kodera, Sounas, Caloz (CR17) 2011; 99 Lira, Yu, Fan, Lipson (CR31) 2012; 109 Horsley, Wu, Artoni, La Rocca (CR41) 2013; 110 Phare, Daniel Lee, Cardenas, Lipson (CR29) 2015; 9 Kim, Kim, Bahl (CR80) 2017; 7 CR63 Hadad, Sounas, Alù (CR35) 2015; 92 Post (CR43) 1967; 39 Shi, Yu, Fan (CR12) 2015; 9 Fleury, Khanikaev, Alù (CR98) 2016; 7 Fang, Yu, Fan (CR54) 2013; 87 Rechtsman (CR8) 2013; 496 Dötsch (CR11) 2005; 22 Yu, Fan (CR38) 2009; 94 Turner (CR25) 1969; 3 Gu, Fertig, Arovas, Auerbach (CR95) 2011; 107 Fang, Yu, Fan (CR88) 2012; 6 Walter, Marquardt (CR92) 2016; 18 CR71 Rakich (CR74) 2012; 2 Adam (CR10) 2002; 50 Sounas, Caloz, Alù (CR44) 2013; 4 Dong (CR76) 2015; 6 Sliwa (CR58) 2015; 5 CR4 Biedka, Zhu, Mark Xu, Wang (CR66) 2017; 7 Wentz (CR23) 1966; 54 Poulton (CR69) 2012; 20 Estep, Sounas, Alù (CR47) 2016; 64 Wang (CR19) 2012; 109 Ranzani, Aumentado (CR61) 2015; 17 Koch, Koyama, Liou (CR26) 1997; 5 CR86 CR85 CR84 Taravati, Caloz (CR34) 2017; 65 Metelmann, Clerk (CR82) 2015; 5 Khanikaev (CR87) 2013; 12 Schmidt, Kessler, Peano, Painter, Marquardt (CR90) 2015; 2 Devoret, Schoelkopf (CR5) 2013; 339 Little, Chu, Haus, Foresi, Laine (CR48) 1997; 15 Fang, Yu, Fan (CR51) 2012; 108 Reiskarimian, Krishnaswamy (CR65) 2016; 7 Eggleton, Luther-Davies, Richardson (CR73) 2011; 5 Kerckhoff, Lalumière, Chapman, Blais, Lehnert (CR50) 2015; 4 Oka, Aoki (CR93) 2009; 79 Kim, Kuzyk, Han, Wang, Bahl (CR77) 2015; 11 Peano, Brendel, Schmidt, Marquardt (CR91) 2015; 5 Wang (CR40) 2013; 110 Lecocq (CR59) 2017; 7 Hafezi, Rabl (CR75) 2012; 20 Rayleigh (CR62) 1901; 64 Abdo, Sliwa, Frunzio, Devoret (CR57) 2013; 3 Shaltout, Kildishev, Shalaev (CR36) 2015; 5 Galland, Ding, Harris, Baehr-Jones, Hochberg (CR68) 2013; 21 Aleahmad, Khajavikhan, Christodoulides, LiKamWa (CR13) 2017; 7 Fleury, Sounas, Sieck, Haberman, Alù (CR16) 2014; 343 Ruesink, Miri, Alù, Verhagen (CR79) 2016; 7 Lin, Fan (CR97) 2014; 4 Estep, Sounas, Soric, Alù (CR46) 2014; 10 Hadad, Soric, Alù (CR33) 2016; 113 Sounas, Alù (CR14) 2017; 118 Dinc (CR67) 2017; 8 Potton (CR1) 2004; 67 Miller (CR99) 2012; 20 Miri, Ruesink, Verhagen, Alù (CR81) 2017; 7 Yu, Fan (CR30) 2009; 3 Correas-Serrano (CR37) 2015; 15 T Kodera (51_CR18) 2013; 61 F Ruesink (51_CR79) 2016; 7 Z Yu (51_CR30) 2009; 3 Z Wang (51_CR19) 2012; 109 J Kim (51_CR77) 2015; 11 D A B Miller (51_CR99) 2012; 20 C R Doerr (51_CR55) 2014; 22 M-A Miri (51_CR81) 2017; 7 J L Wentz (51_CR23) 1966; 54 C Galland (51_CR68) 2013; 21 N Bergeal (51_CR56) 2010; 465 A Kamal (51_CR60) 2011; 7 AL Cullen (51_CR20) 1958; 181 R Fleury (51_CR16) 2014; 343 M Rechtsman (51_CR8) 2013; 496 S A R Horsley (51_CR41) 2013; 110 S Bhandare (51_CR27) 2005; 11 E Li (51_CR53) 2014; 5 L Ranzani (51_CR61) 2015; 17 H Dötsch (51_CR11) 2005; 22 S Qin (51_CR32) 2014; 62 S Walter (51_CR92) 2016; 18 K Fang (51_CR96) 2013; 111 P T Rakich (51_CR74) 2012; 2 J D Adam (51_CR10) 2002; 50 N A Estep (51_CR47) 2016; 64 P Dong (51_CR39) 2015; 23 T Kitagawa (51_CR94) 2010; 82 H E Brenner (51_CR24) 1967; 15 R J Potton (51_CR1) 2004; 67 M Hafezi (51_CR75) 2012; 20 C T Phare (51_CR29) 2015; 9 D L Sounas (51_CR45) 2014; 1 E H Turner (51_CR25) 1969; 3 L Lu (51_CR7) 2014; 8 Q Lin (51_CR97) 2014; 4 M M Biedka (51_CR66) 2017; 7 K Fang (51_CR51) 2012; 108 D Jalas (51_CR2) 2013; 7 Z Yu (51_CR38) 2009; 94 K M Sliwa (51_CR58) 2015; 5 P Roushan (51_CR89) 2016; 13 D-W Wang (51_CR40) 2013; 110 T Oka (51_CR93) 2009; 79 A B Khanikaev (51_CR87) 2013; 12 51_CR63 B D O Anderson (51_CR22) 1965; 53 Y Hadad (51_CR35) 2015; 92 M S Kang (51_CR72) 2011; 5 A Metelmann (51_CR82) 2015; 5 R Pant (51_CR70) 2011; 19 D L Sounas (51_CR44) 2013; 4 R Fleury (51_CR98) 2016; 7 D L Sounas (51_CR14) 2017; 118 V Peano (51_CR91) 2015; 5 G Barzilai (51_CR64) 1966; 113 P Aleahmad (51_CR13) 2017; 7 T Kodera (51_CR17) 2011; 99 J W Rayleigh (51_CR62) 1901; 64 T L Koch (51_CR26) 1997; 5 H Lira (51_CR31) 2012; 109 M H Devoret (51_CR5) 2013; 339 G Traitini (51_CR42) 2016; 18 Z Gu (51_CR95) 2011; 107 Z Shen (51_CR78) 2016; 10 J H Kim (51_CR80) 2017; 7 K Fang (51_CR83) 2017; 13 C G Poulton (51_CR69) 2012; 20 M Hafezi (51_CR9) 2013; 7 C-H Dong (51_CR76) 2015; 6 B Abdo (51_CR57) 2013; 3 51_CR84 51_CR4 Q Xu (51_CR28) 2005; 435 51_CR85 Y Shi (51_CR12) 2015; 9 J Kerckhoff (51_CR50) 2015; 4 51_CR86 Y Hadad (51_CR33) 2016; 113 D Correas-Serrano (51_CR37) 2015; 15 S Taravati (51_CR34) 2017; 65 B J Eggleton (51_CR73) 2011; 5 K Fang (51_CR54) 2013; 87 H B G Casimir (51_CR15) 1945; 17 B E Little (51_CR48) 1997; 15 M Schmidt (51_CR90) 2015; 2 K Fang (51_CR88) 2012; 6 N A Estep (51_CR46) 2014; 10 51_CR71 N Reiskarimian (51_CR65) 2016; 7 F Lecocq (51_CR59) 2017; 7 A Shaltout (51_CR36) 2015; 5 L D Tzuang (51_CR52) 2014; 8 S Fan (51_CR3) 2012; 335 A K Kamal (51_CR21) 1960; 48 E J Post (51_CR43) 1967; 39 T Dinc (51_CR67) 2017; 8 D Bharadia (51_CR6) 2013; 43 R Fleury (51_CR49) 2015; 91 |
| References_xml | – volume: 7 year: 2016 ident: CR79 article-title: Nonreciprocity and magnetic-free isolation based on optomechanical interactions publication-title: Nat. Commun. doi: 10.1038/ncomms13662 – volume: 7 year: 2017 ident: CR59 article-title: Nonreciprocal microwave signal processing with a field-programmable Josephson amplifier publication-title: Phys. Rev. Appl doi: 10.1103/PhysRevApplied.7.024028 – volume: 7 start-page: 579 year: 2013 end-page: 582 ident: CR2 article-title: What is — and what is not — an optical isolator publication-title: Nat. Photon doi: 10.1038/nphoton.2013.185 – volume: 5 year: 2015 ident: CR82 article-title: Nonreciprocal photon transmission and amplification via reservoir engineering publication-title: Phys. Rev. X – volume: 3 year: 1969 ident: CR25 article-title: A nonreciprocal optical device employing birefringent elements with rotating birefringent axes publication-title: US patent – volume: 110 year: 2013 ident: CR41 article-title: Optical nonreciprocity of cold atom Bragg mirrors in motion publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.110.223602 – volume: 12 start-page: 233 year: 2013 end-page: 239 ident: CR87 article-title: Photonic topological insulators publication-title: Nat. Mater. doi: 10.1038/nmat3520 – volume: 17 year: 2015 ident: CR61 article-title: Graph-based analysis of nonreciprocity in coupled-mode systems publication-title: New J. Phys. doi: 10.1088/1367-2630/17/2/023024 – volume: 79 year: 2009 ident: CR93 article-title: Photovoltaic Hall effect in graphene publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.79.081406 – volume: 43 start-page: 375 year: 2013 end-page: 386 ident: CR6 article-title: Full duplex radios publication-title: ACM SIGCOMM Comp. Commun. Rev doi: 10.1145/2534169.2486033 – volume: 99 year: 2011 ident: CR17 article-title: Artificial Faraday rotation using a ring metamaterial structure without static magnetic field publication-title: Appl. Phys. Lett. doi: 10.1063/1.3615688 – volume: 113 start-page: 285 year: 1966 end-page: 288 ident: CR64 article-title: Rectangular waveguides loaded with magnetise ferrite and the so-called thermodynamic paradox publication-title: Proc. IEE – volume: 15 start-page: 1529 year: 2015 end-page: 1532 ident: CR37 article-title: Non-reciprocal graphene devices and antennas based on spatio-temporal modulation publication-title: IEEE Antenn. Wireless Propag. Lett doi: 10.1109/LAWP.2015.2510818 – ident: CR71 – volume: 15 start-page: 301 year: 1967 end-page: 306 ident: CR24 article-title: A unilateral parametric amplifier publication-title: IEEE Trans. Microw. Theory Technol doi: 10.1109/TMTT.1967.1126456 – volume: 5 year: 2014 ident: CR53 article-title: Photonic Aharonov–Bohm effect in photon–phonon interactions publication-title: Nat. Commun. – volume: 5 year: 2015 ident: CR91 article-title: Topological phases of sound and light publication-title: Phys. Rev. X – volume: 3 year: 2013 ident: CR57 article-title: Directional amplification with a Josephson circuit publication-title: Phys. Rev. X – ident: CR85 – volume: 92 year: 2015 ident: CR35 article-title: Space–time gradient metasurfaces publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.92.100304 – volume: 5 start-page: 141 year: 2011 end-page: 148 ident: CR73 article-title: Chalcogenide photonics publication-title: Nat. Photon – volume: 7 year: 2017 ident: CR81 article-title: Optical non-reciprocity based on optomechanical coupling publication-title: Phys. Rev. Appl doi: 10.1103/PhysRevApplied.7.064014 – volume: 5 year: 1997 ident: CR26 article-title: Optical modulators as monolithically integrated optical isolators publication-title: US patent – volume: 8 start-page: 701 year: 2014 end-page: 705 ident: CR52 article-title: Non-reciprocal phase shift induced by an effective magnetic flux for light publication-title: Nat. Photon doi: 10.1038/nphoton.2014.177 – volume: 50 start-page: 721 year: 2002 end-page: 737 ident: CR10 article-title: Ferrite devices and materials publication-title: IEEE Trans. Microw. Theory Technol doi: 10.1109/22.989957 – volume: 82 year: 2010 ident: CR94 article-title: Topological characterization of periodically driven quantum systems publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.82.235114 – volume: 20 start-page: 2135 year: 2012 end-page: 2156 ident: CR69 article-title: Design for broadband on-chip isolator using stimulated Brillouin scattering in dispersion-engineered chalcogenide waveguides publication-title: Opt. Express doi: 10.1364/OE.20.021235 – volume: 10 start-page: 923 year: 2014 end-page: 927 ident: CR46 article-title: Magnetic-free nonreciprocity and isolation based on parametrically modulated coupled resonator loops publication-title: Nat. Phys doi: 10.1038/nphys3134 – volume: 496 start-page: 196 year: 2013 end-page: 200 ident: CR8 article-title: Photonic Floquet topological insulators publication-title: Nature doi: 10.1038/nature12066 – volume: 11 start-page: 275 year: 2015 end-page: 280 ident: CR77 article-title: Non-reciprocal Brillouin scattering induced transparency publication-title: Nat. Phys doi: 10.1038/nphys3236 – volume: 18 year: 2016 ident: CR92 article-title: Classical dynamical gauge fields in optomechanics publication-title: New J. Phys. doi: 10.1088/1367-2630/18/11/113029 – volume: 9 start-page: 388 year: 2015 end-page: 392 ident: CR12 article-title: Limitations of nonlinear optical isolators due to dynamic reciprocity publication-title: Nat. Photon doi: 10.1038/nphoton.2015.79 – ident: CR86 – volume: 2 start-page: 635 year: 2015 end-page: 641 ident: CR90 article-title: Optomechanical creation of magnetic fields for photons on a lattice publication-title: Optica doi: 10.1364/OPTICA.2.000635 – ident: CR63 – volume: 15 start-page: 998 year: 1997 end-page: 1005 ident: CR48 article-title: Microring resonator channel dropping filters publication-title: J. Lightwave Technol. doi: 10.1109/50.588673 – volume: 7 year: 2017 ident: CR66 article-title: Ultra-wide band non-reciprocity through sequentially-switched delay lines publication-title: Sci. Rep doi: 10.1038/srep40014 – volume: 20 start-page: 7672 year: 2012 end-page: 7684 ident: CR75 article-title: Optomechanically induced non-reciprocity in microring resonators publication-title: Opt. Express doi: 10.1364/OE.20.007672 – volume: 4 year: 2013 ident: CR44 article-title: Giant non-reciprocity at the subwavelength scale using angular momentum-biased metamaterials publication-title: Nat. Commun. doi: 10.1038/ncomms3407 – volume: 48 start-page: 1424 year: 1960 end-page: 1430 ident: CR21 article-title: A parametric device as a nonreciprocal element publication-title: Proc. IRE doi: 10.1109/JRPROC.1960.287569 – volume: 8 year: 2017 ident: CR67 article-title: Synchronized conductivity modulation to realize broadband lossless magnetic-free non-reciprocity publication-title: Nat. Commun. doi: 10.1038/s41467-017-00798-9 – volume: 4 year: 2014 ident: CR97 article-title: Light guiding by effective gauge field for photons publication-title: Phys. Rev. X – volume: 335 start-page: 38 year: 2012 end-page: 38 ident: CR3 article-title: Comment on ‘Nonreciprocal light propagation in a silicon photonic circuit’ publication-title: Science doi: 10.1126/science.1216682 – volume: 110 year: 2013 ident: CR40 article-title: Optical diode made from a moving photonic crystal publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.110.093901 – volume: 118 year: 2017 ident: CR14 article-title: Time-reversal symmetry bounds on the electromagnetic response of asymmetric structures publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.118.154302 – volume: 19 start-page: 8285 year: 2011 end-page: 8290 ident: CR70 article-title: On-chip stimulated Brillouin scattering publication-title: Opt. Express doi: 10.1364/OE.19.008285 – volume: 3 start-page: 91 year: 2009 end-page: 94 ident: CR30 article-title: Complete optical isolation created by indirect interband photonic transitions publication-title: Nat. Photon doi: 10.1038/nphoton.2008.273 – volume: 53 start-page: 1674 year: 1965 end-page: 1674 ident: CR22 article-title: On reciprocity and time-variable networks publication-title: Proc. IEEE doi: 10.1109/PROC.1965.4321 – volume: 7 start-page: 1001 year: 2013 end-page: 1005 ident: CR9 article-title: Imaging topological edge states in silicon photonics publication-title: Nat. Photon doi: 10.1038/nphoton.2013.274 – volume: 17 start-page: 343 year: 1945 end-page: 350 ident: CR15 article-title: On Onsager’s principle of microscopic reversibility publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.17.343 – volume: 108 year: 2012 ident: CR51 article-title: Photonic Aharonov–Bohm effect based on dynamic modulation publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.108.153901 – volume: 7 start-page: 311 year: 2011 end-page: 315 ident: CR60 article-title: Noiseless non-reciprocity in a parametric active device publication-title: Nat. Phys doi: 10.1038/nphys1893 – volume: 7 year: 2017 ident: CR13 article-title: Integrated multi-port circulators for unidirectional optical information transport publication-title: Sci. Rep doi: 10.1038/s41598-017-02340-9 – volume: 54 start-page: 96 year: 1966 end-page: 97 ident: CR23 article-title: A nonreciprocal electrooptic device publication-title: Proc. IEEE doi: 10.1109/PROC.1966.4617 – volume: 64 year: 1901 ident: CR62 article-title: On the magnetic rotation of light and the second law of thermodynamics publication-title: Nature doi: 10.1038/064577e0 – volume: 94 year: 2009 ident: CR38 article-title: Optical isolation based on nonreciprocal phase shift induced by interband photonic transitions publication-title: Appl. Phys. Lett. doi: 10.1063/1.3127531 – volume: 62 start-page: 2260 year: 2014 end-page: 2272 ident: CR32 article-title: Nonreciprocal components with distributedly modulated capacitors publication-title: IEEE Trans. Microw. Theory Technol doi: 10.1109/TMTT.2014.2347935 – volume: 1 start-page: 198 year: 2014 end-page: 204 ident: CR45 article-title: Angular-momentum-biased nanorings to realize magnetic-free integrated optical isolation publication-title: ACS Photon doi: 10.1021/ph400058y – ident: CR4 – volume: 91 year: 2015 ident: CR49 article-title: Subwavelength ultrasonic circulator based on spatio-temporal modulation publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.91.174306 – volume: 10 start-page: 657 year: 2016 end-page: 661 ident: CR78 article-title: Experimental realization of optomechanically induced non-reciprocity publication-title: Nat. Photon doi: 10.1038/nphoton.2016.161 – ident: CR84 – volume: 109 start-page: 13194 year: 2012 end-page: 13197 ident: CR19 article-title: Gyrotropic response in the absence of a bias field publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1210923109 – volume: 6 year: 2015 ident: CR76 article-title: Brillouin-scattering-induced transparency and non-reciprocal light storage publication-title: Nat. Commun. doi: 10.1038/ncomms7193 – volume: 39 start-page: 475 year: 1967 end-page: 493 ident: CR43 article-title: Sagnac effect publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.39.475 – volume: 64 start-page: 502 year: 2016 end-page: 518 ident: CR47 article-title: Magnet-less microwave circulators based on spatiotemporally-modulated rings of coupled resonators publication-title: IEEE Trans. Microw. Theory Technol – volume: 13 start-page: 146 year: 2016 end-page: 151 ident: CR89 article-title: Chiral ground-state currents of interacting photons in a synthetic magnetic field publication-title: Nat. Phys doi: 10.1038/nphys3930 – volume: 7 year: 2016 ident: CR65 article-title: Magnetic-free non-reciprocity based on staggered commutation publication-title: Nat. Commun. doi: 10.1038/ncomms11217 – volume: 23 start-page: 10498 year: 2015 end-page: 10505 ident: CR39 article-title: Travelling-wave Mach–Zehnder modulators functioning as optical isolators publication-title: Opt. Express doi: 10.1364/OE.23.010498 – volume: 6 start-page: 782 year: 2012 end-page: 787 ident: CR88 article-title: Realizing effective magnetic field for photons by controlling the phase of dynamic modulation publication-title: Nat. Photon doi: 10.1038/nphoton.2012.236 – volume: 343 start-page: 516 year: 2014 end-page: 519 ident: CR16 article-title: Sound isolation and giant linear nonreciprocity in a compact acoustic circulator publication-title: Science doi: 10.1126/science.1246957 – volume: 11 start-page: 417 year: 2005 end-page: 421 ident: CR27 article-title: Novel nonmagnetic 30-dB traveling-wave single-sideband optical isolator integrated in III/V material publication-title: IEEE J. Sel. Top. Quant. Electron doi: 10.1109/JSTQE.2005.845620 – volume: 9 start-page: 511 year: 2015 end-page: 514 ident: CR29 article-title: Graphene electro-optic modulator with 30 GHz bandwidth publication-title: Nat. Photon doi: 10.1038/nphoton.2015.122 – volume: 20 start-page: A293 year: 2012 end-page: A308 ident: CR99 article-title: Energy consumption in optical modulators for interconnects publication-title: Opt. Express doi: 10.1364/OE.20.00A293 – volume: 435 start-page: 325 year: 2005 end-page: 327 ident: CR28 article-title: Micrometre-scale silicon electro-optic modulator publication-title: Nature doi: 10.1038/nature03569 – volume: 67 start-page: 717 year: 2004 end-page: 754 ident: CR1 article-title: Reciprocity in optics publication-title: Rep. Prog. Phys. doi: 10.1088/0034-4885/67/5/R03 – volume: 5 start-page: 2459 year: 2015 end-page: 2467 ident: CR36 article-title: Time-varying metasurfaces and Lorentz non-reciprocity publication-title: Opt. Mater. Express doi: 10.1364/OME.5.002459 – volume: 339 start-page: 1169 year: 2013 end-page: 1174 ident: CR5 article-title: Superconducting circuits for quantum information: an outlook publication-title: Science doi: 10.1126/science.1231930 – volume: 87 year: 2013 ident: CR54 article-title: Experimental demonstration of a photonic Aharonov–Bohm effect at radio frequencies publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.87.060301 – volume: 113 start-page: 3471 year: 2016 end-page: 3475 ident: CR33 article-title: Breaking temporal symmetries for emission and absorption publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1517363113 – volume: 7 year: 2016 ident: CR98 article-title: Floquet topological insulators for sound publication-title: Nat. Commun. doi: 10.1038/ncomms11744 – volume: 5 year: 2015 ident: CR58 article-title: Reconfigurable Josephson circulator/directional amplifier publication-title: Phys. Rev. X – volume: 22 start-page: 4493 year: 2014 end-page: 4498 ident: CR55 article-title: Silicon photonics broadband modulation-based isolator publication-title: Opt. Express doi: 10.1364/OE.22.004493 – volume: 61 start-page: 1030 year: 2013 end-page: 1042 ident: CR18 article-title: Magnetless nonreciprocal metamaterial (MNM) technology: application to microwave components publication-title: IEEE Trans. Microw. Theory Technol. doi: 10.1109/TMTT.2013.2238246 – volume: 107 year: 2011 ident: CR95 article-title: Floquet spectrum and transport through an irradiated graphene ribbon publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.107.216601 – volume: 2 year: 2012 ident: CR74 article-title: Giant enhancement of stimulated Brillouin scattering in the subwavelength limit publication-title: Phys. Rev. X – volume: 465 start-page: 64 year: 2010 end-page: 68 ident: CR56 article-title: Phase-preserving amplification near the quantum limit with a Josephson ring modulator publication-title: Nature doi: 10.1038/nature09035 – volume: 109 year: 2012 ident: CR31 article-title: Electrically driven nonreciprocity induced by interband photonic transition on a silicon chip publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.109.033901 – volume: 65 start-page: 442 year: 2017 end-page: 452 ident: CR34 article-title: Mixer-duplexer-antenna leaky-wave system based on periodic space–time modulation publication-title: IEEE Trans. Antennas Propag doi: 10.1109/TAP.2016.2632735 – volume: 181 year: 1958 ident: CR20 article-title: A travelling-wave parametric amplifier publication-title: Nature doi: 10.1038/181332a0 – volume: 22 start-page: 240 year: 2005 end-page: 253 ident: CR11 article-title: Applications of magneto-optical waveguides in integrated optics: review publication-title: J. Opt. Soc. Am. B doi: 10.1364/JOSAB.22.000240 – volume: 13 start-page: 465 year: 2017 end-page: 471 ident: CR83 article-title: Generalized non-reciprocity in an optomechanical circuit via synthetic magnetism and reservoir engineering publication-title: Nat. Phys doi: 10.1038/nphys4009 – volume: 8 start-page: 821 year: 2014 end-page: 829 ident: CR7 article-title: Topological photonics publication-title: Nat. Photon doi: 10.1038/nphoton.2014.248 – volume: 18 year: 2016 ident: CR42 article-title: Non-reciprocal elastic wave propagation in spatiotemporal periodic structures publication-title: New J. Phys. doi: 10.1088/1367-2630/18/8/083047 – volume: 4 year: 2015 ident: CR50 article-title: On-chip superconducting microwave circulator from synthetic rotation publication-title: Phys. Rev. Appl doi: 10.1103/PhysRevApplied.4.034002 – volume: 5 start-page: 549 year: 2011 end-page: 553 ident: CR72 article-title: Reconfigurable light-driven opto-acoustic isolators in photonic crystal fibre publication-title: Nat. Photon doi: 10.1038/nphoton.2011.180 – volume: 111 year: 2013 ident: CR96 article-title: Controlling the flow of light using the inhomogeneous effective gauge field that emerges from dynamic modulation publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.111.203901 – volume: 7 year: 2017 ident: CR80 article-title: Complete linear optical isolation at the microscale with ultralow loss publication-title: Sci. Rep doi: 10.1038/s41598-017-01494-w – volume: 21 start-page: 14500 year: 2013 end-page: 14511 ident: CR68 article-title: Broadband on-chip optical non-reciprocity using phase modulators publication-title: Opt. Express doi: 10.1364/OE.21.014500 – volume: 108 year: 2012 ident: 51_CR51 publication-title: Phys. Rev. Lett. – volume: 335 start-page: 38 year: 2012 ident: 51_CR3 publication-title: Science doi: 10.1126/science.1216682 – volume: 4 year: 2015 ident: 51_CR50 publication-title: Phys. Rev. Appl doi: 10.1103/PhysRevApplied.4.034002 – volume: 496 start-page: 196 year: 2013 ident: 51_CR8 publication-title: Nature doi: 10.1038/nature12066 – volume: 48 start-page: 1424 year: 1960 ident: 51_CR21 publication-title: Proc. IRE doi: 10.1109/JRPROC.1960.287569 – volume: 465 start-page: 64 year: 2010 ident: 51_CR56 publication-title: Nature doi: 10.1038/nature09035 – volume: 64 start-page: 502 year: 2016 ident: 51_CR47 publication-title: IEEE Trans. Microw. Theory Technol – volume: 109 start-page: 13194 year: 2012 ident: 51_CR19 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1210923109 – volume: 94 year: 2009 ident: 51_CR38 publication-title: Appl. Phys. Lett. – volume: 7 year: 2016 ident: 51_CR65 publication-title: Nat. Commun. doi: 10.1038/ncomms11217 – volume: 20 start-page: 2135 year: 2012 ident: 51_CR69 publication-title: Opt. Express – volume: 67 start-page: 717 year: 2004 ident: 51_CR1 publication-title: Rep. Prog. Phys. doi: 10.1088/0034-4885/67/5/R03 – ident: 51_CR86 – volume: 5 start-page: 2459 year: 2015 ident: 51_CR36 publication-title: Opt. Mater. Express doi: 10.1364/OME.5.002459 – volume: 62 start-page: 2260 year: 2014 ident: 51_CR32 publication-title: IEEE Trans. Microw. Theory Technol doi: 10.1109/TMTT.2014.2347935 – volume: 8 start-page: 821 year: 2014 ident: 51_CR7 publication-title: Nat. Photon doi: 10.1038/nphoton.2014.248 – volume: 111 year: 2013 ident: 51_CR96 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.111.203901 – volume: 5 year: 2015 ident: 51_CR82 publication-title: Phys. Rev. X – volume: 22 start-page: 4493 year: 2014 ident: 51_CR55 publication-title: Opt. Express doi: 10.1364/OE.22.004493 – volume: 13 start-page: 146 year: 2016 ident: 51_CR89 publication-title: Nat. Phys doi: 10.1038/nphys3930 – volume: 343 start-page: 516 year: 2014 ident: 51_CR16 publication-title: Science doi: 10.1126/science.1246957 – volume: 339 start-page: 1169 year: 2013 ident: 51_CR5 publication-title: Science doi: 10.1126/science.1231930 – volume: 7 year: 2017 ident: 51_CR13 publication-title: Sci. Rep doi: 10.1038/s41598-017-02340-9 – ident: 51_CR85 doi: 10.1038/s41467-017-00447-1 – volume: 18 year: 2016 ident: 51_CR92 publication-title: New J. Phys. doi: 10.1088/1367-2630/18/11/113029 – volume: 4 year: 2013 ident: 51_CR44 publication-title: Nat. Commun. – volume: 7 year: 2017 ident: 51_CR81 publication-title: Phys. Rev. Appl – volume: 13 start-page: 465 year: 2017 ident: 51_CR83 publication-title: Nat. Phys doi: 10.1038/nphys4009 – volume: 5 year: 2015 ident: 51_CR58 publication-title: Phys. Rev. X – volume: 10 start-page: 923 year: 2014 ident: 51_CR46 publication-title: Nat. Phys doi: 10.1038/nphys3134 – volume: 20 start-page: 7672 year: 2012 ident: 51_CR75 publication-title: Opt. Express doi: 10.1364/OE.20.007672 – volume: 109 year: 2012 ident: 51_CR31 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.109.033901 – volume: 7 year: 2017 ident: 51_CR66 publication-title: Sci. Rep – volume: 21 start-page: 14500 year: 2013 ident: 51_CR68 publication-title: Opt. Express doi: 10.1364/OE.21.014500 – volume: 79 year: 2009 ident: 51_CR93 publication-title: Phys. Rev. B – volume: 15 start-page: 1529 year: 2015 ident: 51_CR37 publication-title: IEEE Antenn. Wireless Propag. Lett doi: 10.1109/LAWP.2015.2510818 – volume: 7 start-page: 311 year: 2011 ident: 51_CR60 publication-title: Nat. Phys doi: 10.1038/nphys1893 – volume: 15 start-page: 998 year: 1997 ident: 51_CR48 publication-title: J. Lightwave Technol. doi: 10.1109/50.588673 – volume: 64 year: 1901 ident: 51_CR62 publication-title: Nature – volume: 7 start-page: 1001 year: 2013 ident: 51_CR9 publication-title: Nat. Photon doi: 10.1038/nphoton.2013.274 – volume: 12 start-page: 233 year: 2013 ident: 51_CR87 publication-title: Nat. Mater. doi: 10.1038/nmat3520 – volume: 17 year: 2015 ident: 51_CR61 publication-title: New J. Phys. doi: 10.1088/1367-2630/17/2/023024 – volume: 5 year: 2014 ident: 51_CR53 publication-title: Nat. Commun. – volume: 65 start-page: 442 year: 2017 ident: 51_CR34 publication-title: IEEE Trans. Antennas Propag doi: 10.1109/TAP.2016.2632735 – volume: 113 start-page: 285 year: 1966 ident: 51_CR64 publication-title: Proc. IEE – volume: 8 start-page: 701 year: 2014 ident: 51_CR52 publication-title: Nat. Photon doi: 10.1038/nphoton.2014.177 – volume: 5 start-page: 549 year: 2011 ident: 51_CR72 publication-title: Nat. Photon doi: 10.1038/nphoton.2011.180 – volume: 61 start-page: 1030 year: 2013 ident: 51_CR18 publication-title: IEEE Trans. Microw. Theory Technol. doi: 10.1109/TMTT.2013.2238246 – volume: 53 start-page: 1674 year: 1965 ident: 51_CR22 publication-title: Proc. IEEE doi: 10.1109/PROC.1965.4321 – volume: 92 year: 2015 ident: 51_CR35 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.92.100304 – volume: 7 year: 2017 ident: 51_CR80 publication-title: Sci. Rep – volume: 91 year: 2015 ident: 51_CR49 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.91.174306 – volume: 4 year: 2014 ident: 51_CR97 publication-title: Phys. Rev. X – volume: 15 start-page: 301 year: 1967 ident: 51_CR24 publication-title: IEEE Trans. Microw. Theory Technol doi: 10.1109/TMTT.1967.1126456 – volume: 110 year: 2013 ident: 51_CR41 publication-title: Phys. Rev. Lett. – volume: 7 year: 2017 ident: 51_CR59 publication-title: Phys. Rev. Appl doi: 10.1103/PhysRevApplied.7.024028 – volume: 2 start-page: 635 year: 2015 ident: 51_CR90 publication-title: Optica doi: 10.1364/OPTICA.2.000635 – volume: 5 start-page: 141 year: 2011 ident: 51_CR73 publication-title: Nat. Photon doi: 10.1038/nphoton.2011.309 – volume: 9 start-page: 388 year: 2015 ident: 51_CR12 publication-title: Nat. Photon doi: 10.1038/nphoton.2015.79 – volume: 3 start-page: 91 year: 2009 ident: 51_CR30 publication-title: Nat. Photon doi: 10.1038/nphoton.2008.273 – volume: 181 year: 1958 ident: 51_CR20 publication-title: Nature doi: 10.1038/181332a0 – volume: 11 start-page: 417 year: 2005 ident: 51_CR27 publication-title: IEEE J. Sel. Top. Quant. Electron doi: 10.1109/JSTQE.2005.845620 – ident: 51_CR71 – ident: 51_CR84 doi: 10.1103/PhysRevX.7.031001 – volume: 118 year: 2017 ident: 51_CR14 publication-title: Phys. Rev. Lett. – volume: 54 start-page: 96 year: 1966 ident: 51_CR23 publication-title: Proc. IEEE doi: 10.1109/PROC.1966.4616 – volume: 8 year: 2017 ident: 51_CR67 publication-title: Nat. Commun. doi: 10.1038/s41467-017-00798-9 – volume: 23 start-page: 10498 year: 2015 ident: 51_CR39 publication-title: Opt. Express doi: 10.1364/OE.23.010498 – volume: 3 year: 2013 ident: 51_CR57 publication-title: Phys. Rev. X – ident: 51_CR4 – volume: 107 year: 2011 ident: 51_CR95 publication-title: Phys. Rev. Lett. – volume: 11 start-page: 275 year: 2015 ident: 51_CR77 publication-title: Nat. Phys doi: 10.1038/nphys3236 – volume: 82 year: 2010 ident: 51_CR94 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.82.235114 – volume: 7 start-page: 579 year: 2013 ident: 51_CR2 publication-title: Nat. Photon doi: 10.1038/nphoton.2013.185 – volume: 5 year: 1997 ident: 51_CR26 publication-title: US patent – volume: 9 start-page: 511 year: 2015 ident: 51_CR29 publication-title: Nat. Photon doi: 10.1038/nphoton.2015.122 – volume: 39 start-page: 475 year: 1967 ident: 51_CR43 publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.39.475 – volume: 113 start-page: 3471 year: 2016 ident: 51_CR33 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1517363113 – volume: 20 start-page: A293 year: 2012 ident: 51_CR99 publication-title: Opt. Express doi: 10.1364/OE.20.00A293 – volume: 6 year: 2015 ident: 51_CR76 publication-title: Nat. Commun. – volume: 19 start-page: 8285 year: 2011 ident: 51_CR70 publication-title: Opt. Express doi: 10.1364/OE.19.008285 – volume: 17 start-page: 343 year: 1945 ident: 51_CR15 publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.17.343 – volume: 43 start-page: 375 year: 2013 ident: 51_CR6 publication-title: ACM SIGCOMM Comp. Commun. Rev doi: 10.1145/2534169.2486033 – volume: 5 year: 2015 ident: 51_CR91 publication-title: Phys. Rev. X – volume: 3 year: 1969 ident: 51_CR25 publication-title: US patent – volume: 110 year: 2013 ident: 51_CR40 publication-title: Phys. Rev. Lett. – ident: 51_CR63 – volume: 7 year: 2016 ident: 51_CR79 publication-title: Nat. Commun. doi: 10.1038/ncomms13662 – volume: 50 start-page: 721 year: 2002 ident: 51_CR10 publication-title: IEEE Trans. Microw. Theory Technol doi: 10.1109/22.989957 – volume: 10 start-page: 657 year: 2016 ident: 51_CR78 publication-title: Nat. Photon doi: 10.1038/nphoton.2016.161 – volume: 2 year: 2012 ident: 51_CR74 publication-title: Phys. Rev. X – volume: 1 start-page: 198 year: 2014 ident: 51_CR45 publication-title: ACS Photon doi: 10.1021/ph400058y – volume: 6 start-page: 782 year: 2012 ident: 51_CR88 publication-title: Nat. Photon doi: 10.1038/nphoton.2012.236 – volume: 7 year: 2016 ident: 51_CR98 publication-title: Nat. Commun. doi: 10.1038/ncomms11744 – volume: 18 year: 2016 ident: 51_CR42 publication-title: New J. Phys. – volume: 99 year: 2011 ident: 51_CR17 publication-title: Appl. Phys. Lett. doi: 10.1063/1.3615688 – volume: 22 start-page: 240 year: 2005 ident: 51_CR11 publication-title: J. Opt. Soc. Am. B doi: 10.1364/JOSAB.22.000240 – volume: 435 start-page: 325 year: 2005 ident: 51_CR28 publication-title: Nature doi: 10.1038/nature03569 – volume: 87 year: 2013 ident: 51_CR54 publication-title: Phys. Rev. B |
| SSID | ssj0053922 |
| Score | 2.694188 |
| SecondaryResourceType | review_article |
| Snippet | Reciprocity is a fundamental principle in optics, requiring that the response of a transmission channel is symmetric when source and observation points are... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 774 |
| SubjectTerms | 639/624 639/925/927/1021 Applied and Technical Physics Devices Magnetic materials Modulation Modulators Optical communication Optical data processing Optics Photonics Physics Physics and Astronomy Quantum Physics Reciprocity Review Article Switches Symmetry |
| Title | Non-reciprocal photonics based on time modulation |
| URI | https://link.springer.com/article/10.1038/s41566-017-0051-x https://www.proquest.com/docview/1970634456 |
| Volume | 11 |
| WOSCitedRecordID | wos000416786100013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 1749-4893 dateEnd: 20171231 omitProxy: false ssIdentifier: ssj0053922 issn: 1749-4885 databaseCode: P5Z dateStart: 20070101 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Biological Science Database (ProQuest) customDbUrl: eissn: 1749-4893 dateEnd: 20171231 omitProxy: false ssIdentifier: ssj0053922 issn: 1749-4885 databaseCode: M7P dateStart: 20070101 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1749-4893 dateEnd: 20171231 omitProxy: false ssIdentifier: ssj0053922 issn: 1749-4885 databaseCode: BENPR dateStart: 20070101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwED5By8BCeYpCQRmYQFYb52VPCFArBhRFCFDFEiW2K5AgKU1A_fn4EocCEl1YsiS2orvzfT7f-T6AE5ZOPMFTTqhMhA5QUo8wjVPE40K5dKI9YlWM-XAThCEbj3lkDtwKU1bZ-MTKUctc4Bl53-aBRlNX4_359I0gaxRmVw2Fxiq0sUuCU5XuRY0n9jT20_pCJCfaUL0mq-mwflEFLgR9NNolmf_EpcVm81d-tIKdUee_P7wJG2bDaV3UFrIFKyrbho7ZfFpmaRc7YId5RrDVBUKaHjB9yktsm1tYCHTSyjMLeeit11waxq9duB8N766uieFTIMJhtCSSOUomNtchlT9RWgrUFooPuF6yiidcMqZ8Hyn-KLaBVwFzlS2omjgDKZJU4_4etLI8U_tgcSqlo4T0pUTy4iDxA1ckwpWuDlh8L-3CoJFmLEyzceS8eImrpLfD4loBsVZAjAqI5104_RoyrTttLPu41wg9NouuiBcS78JZo7Zvr_-a7GD5ZIewTtFOqhqWHrTK2bs6gjXxUT4Xs2NoXw7D6Pa4sjz9jLzHTyk83QQ |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3JTsMwEB2VRYILO6KsOcAFZJE6m31ACAEViFJxAIS4mMR2RSWalCZsP8U3Ms7CJsGNA9cktqLM8mYy43kA6yzqeJJHnFAVSkxQIo8wxCnicald2kGPmDdjXraCdptdXfGzGrxWZ2FMW2XlE3NHrRJp_pFvN3iAaOoi3u_274lhjTLV1YpCo1CLE_3yhClbunN8gPLdoLR5eL5_REpWASIdRjOimKNViLk7BjsdbeO1htTcxtzb1jzkijHt-4bojpph6Dpgrm5IqjuOrWQYIfrhvkMw4rqYLKH9nHnXlef3MNagxQFMTtAwvKqK6rDtNE-UiMEEYwfk-SsOfgS33-qxOcw1J__bB5qCiTKgtvYKC5iGmo5nYLIMrq3SdaWz0GgnMTGjPAxk44L-bZKZscCpZYBcWUlsZd2etnqJKhnN5uDiT158HobjJNYLYHGqlKOl8pUy5MxB6AeuDKWrXEzIfC-qg11JT8hymLrh9LgTeVHfYaIQuECBCyNw8VyHzfcl_WKSyG8PL1dCFqVTScWHhOuwVanJp9s_bbb4-2ZrMHZ0ftoSreP2yRKMU6Ojeb_OMgxngwe9AqPyMeumg9Vc2y24-WvteQMWxzWV |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3JTtxAEC2xRCgXlgTEhM0HciFqjae9dR8QQsAIBBrNIUGIS2N3twUS2BPssPwaX0eVFwhIcOPA1Xa3LNfy6rmqqwDWRZIGWiaScRNrJChJwATiFAuktj5P0SNWxZjHR9FgIE5O5HAMHtqzMFRW2frEylGbXNM_8m5PRoimPuJ9N23KIoa7_a3RX0YTpCjT2o7TqFXk0N7fIn0rNg92UdY_Oe_v_d7ZZ82EAaY9wUtmhGdNjDweA5_Uunitp610kYe7VsbSCGHDkIbecWqMbiPh257mNvVco-MEkRD3HYfJCDkmWdcwOG1RIMC4g9eHMSVDIwnajKonukVFmhjhA9kEu3uJic-B7qvcbAV5_ZnP_LFmYboJtJ3t2jLmYMxm32CmCbqdxqUV36E3yDNGLT4IynHB6DwvqV1w4RDAGyfPnPLiyjpXuWkmnc3Dnw958QWYyPLMLoIjuTGe1SY0hoY2R3EY-TrWvvGRqIVB0gG3laTSTZN1mvVxqapkvydULXyFwlckfHXXgY2nJaO6w8h7Dy-3AleNsynUs7Q78KtVmf9uv7XZj_c3W4MpVBp1dDA4XIKvnNS1KuNZhony-p9dgS_6prworlcrxXfg7KOV5xH3oD5o |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Non-reciprocal+photonics+based+on+time+modulation&rft.jtitle=Nature+photonics&rft.au=Sounas%2C+Dimitrios+L.&rft.au=Al%C3%B9%2C+Andrea&rft.date=2017-12-01&rft.pub=Nature+Publishing+Group+UK&rft.issn=1749-4885&rft.eissn=1749-4893&rft.volume=11&rft.issue=12&rft.spage=774&rft.epage=783&rft_id=info:doi/10.1038%2Fs41566-017-0051-x&rft.externalDocID=10_1038_s41566_017_0051_x |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1749-4885&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1749-4885&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1749-4885&client=summon |