Non-reciprocal photonics based on time modulation

Reciprocity is a fundamental principle in optics, requiring that the response of a transmission channel is symmetric when source and observation points are interchanged. It is of major significance because it poses fundamental constraints on the way we process optical signals. Non-reciprocal devices...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Nature photonics Ročník 11; číslo 12; s. 774 - 783
Hlavní autori: Sounas, Dimitrios L., Alù, Andrea
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: London Nature Publishing Group UK 01.12.2017
Nature Publishing Group
Predmet:
ISSN:1749-4885, 1749-4893
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Reciprocity is a fundamental principle in optics, requiring that the response of a transmission channel is symmetric when source and observation points are interchanged. It is of major significance because it poses fundamental constraints on the way we process optical signals. Non-reciprocal devices, which break this symmetry, have become fundamental in photonic systems. Today they require magnetic materials that are bulky, costly and cannot be integrated. This is in stark contrast with most photonic devices, including sources, modulators, switches, waveguides, interconnects and antennas, which may be realized at the nanoscale. Here, we review recent progress and opportunities offered by temporal modulation to break reciprocity, revealing its potential for compact, low-energy, integrated non-reciprocal devices, and discuss the future of this exciting research field. The progress on non-reciprocal photonic devices enabled by temporal modulation is reviewed.
AbstractList Reciprocity is a fundamental principle in optics, requiring that the response of a transmission channel is symmetric when source and observation points are interchanged. It is of major significance because it poses fundamental constraints on the way we process optical signals. Non-reciprocal devices, which break this symmetry, have become fundamental in photonic systems. Today they require magnetic materials that are bulky, costly and cannot be integrated. This is in stark contrast with most photonic devices, including sources, modulators, switches, waveguides, interconnects and antennas, which may be realized at the nanoscale. Here, we review recent progress and opportunities offered by temporal modulation to break reciprocity, revealing its potential for compact, low-energy, integrated non-reciprocal devices, and discuss the future of this exciting research field. The progress on non-reciprocal photonic devices enabled by temporal modulation is reviewed.
Reciprocity is a fundamental principle in optics, requiring that the response of a transmission channel is symmetric when source and observation points are interchanged. It is of major significance because it poses fundamental constraints on the way we process optical signals. Non-reciprocal devices, which break this symmetry, have become fundamental in photonic systems. Today they require magnetic materials that are bulky, costly and cannot be integrated. This is in stark contrast with most photonic devices, including sources, modulators, switches, waveguides, interconnects and antennas, which may be realized at the nanoscale. Here, we review recent progress and opportunities offered by temporal modulation to break reciprocity, revealing its potential for compact, low-energy, integrated non-reciprocal devices, and discuss the future of this exciting research field.
Author Alù, Andrea
Sounas, Dimitrios L.
Author_xml – sequence: 1
  givenname: Dimitrios L.
  surname: Sounas
  fullname: Sounas, Dimitrios L.
  organization: Department of Electrical and Computer Engineering, University of Texas at Austin
– sequence: 2
  givenname: Andrea
  surname: Alù
  fullname: Alù, Andrea
  email: alu@mail.utexas.edu
  organization: Department of Electrical and Computer Engineering, University of Texas at Austin
BookMark eNp9kE1LAzEQhoNUsFV_gLcFz9FMsptNjlL8gqIXPYc0O6tbtklNtlD_vakrIoKeZg7vM_PyzMjEB4-EnAG7ACbUZSqhkpIyqCljFdDdAZlCXWpaKi0m37uqjsgspVXOCM35lMBD8DSi6zYxONsXm9cwBN-5VCxtwqYIvhi6NRbr0Gx7O3TBn5DD1vYJT7_mMXm-uX6a39HF4-39_GpBnVB8oI0S2FjQJQPZYq7IwaFmWtUMtdWNUiglq7TgTHGOtSoRHMdWsMbZpQRxTM7Hu7nZ2xbTYFZhG31-aUDXTIqyrGRO1WPKxZBSxNa4bvjsOUTb9QaY2fsxox-T_Zi9H7PLJPwiN7Fb2_j-L8NHJuWsf8H4o9Of0Af1enkX
CitedBy_id crossref_primary_10_1103_PhysRevA_105_043703
crossref_primary_10_1126_science_adf1206
crossref_primary_10_3390_nano11092410
crossref_primary_10_1088_0256_307X_38_2_024202
crossref_primary_10_1038_s41566_018_0306_1
crossref_primary_10_1088_1367_2630_ad3d7a
crossref_primary_10_1038_s41467_021_27903_3
crossref_primary_10_1088_1674_1056_abee0c
crossref_primary_10_1103_PhysRevResearch_2_043046
crossref_primary_10_1093_nsr_nwab134
crossref_primary_10_1103_PhysRevLett_127_043603
crossref_primary_10_1364_OPTICA_555318
crossref_primary_10_1002_lpor_202200574
crossref_primary_10_1038_s41377_024_01513_2
crossref_primary_10_1063_5_0057558
crossref_primary_10_1038_s41377_019_0239_6
crossref_primary_10_1063_5_0186961
crossref_primary_10_1103_PhysRevResearch_6_043035
crossref_primary_10_1186_s11671_018_2818_5
crossref_primary_10_1103_PhysRevA_111_023702
crossref_primary_10_1088_1402_4896_adca64
crossref_primary_10_1109_TMTT_2019_2915074
crossref_primary_10_1515_nanoph_2022_0805
crossref_primary_10_1088_2040_8986_aaaa3e
crossref_primary_10_1002_andp_202000196
crossref_primary_10_1007_s11467_019_0922_3
crossref_primary_10_1002_adom_202001594
crossref_primary_10_1038_s41534_024_00870_5
crossref_primary_10_1063_5_0020277
crossref_primary_10_1038_s41566_019_0375_9
crossref_primary_10_1038_s41467_019_12599_3
crossref_primary_10_1103_PhysRevLett_134_193602
crossref_primary_10_1109_TAP_2021_3102117
crossref_primary_10_1016_j_physb_2022_414210
crossref_primary_10_1088_1402_4896_acb7d3
crossref_primary_10_1103_PhysRevA_111_033507
crossref_primary_10_1038_s41566_023_01333_7
crossref_primary_10_1109_TAP_2019_2955219
crossref_primary_10_1049_ell2_70186
crossref_primary_10_1103_PhysRevB_103_144303
crossref_primary_10_1109_JMEMS_2019_2947903
crossref_primary_10_1016_j_ijleo_2025_172459
crossref_primary_10_1002_adom_202401127
crossref_primary_10_1515_nanoph_2020_0371
crossref_primary_10_1002_lpor_202401900
crossref_primary_10_1073_pnas_1915027116
crossref_primary_10_1038_s41566_022_00987_z
crossref_primary_10_1109_TAP_2019_2925927
crossref_primary_10_1103_PhysRevLett_131_123801
crossref_primary_10_1103_PhysRevApplied_15_034056
crossref_primary_10_1103_PhysRevResearch_1_023014
crossref_primary_10_1002_pssr_202400116
crossref_primary_10_1063_5_0145291
crossref_primary_10_1109_TAP_2020_2967302
crossref_primary_10_1038_s41566_019_0418_2
crossref_primary_10_1063_1_5042577
crossref_primary_10_1007_s11468_020_01261_0
crossref_primary_10_1002_adma_202501711
crossref_primary_10_3390_photonics8050139
crossref_primary_10_1109_LAWP_2022_3198576
crossref_primary_10_1038_s41467_020_17550_5
crossref_primary_10_1109_LAWP_2020_3034830
crossref_primary_10_1109_MSSC_2021_3111389
crossref_primary_10_1016_j_jsv_2024_118757
crossref_primary_10_1002_adom_202102154
crossref_primary_10_1038_s41467_021_24138_0
crossref_primary_10_1088_0253_6102_71_8_1011
crossref_primary_10_1063_5_0264233
crossref_primary_10_1109_JSTQE_2021_3133445
crossref_primary_10_1088_1361_6633_ac45f9
crossref_primary_10_1103_PhysRevA_111_013713
crossref_primary_10_1515_nanoph_2024_0197
crossref_primary_10_1016_j_physrep_2023_01_001
crossref_primary_10_1109_LAWP_2018_2856258
crossref_primary_10_1016_j_physrep_2023_01_002
crossref_primary_10_1103_PhysRevApplied_18_024027
crossref_primary_10_1063_5_0204694
crossref_primary_10_1103_PhysRevApplied_12_054004
crossref_primary_10_1103_PhysRevA_111_013704
crossref_primary_10_1002_lpor_202200659
crossref_primary_10_1103_PhysRevApplied_12_054008
crossref_primary_10_1142_S0217979225501218
crossref_primary_10_1103_PhysRevApplied_20_054028
crossref_primary_10_1038_s41377_023_01177_4
crossref_primary_10_1038_s41598_019_39916_6
crossref_primary_10_1063_5_0131818
crossref_primary_10_1016_j_jsv_2023_118199
crossref_primary_10_1103_PhysRevApplied_13_064033
crossref_primary_10_1002_adma_202007966
crossref_primary_10_1002_adma_201904069
crossref_primary_10_1016_j_apm_2024_03_005
crossref_primary_10_1063_5_0012206
crossref_primary_10_1088_1367_2630_aaf47a
crossref_primary_10_1063_1_5094736
crossref_primary_10_1109_LAWP_2023_3271774
crossref_primary_10_1038_s41377_025_01947_2
crossref_primary_10_3390_nano11112774
crossref_primary_10_1103_PhysRevA_111_023510
crossref_primary_10_1002_adfm_202503365
crossref_primary_10_1103_PhysRevResearch_3_L022006
crossref_primary_10_1088_1367_2630_ad91da
crossref_primary_10_1103_PhysRevB_105_L100304
crossref_primary_10_1088_1742_6596_2015_1_012120
crossref_primary_10_1109_JLT_2021_3049501
crossref_primary_10_1002_adma_202309835
crossref_primary_10_1103_PhysRevResearch_6_033020
crossref_primary_10_1364_OME_550605
crossref_primary_10_1103_PhysRevResearch_6_023216
crossref_primary_10_1109_TMTT_2023_3311918
crossref_primary_10_1002_adma_201906352
crossref_primary_10_1002_adma_202402170
crossref_primary_10_1103_PhysRevApplied_22_054080
crossref_primary_10_1088_1367_2630_ab8aad
crossref_primary_10_1088_1612_202X_ad914b
crossref_primary_10_1038_s41377_021_00494_w
crossref_primary_10_1002_qute_202400702
crossref_primary_10_1002_adom_202000075
crossref_primary_10_1103_PhysRevApplied_11_034017
crossref_primary_10_1088_0256_307X_40_10_104201
crossref_primary_10_1039_D2NR06449A
crossref_primary_10_1121_10_0037209
crossref_primary_10_1038_s41467_025_62853_0
crossref_primary_10_1140_epjd_s10053_022_00541_0
crossref_primary_10_1103_PhysRevApplied_18_034080
crossref_primary_10_1177_10775463221146091
crossref_primary_10_1007_s00894_019_4118_0
crossref_primary_10_1557_mrs_2018_126
crossref_primary_10_1557_mrs_2018_124
crossref_primary_10_3390_photonics8040133
crossref_primary_10_3390_photonics9080585
crossref_primary_10_1557_mrs_2018_120
crossref_primary_10_1063_5_0104358
crossref_primary_10_1038_s42005_021_00790_2
crossref_primary_10_1103_PhysRevApplied_16_034033
crossref_primary_10_1103_PhysRevApplied_18_064008
crossref_primary_10_1103_PhysRevResearch_2_033517
crossref_primary_10_1109_TAP_2024_3415427
crossref_primary_10_1002_apxr_202300125
crossref_primary_10_1088_2040_8986_ab146f
crossref_primary_10_1007_s11433_023_2348_x
crossref_primary_10_1063_5_0034291
crossref_primary_10_1088_0256_307X_41_4_044205
crossref_primary_10_1103_PhysRevA_111_043714
crossref_primary_10_1038_s41598_023_48503_9
crossref_primary_10_1088_1361_6463_adc271
crossref_primary_10_1103_PhysRevApplied_21_034061
crossref_primary_10_1140_epjb_s10051_023_00553_8
crossref_primary_10_1103_1p4g_wt7h
crossref_primary_10_1109_TMTT_2024_3359508
crossref_primary_10_1109_TAP_2018_2877394
crossref_primary_10_1364_PRJ_545282
crossref_primary_10_1038_s41377_024_01692_y
crossref_primary_10_1002_adom_202000783
crossref_primary_10_1016_j_wavemoti_2024_103379
crossref_primary_10_1103_PhysRevApplied_11_054033
crossref_primary_10_1063_5_0097501
crossref_primary_10_1038_s41467_018_06477_7
crossref_primary_10_1002_adom_202201732
crossref_primary_10_1364_JOSAB_35_002387
crossref_primary_10_3788_PI_2023_R09
crossref_primary_10_1364_OE_563594
crossref_primary_10_1140_epjp_s13360_023_04828_y
crossref_primary_10_1002_adfm_202504593
crossref_primary_10_1016_j_wavemoti_2025_103529
crossref_primary_10_1038_s41567_023_01993_w
crossref_primary_10_1038_s41467_018_04187_8
crossref_primary_10_1109_TMTT_2022_3215617
crossref_primary_10_1038_s41566_018_0264_7
crossref_primary_10_1103_PhysRevB_111_L161111
crossref_primary_10_1002_lpor_202300446
crossref_primary_10_1016_j_jcp_2021_110594
crossref_primary_10_1103_PhysRevLett_127_253603
crossref_primary_10_1103_PhysRevLett_130_096902
crossref_primary_10_1109_LAWP_2018_2866913
crossref_primary_10_1103_PhysRevApplied_20_014027
crossref_primary_10_1002_advs_202404558
crossref_primary_10_1109_TMTT_2018_2859244
crossref_primary_10_1063_1_5132699
crossref_primary_10_1088_1612_202X_adca9b
crossref_primary_10_1109_JMMCT_2022_3202990
crossref_primary_10_1088_2040_8986_aba941
crossref_primary_10_1103_PhysRevA_111_053514
crossref_primary_10_1038_s41377_021_00464_2
crossref_primary_10_1103_PhysRevApplied_11_054054
crossref_primary_10_1515_nanoph_2024_0525
crossref_primary_10_1140_epjqt_s40507_024_00301_6
crossref_primary_10_34133_research_0826
crossref_primary_10_1103_PhysRevLett_134_206701
crossref_primary_10_1103_PhysRevB_106_235418
crossref_primary_10_1103_PhysRevApplied_19_024031
crossref_primary_10_1016_j_ymssp_2025_113346
crossref_primary_10_1109_JPROC_2020_3012381
crossref_primary_10_1109_TAP_2018_2858200
crossref_primary_10_1103_PhysRevApplied_17_064048
crossref_primary_10_1038_s41598_019_53586_4
crossref_primary_10_1103_PhysRevApplied_18_014067
crossref_primary_10_1109_LAWP_2018_2870688
crossref_primary_10_1103_PhysRevLett_128_173901
crossref_primary_10_1103_PhysRevLett_127_153903
crossref_primary_10_3390_photonics7020028
crossref_primary_10_1103_PhysRevA_111_033715
crossref_primary_10_1038_s41467_018_06802_0
crossref_primary_10_1063_5_0051815
crossref_primary_10_1109_TMTT_2021_3072741
crossref_primary_10_1103_PhysRevApplied_17_054004
crossref_primary_10_1038_s41467_024_45416_7
crossref_primary_10_1121_1_5115018
crossref_primary_10_1002_adpr_202000168
crossref_primary_10_7498_aps_74_20250270
crossref_primary_10_1103_PhysRevApplied_11_064042
crossref_primary_10_1016_j_ijmecsci_2025_110377
crossref_primary_10_3788_LOP250431
crossref_primary_10_1103_PhysRevA_111_043510
crossref_primary_10_1038_s41467_020_14634_0
crossref_primary_10_3788_COL202321_113602
crossref_primary_10_1109_TMTT_2021_3079250
crossref_primary_10_1002_adom_202000100
crossref_primary_10_1103_PhysRevApplied_14_024032
crossref_primary_10_1063_5_0037771
crossref_primary_10_1088_1555_6611_add4ee
crossref_primary_10_1088_1555_6611_abb1be
crossref_primary_10_1109_ACCESS_2020_3030200
crossref_primary_10_32362_2500_316X_2022_10_4_55_64
crossref_primary_10_1002_lpor_202402078
crossref_primary_10_1016_j_chaos_2025_116019
crossref_primary_10_1109_MAP_2023_3236275
crossref_primary_10_1021_acsphotonics_5c00086
crossref_primary_10_1007_s12200_021_1125_4
crossref_primary_10_1103_PhysRevLett_134_033802
crossref_primary_10_1364_OL_555293
crossref_primary_10_1103_PhysRevLett_124_043902
crossref_primary_10_1515_nanoph_2024_0212
crossref_primary_10_1016_j_ijheatmasstransfer_2024_126570
crossref_primary_10_1016_j_jmmm_2021_168736
crossref_primary_10_1038_s41566_020_0606_0
crossref_primary_10_1002_lpor_202200717
crossref_primary_10_1038_s41534_021_00372_8
crossref_primary_10_1063_5_0050628
crossref_primary_10_1103_PhysRevApplied_19_014047
crossref_primary_10_1103_PhysRevApplied_16_064066
crossref_primary_10_1103_PhysRevResearch_5_043150
crossref_primary_10_1016_j_physb_2024_416329
crossref_primary_10_1063_5_0189615
crossref_primary_10_1109_LAWP_2018_2849654
crossref_primary_10_1063_5_0140483
crossref_primary_10_1186_s43593_022_00015_1
crossref_primary_10_1364_PRJ_485595
crossref_primary_10_1063_1_5135927
crossref_primary_10_7498_aps_74_20241565
crossref_primary_10_1016_j_rinp_2025_108421
crossref_primary_10_1007_s11433_023_2301_2
crossref_primary_10_1088_1361_6463_aaedfb
crossref_primary_10_1103_PhysRevX_9_011008
crossref_primary_10_3390_photonics11040389
crossref_primary_10_1002_adpr_202500083
crossref_primary_10_1103_74rq_f642
crossref_primary_10_1109_LAWP_2018_2868044
crossref_primary_10_1016_j_optlaseng_2025_109149
crossref_primary_10_1364_PRJ_7_000630
crossref_primary_10_1103_PhysRevApplied_16_L041002
crossref_primary_10_1109_TMTT_2019_2943338
crossref_primary_10_1103_PhysRevApplied_11_064052
crossref_primary_10_1016_j_fmre_2022_09_007
crossref_primary_10_1103_PhysRevApplied_22_064020
crossref_primary_10_1007_s11128_025_04757_y
crossref_primary_10_1103_PhysRevApplied_18_054044
crossref_primary_10_1002_adfm_202316745
crossref_primary_10_1063_5_0127081
crossref_primary_10_1016_j_optcom_2025_132487
crossref_primary_10_1515_nanoph_2022_0373
crossref_primary_10_1038_s41566_020_0603_3
crossref_primary_10_1109_ACCESS_2023_3325909
crossref_primary_10_1515_nanoph_2022_0253
crossref_primary_10_1103_PhysRevApplied_19_064002
crossref_primary_10_1103_298n_q3tq
crossref_primary_10_1103_PhysRevApplied_13_044070
crossref_primary_10_1103_PhysRevApplied_16_024062
crossref_primary_10_1038_s41467_021_25881_0
crossref_primary_10_1088_2058_9565_ac6a04
crossref_primary_10_1080_00018732_2021_1876991
crossref_primary_10_1038_s42005_023_01141_z
crossref_primary_10_1038_s41566_024_01424_z
crossref_primary_10_1364_PRJ_406215
crossref_primary_10_1515_nanoph_2025_0322
crossref_primary_10_1038_s42005_021_00731_z
crossref_primary_10_1103_PhysRevA_103_053522
crossref_primary_10_1140_epjp_s13360_025_06189_0
crossref_primary_10_1007_s11082_018_1661_3
crossref_primary_10_1038_s41467_023_43992_8
crossref_primary_10_1038_s41566_023_01261_6
crossref_primary_10_1088_1367_2630_ac6b4c
crossref_primary_10_3390_photonics10101144
crossref_primary_10_1002_adma_202403659
crossref_primary_10_1103_67wh_1fxv
crossref_primary_10_1038_s41565_018_0252_6
crossref_primary_10_1063_5_0054752
crossref_primary_10_1063_5_0187485
crossref_primary_10_1002_adom_202500347
crossref_primary_10_1103_PhysRevApplied_22_064001
crossref_primary_10_1063_5_0134993
crossref_primary_10_1088_0256_307X_41_7_074202
crossref_primary_10_3788_COL202523_052601
crossref_primary_10_1364_AO_507878
crossref_primary_10_1063_5_0151047
crossref_primary_10_1121_10_0001812
crossref_primary_10_1016_j_chaos_2025_117118
crossref_primary_10_1515_nanoph_2017_0132
crossref_primary_10_1002_adfm_201906635
crossref_primary_10_1038_s41467_025_62541_z
crossref_primary_10_1038_s41467_021_22597_z
crossref_primary_10_1103_PhysRevApplied_18_064064
crossref_primary_10_1117_1_OE_61_9_097103
crossref_primary_10_1002_adom_201900843
crossref_primary_10_1103_PhysRevApplied_16_014017
crossref_primary_10_1103_PhysRevApplied_15_064013
crossref_primary_10_1002_lpor_202501068
crossref_primary_10_1038_s41377_025_01844_8
crossref_primary_10_1109_MAP_2021_3115766
crossref_primary_10_1063_1_5085782
crossref_primary_10_3390_nano13050795
crossref_primary_10_1109_TAP_2019_2938674
crossref_primary_10_1038_s41598_022_12432_w
crossref_primary_10_1109_MMM_2019_2891380
crossref_primary_10_1103_PhysRevResearch_7_013138
crossref_primary_10_1103_PhysRevApplied_19_064012
crossref_primary_10_1063_5_0017885
crossref_primary_10_1109_JPHOT_2018_2850321
crossref_primary_10_1038_s42005_024_01740_4
crossref_primary_10_1039_D4NR03341H
crossref_primary_10_1515_nanoph_2021_0570
crossref_primary_10_1186_s43593_022_00025_z
crossref_primary_10_3389_fphy_2022_894115
crossref_primary_10_1038_s41377_024_01686_w
crossref_primary_10_1103_6hy3_jmk9
crossref_primary_10_1109_ACCESS_2022_3179493
crossref_primary_10_1016_j_newton_2025_100023
crossref_primary_10_1016_j_optcom_2021_127088
crossref_primary_10_1515_nanoph_2022_0451
crossref_primary_10_1063_5_0101731
crossref_primary_10_1103_PhysRevApplied_21_054027
crossref_primary_10_1088_1361_6633_aad6a8
crossref_primary_10_1038_s41598_025_03006_7
crossref_primary_10_1364_OE_560454
crossref_primary_10_1038_s41377_020_00413_5
crossref_primary_10_1007_s11468_020_01215_6
crossref_primary_10_1088_1361_648X_aaab24
crossref_primary_10_1002_advs_202001443
crossref_primary_10_1103_PhysRevB_111_054307
crossref_primary_10_1109_LAWP_2025_3528860
crossref_primary_10_1364_PRJ_384449
crossref_primary_10_1515_zna_2023_0302
crossref_primary_10_1038_s41566_025_01683_4
crossref_primary_10_1109_TAP_2019_2943712
crossref_primary_10_1109_MAP_2023_3261601
crossref_primary_10_1126_science_adf9621
crossref_primary_10_1103_w94c_xk6j
crossref_primary_10_1109_TMTT_2019_2943291
crossref_primary_10_1515_nanoph_2022_0671
crossref_primary_10_1016_j_scib_2023_08_013
crossref_primary_10_1103_5v2w_yg7v
crossref_primary_10_1109_ACCESS_2023_3286036
crossref_primary_10_1109_TAP_2019_2949134
crossref_primary_10_1002_adpr_202000104
crossref_primary_10_1016_j_optcom_2019_03_036
crossref_primary_10_1038_s41598_022_09626_7
crossref_primary_10_1364_PRJ_413286
crossref_primary_10_1038_s42005_022_01120_w
crossref_primary_10_1126_science_abm9293
crossref_primary_10_1103_PhysRevApplied_10_064037
crossref_primary_10_1103_PhysRevResearch_3_033161
crossref_primary_10_1103_PhysRevApplied_14_044042
crossref_primary_10_1038_s41377_024_01543_w
crossref_primary_10_1038_s41566_018_0254_9
crossref_primary_10_1038_s41377_019_0225_z
crossref_primary_10_1038_s41467_022_30079_z
crossref_primary_10_1038_s41467_019_11117_9
crossref_primary_10_1038_s41586_019_1061_2
crossref_primary_10_1088_1674_1056_ad0621
crossref_primary_10_1103_PhysRevApplied_23_024008
crossref_primary_10_1038_s41566_025_01663_8
crossref_primary_10_1039_D5MH00404G
crossref_primary_10_1088_1402_4896_aca22a
crossref_primary_10_1002_qute_202400007
crossref_primary_10_1109_JQE_2021_3071247
crossref_primary_10_1103_PhysRevApplied_11_014024
crossref_primary_10_1088_0256_307X_41_2_027201
crossref_primary_10_1515_nanoph_2023_0144
crossref_primary_10_1002_admt_202101362
crossref_primary_10_1002_lpor_202100449
crossref_primary_10_1038_s41566_022_01045_4
crossref_primary_10_1515_nanoph_2020_0414
crossref_primary_10_1109_LAWP_2018_2868790
crossref_primary_10_1016_j_optcom_2023_130113
crossref_primary_10_1109_JSTQE_2025_3590100
crossref_primary_10_1002_adom_202402052
crossref_primary_10_1103_PhysRevApplied_19_064072
crossref_primary_10_1088_1674_1056_ac3ecc
crossref_primary_10_3390_nano12162785
crossref_primary_10_1088_1361_6463_ac94dc
crossref_primary_10_1103_PhysRevA_111_013517
crossref_primary_10_1063_5_0207377
crossref_primary_10_1007_s10773_025_06004_7
crossref_primary_10_1021_acsphotonics_4c01785
crossref_primary_10_1016_j_optcom_2021_126861
crossref_primary_10_1063_5_0251657
crossref_primary_10_1088_1367_2630_adbc15
crossref_primary_10_1007_s11071_025_10992_w
crossref_primary_10_1109_TAP_2019_2948528
crossref_primary_10_1103_PhysRevA_104_053529
crossref_primary_10_1063_5_0252629
crossref_primary_10_1103_PhysRevResearch_7_023214
crossref_primary_10_1038_s41377_022_00870_0
crossref_primary_10_1364_PRJ_444480
crossref_primary_10_1002_qute_202500063
crossref_primary_10_1103_PhysRevApplied_18_024002
crossref_primary_10_1103_PhysRevApplied_12_034012
crossref_primary_10_1002_adom_202403371
crossref_primary_10_1103_PhysRevApplied_19_044014
crossref_primary_10_1088_1674_1056_acae7a
crossref_primary_10_1038_s41598_020_77489_x
crossref_primary_10_1126_sciadv_adu4133
crossref_primary_10_1021_acsphotonics_3c00457
crossref_primary_10_1103_PhysRevApplied_17_014034
crossref_primary_10_1140_epjd_e2019_100404_1
crossref_primary_10_1103_PhysRevLett_126_204101
crossref_primary_10_3788_PI_2025_C01
crossref_primary_10_1103_PhysRevApplied_12_034001
crossref_primary_10_1103_213q_sqxf
crossref_primary_10_3390_photonics12060563
crossref_primary_10_1038_s41928_018_0025_0
crossref_primary_10_1016_j_cej_2025_167537
crossref_primary_10_1103_PhysRevApplied_12_024026
crossref_primary_10_1103_PhysRevApplied_12_024027
crossref_primary_10_1038_s41467_025_59313_0
crossref_primary_10_1088_2040_8986_ac3a9d
crossref_primary_10_1103_PhysRevApplied_13_044037
crossref_primary_10_1063_5_0063247
crossref_primary_10_1103_PhysRevResearch_6_023079
crossref_primary_10_1038_s41467_020_15273_1
crossref_primary_10_1038_s41566_020_00711_9
crossref_primary_10_1016_j_optcom_2019_06_029
crossref_primary_10_1103_fcs4_99zl
crossref_primary_10_1103_PhysRevApplied_14_031002
crossref_primary_10_1126_science_adf1094
crossref_primary_10_1016_j_optcom_2022_128175
crossref_primary_10_1038_s41566_019_0511_6
crossref_primary_10_1103_PhysRevApplied_23_024040
crossref_primary_10_1103_PhysRevLett_128_213605
crossref_primary_10_1103_PhysRevB_103_214303
crossref_primary_10_1140_epjp_s13360_022_03364_5
crossref_primary_10_1016_j_revip_2025_100108
crossref_primary_10_1038_s41586_022_04929_1
crossref_primary_10_1103_PhysRevResearch_2_023003
crossref_primary_10_1109_TAP_2021_3070084
crossref_primary_10_1002_adma_202000250
crossref_primary_10_1364_OL_550398
crossref_primary_10_1109_TAP_2019_2938613
crossref_primary_10_1002_adma_202209123
crossref_primary_10_1016_j_eml_2025_102345
crossref_primary_10_1038_s41928_021_00658_x
crossref_primary_10_1140_epjd_e2020_100641_y
crossref_primary_10_1002_adom_201901285
crossref_primary_10_1007_s11433_022_2054_0
crossref_primary_10_1002_lpor_202300836
crossref_primary_10_1364_OL_562248
crossref_primary_10_1103_PhysRevApplied_13_044040
crossref_primary_10_1103_PhysRevApplied_17_034053
crossref_primary_10_1515_nanoph_2023_0126
crossref_primary_10_1103_PhysRevApplied_16_014044
crossref_primary_10_1103_PhysRevApplied_18_054067
crossref_primary_10_1103_PhysRevLett_128_083604
crossref_primary_10_1103_PhysRevResearch_3_043226
crossref_primary_10_1063_5_0042567
crossref_primary_10_3389_fphy_2022_896596
crossref_primary_10_1073_pnas_2217928120
crossref_primary_10_1088_1361_6463_abc19b
crossref_primary_10_1088_2040_8986_ab0cec
crossref_primary_10_1515_nanoph_2022_0820
crossref_primary_10_1016_j_optcom_2019_06_059
crossref_primary_10_1038_s42005_022_00851_0
crossref_primary_10_1063_5_0158334
crossref_primary_10_1515_nanoph_2025_0307
crossref_primary_10_1117_1_APN_3_6_066008
crossref_primary_10_1002_andp_202200231
crossref_primary_10_1002_advs_202203747
crossref_primary_10_1038_s42005_024_01700_y
crossref_primary_10_1103_PhysRevApplied_13_054056
crossref_primary_10_1364_OPTICAQ_558274
crossref_primary_10_1364_PRJ_387672
crossref_primary_10_1103_PhysRevA_103_042418
Cites_doi 10.1038/ncomms13662
10.1103/PhysRevApplied.7.024028
10.1038/nphoton.2013.185
10.1103/PhysRevLett.110.223602
10.1038/nmat3520
10.1088/1367-2630/17/2/023024
10.1103/PhysRevB.79.081406
10.1145/2534169.2486033
10.1063/1.3615688
10.1109/LAWP.2015.2510818
10.1109/TMTT.1967.1126456
10.1103/PhysRevB.92.100304
10.1103/PhysRevApplied.7.064014
10.1038/nphoton.2014.177
10.1109/22.989957
10.1103/PhysRevB.82.235114
10.1364/OE.20.021235
10.1038/nphys3134
10.1038/nature12066
10.1038/nphys3236
10.1088/1367-2630/18/11/113029
10.1038/nphoton.2015.79
10.1364/OPTICA.2.000635
10.1109/50.588673
10.1038/srep40014
10.1364/OE.20.007672
10.1038/ncomms3407
10.1109/JRPROC.1960.287569
10.1038/s41467-017-00798-9
10.1126/science.1216682
10.1103/PhysRevLett.110.093901
10.1103/PhysRevLett.118.154302
10.1364/OE.19.008285
10.1038/nphoton.2008.273
10.1109/PROC.1965.4321
10.1038/nphoton.2013.274
10.1103/RevModPhys.17.343
10.1103/PhysRevLett.108.153901
10.1038/nphys1893
10.1038/s41598-017-02340-9
10.1109/PROC.1966.4617
10.1038/064577e0
10.1063/1.3127531
10.1109/TMTT.2014.2347935
10.1021/ph400058y
10.1103/PhysRevB.91.174306
10.1038/nphoton.2016.161
10.1073/pnas.1210923109
10.1038/ncomms7193
10.1103/RevModPhys.39.475
10.1038/nphys3930
10.1038/ncomms11217
10.1364/OE.23.010498
10.1038/nphoton.2012.236
10.1126/science.1246957
10.1109/JSTQE.2005.845620
10.1038/nphoton.2015.122
10.1364/OE.20.00A293
10.1038/nature03569
10.1088/0034-4885/67/5/R03
10.1364/OME.5.002459
10.1126/science.1231930
10.1103/PhysRevB.87.060301
10.1073/pnas.1517363113
10.1038/ncomms11744
10.1364/OE.22.004493
10.1109/TMTT.2013.2238246
10.1103/PhysRevLett.107.216601
10.1038/nature09035
10.1103/PhysRevLett.109.033901
10.1109/TAP.2016.2632735
10.1038/181332a0
10.1364/JOSAB.22.000240
10.1038/nphys4009
10.1038/nphoton.2014.248
10.1088/1367-2630/18/8/083047
10.1103/PhysRevApplied.4.034002
10.1038/nphoton.2011.180
10.1103/PhysRevLett.111.203901
10.1038/s41598-017-01494-w
10.1364/OE.21.014500
10.1038/s41467-017-00447-1
10.1038/nphoton.2011.309
10.1103/PhysRevX.7.031001
10.1109/PROC.1966.4616
ContentType Journal Article
Copyright The Author(s) 2017
Copyright Nature Publishing Group Dec 2017
Copyright_xml – notice: The Author(s) 2017
– notice: Copyright Nature Publishing Group Dec 2017
DBID AAYXX
CITATION
7QO
7SP
7U5
8FD
8FE
8FG
8FH
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FR3
GNUQQ
H8D
HCIFZ
L7M
LK8
M7P
P5Z
P62
P64
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
DOI 10.1038/s41566-017-0051-x
DatabaseName CrossRef
Biotechnology Research Abstracts
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
ProQuest Technology Collection
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
ProQuest Central Student
Aerospace Database
SciTech Premium Collection
Advanced Technologies Database with Aerospace
Biological Sciences
ProQuest Biological Science
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
DatabaseTitle CrossRef
ProQuest Central Student
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
Aerospace Database
ProQuest One Sustainability
Biotechnology Research Abstracts
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
ProQuest Technology Collection
Biological Science Database
ProQuest SciTech Collection
Biotechnology and BioEngineering Abstracts
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
ProQuest Central Student
Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Physics
EISSN 1749-4893
EndPage 783
ExternalDocumentID 10_1038_s41566_017_0051_x
GroupedDBID -~X
0R~
123
29M
39C
4.4
5M7
5S5
70F
8FE
8FG
8FH
8R4
8R5
AARCD
AAYZH
ABAWZ
ABDBF
ABFSG
ABJNI
ABLJU
ABZEH
ACBWK
ACGFS
ACIWK
ACPRK
ACSTC
ACUHS
ADBBV
AENEX
AEUYN
AEZWR
AFANA
AFBBN
AFHIU
AFKRA
AFRAH
AFSHS
AFWHJ
AGAYW
AHBCP
AHOSX
AHSBF
AHWEU
AIBTJ
AIXLP
ALFFA
ALMA_UNASSIGNED_HOLDINGS
ALPWD
ARAPS
ARMCB
ASPBG
ATHPR
AVWKF
AXYYD
AZFZN
BBNVY
BENPR
BGLVJ
BHPHI
BKKNO
CCPQU
CS3
DU5
EBS
EE.
EJD
ESX
EXGXG
F5P
FEDTE
FQGFK
FSGXE
HCIFZ
HVGLF
HZ~
I-F
LK8
M7P
NFIDA
NNMJJ
O9-
ODYON
P2P
P62
PHGZM
PHGZT
PQGLB
Q2X
RNS
RNT
RNTTT
SHXYY
SIXXV
SNYQT
SOJ
TAOOD
TBHMF
TDRGL
TSG
TUS
~8M
AAYXX
AFFHD
AGSTI
CITATION
7QO
7SP
7U5
8FD
AZQEC
DWQXO
FR3
GNUQQ
H8D
L7M
P64
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c382t-d83eda194016fe03821ce909870e9a9d88e66059320822e784e1c2ef30dcab613
IEDL.DBID M7P
ISICitedReferencesCount 793
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000416786100013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1749-4885
IngestDate Wed Jul 16 16:08:34 EDT 2025
Sat Nov 29 04:48:26 EST 2025
Tue Nov 18 21:08:05 EST 2025
Mon Jul 21 06:06:48 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c382t-d83eda194016fe03821ce909870e9a9d88e66059320822e784e1c2ef30dcab613
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Literature Review-3
PQID 1970634456
PQPubID 546300
PageCount 10
ParticipantIDs proquest_journals_1970634456
crossref_citationtrail_10_1038_s41566_017_0051_x
crossref_primary_10_1038_s41566_017_0051_x
springer_journals_10_1038_s41566_017_0051_x
PublicationCentury 2000
PublicationDate 2017-12-01
PublicationDateYYYYMMDD 2017-12-01
PublicationDate_xml – month: 12
  year: 2017
  text: 2017-12-01
  day: 01
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle Nature photonics
PublicationTitleAbbrev Nature Photon
PublicationYear 2017
Publisher Nature Publishing Group UK
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
References Hafezi, Mittal, Fan, Migdall, Taylor (CR9) 2013; 7
Kamal, Clarke, Devoret (CR60) 2011; 7
Bergeal (CR56) 2010; 465
Brenner (CR24) 1967; 15
Kodera, Sounas, Caloz (CR18) 2013; 61
Xu, Schmidt, Pradhan, Lipson (CR28) 2005; 435
Bhandare (CR27) 2005; 11
Pant (CR70) 2011; 19
Shen (CR78) 2016; 10
Fang, Fan (CR96) 2013; 111
Dong (CR39) 2015; 23
Casimir (CR15) 1945; 17
Lu, Joannopoulos, Soljačić (CR7) 2014; 8
Barzilai, Gerosa (CR64) 1966; 113
Tzuang, Feng, Nussenzveig, Fan, Lipson (CR52) 2014; 8
Kamal (CR21) 1960; 48
Qin, Xu, Wang (CR32) 2014; 62
Fang (CR83) 2017; 13
Kitagawa, Berg, Rudner, Demler (CR94) 2010; 82
Jalas (CR2) 2013; 7
Bharadia, McMilin, Katti (CR6) 2013; 43
Cullen (CR20) 1958; 181
Roushan (CR89) 2016; 13
Sounas, Alù (CR45) 2014; 1
Doerr, Chen, Vermeulen (CR55) 2014; 22
Fan (CR3) 2012; 335
Anderson, Newcomb (CR22) 1965; 53
Li, Eggleton, Fang, Fan (CR53) 2014; 5
Fleury, Sounas, Alù (CR49) 2015; 91
Traitini, Ruzzene (CR42) 2016; 18
Kang, Butsch, Russell (CR72) 2011; 5
Kodera, Sounas, Caloz (CR17) 2011; 99
Lira, Yu, Fan, Lipson (CR31) 2012; 109
Horsley, Wu, Artoni, La Rocca (CR41) 2013; 110
Phare, Daniel Lee, Cardenas, Lipson (CR29) 2015; 9
Kim, Kim, Bahl (CR80) 2017; 7
CR63
Hadad, Sounas, Alù (CR35) 2015; 92
Post (CR43) 1967; 39
Shi, Yu, Fan (CR12) 2015; 9
Fleury, Khanikaev, Alù (CR98) 2016; 7
Fang, Yu, Fan (CR54) 2013; 87
Rechtsman (CR8) 2013; 496
Dötsch (CR11) 2005; 22
Yu, Fan (CR38) 2009; 94
Turner (CR25) 1969; 3
Gu, Fertig, Arovas, Auerbach (CR95) 2011; 107
Fang, Yu, Fan (CR88) 2012; 6
Walter, Marquardt (CR92) 2016; 18
CR71
Rakich (CR74) 2012; 2
Adam (CR10) 2002; 50
Sounas, Caloz, Alù (CR44) 2013; 4
Dong (CR76) 2015; 6
Sliwa (CR58) 2015; 5
CR4
Biedka, Zhu, Mark Xu, Wang (CR66) 2017; 7
Wentz (CR23) 1966; 54
Poulton (CR69) 2012; 20
Estep, Sounas, Alù (CR47) 2016; 64
Wang (CR19) 2012; 109
Ranzani, Aumentado (CR61) 2015; 17
Koch, Koyama, Liou (CR26) 1997; 5
CR86
CR85
CR84
Taravati, Caloz (CR34) 2017; 65
Metelmann, Clerk (CR82) 2015; 5
Khanikaev (CR87) 2013; 12
Schmidt, Kessler, Peano, Painter, Marquardt (CR90) 2015; 2
Devoret, Schoelkopf (CR5) 2013; 339
Little, Chu, Haus, Foresi, Laine (CR48) 1997; 15
Fang, Yu, Fan (CR51) 2012; 108
Reiskarimian, Krishnaswamy (CR65) 2016; 7
Eggleton, Luther-Davies, Richardson (CR73) 2011; 5
Kerckhoff, Lalumière, Chapman, Blais, Lehnert (CR50) 2015; 4
Oka, Aoki (CR93) 2009; 79
Kim, Kuzyk, Han, Wang, Bahl (CR77) 2015; 11
Peano, Brendel, Schmidt, Marquardt (CR91) 2015; 5
Wang (CR40) 2013; 110
Lecocq (CR59) 2017; 7
Hafezi, Rabl (CR75) 2012; 20
Rayleigh (CR62) 1901; 64
Abdo, Sliwa, Frunzio, Devoret (CR57) 2013; 3
Shaltout, Kildishev, Shalaev (CR36) 2015; 5
Galland, Ding, Harris, Baehr-Jones, Hochberg (CR68) 2013; 21
Aleahmad, Khajavikhan, Christodoulides, LiKamWa (CR13) 2017; 7
Fleury, Sounas, Sieck, Haberman, Alù (CR16) 2014; 343
Ruesink, Miri, Alù, Verhagen (CR79) 2016; 7
Lin, Fan (CR97) 2014; 4
Estep, Sounas, Soric, Alù (CR46) 2014; 10
Hadad, Soric, Alù (CR33) 2016; 113
Sounas, Alù (CR14) 2017; 118
Dinc (CR67) 2017; 8
Potton (CR1) 2004; 67
Miller (CR99) 2012; 20
Miri, Ruesink, Verhagen, Alù (CR81) 2017; 7
Yu, Fan (CR30) 2009; 3
Correas-Serrano (CR37) 2015; 15
T Kodera (51_CR18) 2013; 61
F Ruesink (51_CR79) 2016; 7
Z Yu (51_CR30) 2009; 3
Z Wang (51_CR19) 2012; 109
J Kim (51_CR77) 2015; 11
D A B Miller (51_CR99) 2012; 20
C R Doerr (51_CR55) 2014; 22
M-A Miri (51_CR81) 2017; 7
J L Wentz (51_CR23) 1966; 54
C Galland (51_CR68) 2013; 21
N Bergeal (51_CR56) 2010; 465
A Kamal (51_CR60) 2011; 7
AL Cullen (51_CR20) 1958; 181
R Fleury (51_CR16) 2014; 343
M Rechtsman (51_CR8) 2013; 496
S A R Horsley (51_CR41) 2013; 110
S Bhandare (51_CR27) 2005; 11
E Li (51_CR53) 2014; 5
L Ranzani (51_CR61) 2015; 17
H Dötsch (51_CR11) 2005; 22
S Qin (51_CR32) 2014; 62
S Walter (51_CR92) 2016; 18
K Fang (51_CR96) 2013; 111
P T Rakich (51_CR74) 2012; 2
J D Adam (51_CR10) 2002; 50
N A Estep (51_CR47) 2016; 64
P Dong (51_CR39) 2015; 23
T Kitagawa (51_CR94) 2010; 82
H E Brenner (51_CR24) 1967; 15
R J Potton (51_CR1) 2004; 67
M Hafezi (51_CR75) 2012; 20
C T Phare (51_CR29) 2015; 9
D L Sounas (51_CR45) 2014; 1
E H Turner (51_CR25) 1969; 3
L Lu (51_CR7) 2014; 8
Q Lin (51_CR97) 2014; 4
M M Biedka (51_CR66) 2017; 7
K Fang (51_CR51) 2012; 108
D Jalas (51_CR2) 2013; 7
Z Yu (51_CR38) 2009; 94
K M Sliwa (51_CR58) 2015; 5
P Roushan (51_CR89) 2016; 13
D-W Wang (51_CR40) 2013; 110
T Oka (51_CR93) 2009; 79
A B Khanikaev (51_CR87) 2013; 12
51_CR63
B D O Anderson (51_CR22) 1965; 53
Y Hadad (51_CR35) 2015; 92
M S Kang (51_CR72) 2011; 5
A Metelmann (51_CR82) 2015; 5
R Pant (51_CR70) 2011; 19
D L Sounas (51_CR44) 2013; 4
R Fleury (51_CR98) 2016; 7
D L Sounas (51_CR14) 2017; 118
V Peano (51_CR91) 2015; 5
G Barzilai (51_CR64) 1966; 113
P Aleahmad (51_CR13) 2017; 7
T Kodera (51_CR17) 2011; 99
J W Rayleigh (51_CR62) 1901; 64
T L Koch (51_CR26) 1997; 5
H Lira (51_CR31) 2012; 109
M H Devoret (51_CR5) 2013; 339
G Traitini (51_CR42) 2016; 18
Z Gu (51_CR95) 2011; 107
Z Shen (51_CR78) 2016; 10
J H Kim (51_CR80) 2017; 7
K Fang (51_CR83) 2017; 13
C G Poulton (51_CR69) 2012; 20
M Hafezi (51_CR9) 2013; 7
C-H Dong (51_CR76) 2015; 6
B Abdo (51_CR57) 2013; 3
51_CR84
51_CR4
Q Xu (51_CR28) 2005; 435
51_CR85
Y Shi (51_CR12) 2015; 9
J Kerckhoff (51_CR50) 2015; 4
51_CR86
Y Hadad (51_CR33) 2016; 113
D Correas-Serrano (51_CR37) 2015; 15
S Taravati (51_CR34) 2017; 65
B J Eggleton (51_CR73) 2011; 5
K Fang (51_CR54) 2013; 87
H B G Casimir (51_CR15) 1945; 17
B E Little (51_CR48) 1997; 15
M Schmidt (51_CR90) 2015; 2
K Fang (51_CR88) 2012; 6
N A Estep (51_CR46) 2014; 10
51_CR71
N Reiskarimian (51_CR65) 2016; 7
F Lecocq (51_CR59) 2017; 7
A Shaltout (51_CR36) 2015; 5
L D Tzuang (51_CR52) 2014; 8
S Fan (51_CR3) 2012; 335
A K Kamal (51_CR21) 1960; 48
E J Post (51_CR43) 1967; 39
T Dinc (51_CR67) 2017; 8
D Bharadia (51_CR6) 2013; 43
R Fleury (51_CR49) 2015; 91
References_xml – volume: 7
  year: 2016
  ident: CR79
  article-title: Nonreciprocity and magnetic-free isolation based on optomechanical interactions
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms13662
– volume: 7
  year: 2017
  ident: CR59
  article-title: Nonreciprocal microwave signal processing with a field-programmable Josephson amplifier
  publication-title: Phys. Rev. Appl
  doi: 10.1103/PhysRevApplied.7.024028
– volume: 7
  start-page: 579
  year: 2013
  end-page: 582
  ident: CR2
  article-title: What is — and what is not — an optical isolator
  publication-title: Nat. Photon
  doi: 10.1038/nphoton.2013.185
– volume: 5
  year: 2015
  ident: CR82
  article-title: Nonreciprocal photon transmission and amplification via reservoir engineering
  publication-title: Phys. Rev. X
– volume: 3
  year: 1969
  ident: CR25
  article-title: A nonreciprocal optical device employing birefringent elements with rotating birefringent axes
  publication-title: US patent
– volume: 110
  year: 2013
  ident: CR41
  article-title: Optical nonreciprocity of cold atom Bragg mirrors in motion
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.110.223602
– volume: 12
  start-page: 233
  year: 2013
  end-page: 239
  ident: CR87
  article-title: Photonic topological insulators
  publication-title: Nat. Mater.
  doi: 10.1038/nmat3520
– volume: 17
  year: 2015
  ident: CR61
  article-title: Graph-based analysis of nonreciprocity in coupled-mode systems
  publication-title: New J. Phys.
  doi: 10.1088/1367-2630/17/2/023024
– volume: 79
  year: 2009
  ident: CR93
  article-title: Photovoltaic Hall effect in graphene
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.79.081406
– volume: 43
  start-page: 375
  year: 2013
  end-page: 386
  ident: CR6
  article-title: Full duplex radios
  publication-title: ACM SIGCOMM Comp. Commun. Rev
  doi: 10.1145/2534169.2486033
– volume: 99
  year: 2011
  ident: CR17
  article-title: Artificial Faraday rotation using a ring metamaterial structure without static magnetic field
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3615688
– volume: 113
  start-page: 285
  year: 1966
  end-page: 288
  ident: CR64
  article-title: Rectangular waveguides loaded with magnetise ferrite and the so-called thermodynamic paradox
  publication-title: Proc. IEE
– volume: 15
  start-page: 1529
  year: 2015
  end-page: 1532
  ident: CR37
  article-title: Non-reciprocal graphene devices and antennas based on spatio-temporal modulation
  publication-title: IEEE Antenn. Wireless Propag. Lett
  doi: 10.1109/LAWP.2015.2510818
– ident: CR71
– volume: 15
  start-page: 301
  year: 1967
  end-page: 306
  ident: CR24
  article-title: A unilateral parametric amplifier
  publication-title: IEEE Trans. Microw. Theory Technol
  doi: 10.1109/TMTT.1967.1126456
– volume: 5
  year: 2014
  ident: CR53
  article-title: Photonic Aharonov–Bohm effect in photon–phonon interactions
  publication-title: Nat. Commun.
– volume: 5
  year: 2015
  ident: CR91
  article-title: Topological phases of sound and light
  publication-title: Phys. Rev. X
– volume: 3
  year: 2013
  ident: CR57
  article-title: Directional amplification with a Josephson circuit
  publication-title: Phys. Rev. X
– ident: CR85
– volume: 92
  year: 2015
  ident: CR35
  article-title: Space–time gradient metasurfaces
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.92.100304
– volume: 5
  start-page: 141
  year: 2011
  end-page: 148
  ident: CR73
  article-title: Chalcogenide photonics
  publication-title: Nat. Photon
– volume: 7
  year: 2017
  ident: CR81
  article-title: Optical non-reciprocity based on optomechanical coupling
  publication-title: Phys. Rev. Appl
  doi: 10.1103/PhysRevApplied.7.064014
– volume: 5
  year: 1997
  ident: CR26
  article-title: Optical modulators as monolithically integrated optical isolators
  publication-title: US patent
– volume: 8
  start-page: 701
  year: 2014
  end-page: 705
  ident: CR52
  article-title: Non-reciprocal phase shift induced by an effective magnetic flux for light
  publication-title: Nat. Photon
  doi: 10.1038/nphoton.2014.177
– volume: 50
  start-page: 721
  year: 2002
  end-page: 737
  ident: CR10
  article-title: Ferrite devices and materials
  publication-title: IEEE Trans. Microw. Theory Technol
  doi: 10.1109/22.989957
– volume: 82
  year: 2010
  ident: CR94
  article-title: Topological characterization of periodically driven quantum systems
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.82.235114
– volume: 20
  start-page: 2135
  year: 2012
  end-page: 2156
  ident: CR69
  article-title: Design for broadband on-chip isolator using stimulated Brillouin scattering in dispersion-engineered chalcogenide waveguides
  publication-title: Opt. Express
  doi: 10.1364/OE.20.021235
– volume: 10
  start-page: 923
  year: 2014
  end-page: 927
  ident: CR46
  article-title: Magnetic-free nonreciprocity and isolation based on parametrically modulated coupled resonator loops
  publication-title: Nat. Phys
  doi: 10.1038/nphys3134
– volume: 496
  start-page: 196
  year: 2013
  end-page: 200
  ident: CR8
  article-title: Photonic Floquet topological insulators
  publication-title: Nature
  doi: 10.1038/nature12066
– volume: 11
  start-page: 275
  year: 2015
  end-page: 280
  ident: CR77
  article-title: Non-reciprocal Brillouin scattering induced transparency
  publication-title: Nat. Phys
  doi: 10.1038/nphys3236
– volume: 18
  year: 2016
  ident: CR92
  article-title: Classical dynamical gauge fields in optomechanics
  publication-title: New J. Phys.
  doi: 10.1088/1367-2630/18/11/113029
– volume: 9
  start-page: 388
  year: 2015
  end-page: 392
  ident: CR12
  article-title: Limitations of nonlinear optical isolators due to dynamic reciprocity
  publication-title: Nat. Photon
  doi: 10.1038/nphoton.2015.79
– ident: CR86
– volume: 2
  start-page: 635
  year: 2015
  end-page: 641
  ident: CR90
  article-title: Optomechanical creation of magnetic fields for photons on a lattice
  publication-title: Optica
  doi: 10.1364/OPTICA.2.000635
– ident: CR63
– volume: 15
  start-page: 998
  year: 1997
  end-page: 1005
  ident: CR48
  article-title: Microring resonator channel dropping filters
  publication-title: J. Lightwave Technol.
  doi: 10.1109/50.588673
– volume: 7
  year: 2017
  ident: CR66
  article-title: Ultra-wide band non-reciprocity through sequentially-switched delay lines
  publication-title: Sci. Rep
  doi: 10.1038/srep40014
– volume: 20
  start-page: 7672
  year: 2012
  end-page: 7684
  ident: CR75
  article-title: Optomechanically induced non-reciprocity in microring resonators
  publication-title: Opt. Express
  doi: 10.1364/OE.20.007672
– volume: 4
  year: 2013
  ident: CR44
  article-title: Giant non-reciprocity at the subwavelength scale using angular momentum-biased metamaterials
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms3407
– volume: 48
  start-page: 1424
  year: 1960
  end-page: 1430
  ident: CR21
  article-title: A parametric device as a nonreciprocal element
  publication-title: Proc. IRE
  doi: 10.1109/JRPROC.1960.287569
– volume: 8
  year: 2017
  ident: CR67
  article-title: Synchronized conductivity modulation to realize broadband lossless magnetic-free non-reciprocity
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-017-00798-9
– volume: 4
  year: 2014
  ident: CR97
  article-title: Light guiding by effective gauge field for photons
  publication-title: Phys. Rev. X
– volume: 335
  start-page: 38
  year: 2012
  end-page: 38
  ident: CR3
  article-title: Comment on ‘Nonreciprocal light propagation in a silicon photonic circuit’
  publication-title: Science
  doi: 10.1126/science.1216682
– volume: 110
  year: 2013
  ident: CR40
  article-title: Optical diode made from a moving photonic crystal
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.110.093901
– volume: 118
  year: 2017
  ident: CR14
  article-title: Time-reversal symmetry bounds on the electromagnetic response of asymmetric structures
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.118.154302
– volume: 19
  start-page: 8285
  year: 2011
  end-page: 8290
  ident: CR70
  article-title: On-chip stimulated Brillouin scattering
  publication-title: Opt. Express
  doi: 10.1364/OE.19.008285
– volume: 3
  start-page: 91
  year: 2009
  end-page: 94
  ident: CR30
  article-title: Complete optical isolation created by indirect interband photonic transitions
  publication-title: Nat. Photon
  doi: 10.1038/nphoton.2008.273
– volume: 53
  start-page: 1674
  year: 1965
  end-page: 1674
  ident: CR22
  article-title: On reciprocity and time-variable networks
  publication-title: Proc. IEEE
  doi: 10.1109/PROC.1965.4321
– volume: 7
  start-page: 1001
  year: 2013
  end-page: 1005
  ident: CR9
  article-title: Imaging topological edge states in silicon photonics
  publication-title: Nat. Photon
  doi: 10.1038/nphoton.2013.274
– volume: 17
  start-page: 343
  year: 1945
  end-page: 350
  ident: CR15
  article-title: On Onsager’s principle of microscopic reversibility
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.17.343
– volume: 108
  year: 2012
  ident: CR51
  article-title: Photonic Aharonov–Bohm effect based on dynamic modulation
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.108.153901
– volume: 7
  start-page: 311
  year: 2011
  end-page: 315
  ident: CR60
  article-title: Noiseless non-reciprocity in a parametric active device
  publication-title: Nat. Phys
  doi: 10.1038/nphys1893
– volume: 7
  year: 2017
  ident: CR13
  article-title: Integrated multi-port circulators for unidirectional optical information transport
  publication-title: Sci. Rep
  doi: 10.1038/s41598-017-02340-9
– volume: 54
  start-page: 96
  year: 1966
  end-page: 97
  ident: CR23
  article-title: A nonreciprocal electrooptic device
  publication-title: Proc. IEEE
  doi: 10.1109/PROC.1966.4617
– volume: 64
  year: 1901
  ident: CR62
  article-title: On the magnetic rotation of light and the second law of thermodynamics
  publication-title: Nature
  doi: 10.1038/064577e0
– volume: 94
  year: 2009
  ident: CR38
  article-title: Optical isolation based on nonreciprocal phase shift induced by interband photonic transitions
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3127531
– volume: 62
  start-page: 2260
  year: 2014
  end-page: 2272
  ident: CR32
  article-title: Nonreciprocal components with distributedly modulated capacitors
  publication-title: IEEE Trans. Microw. Theory Technol
  doi: 10.1109/TMTT.2014.2347935
– volume: 1
  start-page: 198
  year: 2014
  end-page: 204
  ident: CR45
  article-title: Angular-momentum-biased nanorings to realize magnetic-free integrated optical isolation
  publication-title: ACS Photon
  doi: 10.1021/ph400058y
– ident: CR4
– volume: 91
  year: 2015
  ident: CR49
  article-title: Subwavelength ultrasonic circulator based on spatio-temporal modulation
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.91.174306
– volume: 10
  start-page: 657
  year: 2016
  end-page: 661
  ident: CR78
  article-title: Experimental realization of optomechanically induced non-reciprocity
  publication-title: Nat. Photon
  doi: 10.1038/nphoton.2016.161
– ident: CR84
– volume: 109
  start-page: 13194
  year: 2012
  end-page: 13197
  ident: CR19
  article-title: Gyrotropic response in the absence of a bias field
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1210923109
– volume: 6
  year: 2015
  ident: CR76
  article-title: Brillouin-scattering-induced transparency and non-reciprocal light storage
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms7193
– volume: 39
  start-page: 475
  year: 1967
  end-page: 493
  ident: CR43
  article-title: Sagnac effect
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.39.475
– volume: 64
  start-page: 502
  year: 2016
  end-page: 518
  ident: CR47
  article-title: Magnet-less microwave circulators based on spatiotemporally-modulated rings of coupled resonators
  publication-title: IEEE Trans. Microw. Theory Technol
– volume: 13
  start-page: 146
  year: 2016
  end-page: 151
  ident: CR89
  article-title: Chiral ground-state currents of interacting photons in a synthetic magnetic field
  publication-title: Nat. Phys
  doi: 10.1038/nphys3930
– volume: 7
  year: 2016
  ident: CR65
  article-title: Magnetic-free non-reciprocity based on staggered commutation
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms11217
– volume: 23
  start-page: 10498
  year: 2015
  end-page: 10505
  ident: CR39
  article-title: Travelling-wave Mach–Zehnder modulators functioning as optical isolators
  publication-title: Opt. Express
  doi: 10.1364/OE.23.010498
– volume: 6
  start-page: 782
  year: 2012
  end-page: 787
  ident: CR88
  article-title: Realizing effective magnetic field for photons by controlling the phase of dynamic modulation
  publication-title: Nat. Photon
  doi: 10.1038/nphoton.2012.236
– volume: 343
  start-page: 516
  year: 2014
  end-page: 519
  ident: CR16
  article-title: Sound isolation and giant linear nonreciprocity in a compact acoustic circulator
  publication-title: Science
  doi: 10.1126/science.1246957
– volume: 11
  start-page: 417
  year: 2005
  end-page: 421
  ident: CR27
  article-title: Novel nonmagnetic 30-dB traveling-wave single-sideband optical isolator integrated in III/V material
  publication-title: IEEE J. Sel. Top. Quant. Electron
  doi: 10.1109/JSTQE.2005.845620
– volume: 9
  start-page: 511
  year: 2015
  end-page: 514
  ident: CR29
  article-title: Graphene electro-optic modulator with 30 GHz bandwidth
  publication-title: Nat. Photon
  doi: 10.1038/nphoton.2015.122
– volume: 20
  start-page: A293
  year: 2012
  end-page: A308
  ident: CR99
  article-title: Energy consumption in optical modulators for interconnects
  publication-title: Opt. Express
  doi: 10.1364/OE.20.00A293
– volume: 435
  start-page: 325
  year: 2005
  end-page: 327
  ident: CR28
  article-title: Micrometre-scale silicon electro-optic modulator
  publication-title: Nature
  doi: 10.1038/nature03569
– volume: 67
  start-page: 717
  year: 2004
  end-page: 754
  ident: CR1
  article-title: Reciprocity in optics
  publication-title: Rep. Prog. Phys.
  doi: 10.1088/0034-4885/67/5/R03
– volume: 5
  start-page: 2459
  year: 2015
  end-page: 2467
  ident: CR36
  article-title: Time-varying metasurfaces and Lorentz non-reciprocity
  publication-title: Opt. Mater. Express
  doi: 10.1364/OME.5.002459
– volume: 339
  start-page: 1169
  year: 2013
  end-page: 1174
  ident: CR5
  article-title: Superconducting circuits for quantum information: an outlook
  publication-title: Science
  doi: 10.1126/science.1231930
– volume: 87
  year: 2013
  ident: CR54
  article-title: Experimental demonstration of a photonic Aharonov–Bohm effect at radio frequencies
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.87.060301
– volume: 113
  start-page: 3471
  year: 2016
  end-page: 3475
  ident: CR33
  article-title: Breaking temporal symmetries for emission and absorption
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1517363113
– volume: 7
  year: 2016
  ident: CR98
  article-title: Floquet topological insulators for sound
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms11744
– volume: 5
  year: 2015
  ident: CR58
  article-title: Reconfigurable Josephson circulator/directional amplifier
  publication-title: Phys. Rev. X
– volume: 22
  start-page: 4493
  year: 2014
  end-page: 4498
  ident: CR55
  article-title: Silicon photonics broadband modulation-based isolator
  publication-title: Opt. Express
  doi: 10.1364/OE.22.004493
– volume: 61
  start-page: 1030
  year: 2013
  end-page: 1042
  ident: CR18
  article-title: Magnetless nonreciprocal metamaterial (MNM) technology: application to microwave components
  publication-title: IEEE Trans. Microw. Theory Technol.
  doi: 10.1109/TMTT.2013.2238246
– volume: 107
  year: 2011
  ident: CR95
  article-title: Floquet spectrum and transport through an irradiated graphene ribbon
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.107.216601
– volume: 2
  year: 2012
  ident: CR74
  article-title: Giant enhancement of stimulated Brillouin scattering in the subwavelength limit
  publication-title: Phys. Rev. X
– volume: 465
  start-page: 64
  year: 2010
  end-page: 68
  ident: CR56
  article-title: Phase-preserving amplification near the quantum limit with a Josephson ring modulator
  publication-title: Nature
  doi: 10.1038/nature09035
– volume: 109
  year: 2012
  ident: CR31
  article-title: Electrically driven nonreciprocity induced by interband photonic transition on a silicon chip
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.109.033901
– volume: 65
  start-page: 442
  year: 2017
  end-page: 452
  ident: CR34
  article-title: Mixer-duplexer-antenna leaky-wave system based on periodic space–time modulation
  publication-title: IEEE Trans. Antennas Propag
  doi: 10.1109/TAP.2016.2632735
– volume: 181
  year: 1958
  ident: CR20
  article-title: A travelling-wave parametric amplifier
  publication-title: Nature
  doi: 10.1038/181332a0
– volume: 22
  start-page: 240
  year: 2005
  end-page: 253
  ident: CR11
  article-title: Applications of magneto-optical waveguides in integrated optics: review
  publication-title: J. Opt. Soc. Am. B
  doi: 10.1364/JOSAB.22.000240
– volume: 13
  start-page: 465
  year: 2017
  end-page: 471
  ident: CR83
  article-title: Generalized non-reciprocity in an optomechanical circuit via synthetic magnetism and reservoir engineering
  publication-title: Nat. Phys
  doi: 10.1038/nphys4009
– volume: 8
  start-page: 821
  year: 2014
  end-page: 829
  ident: CR7
  article-title: Topological photonics
  publication-title: Nat. Photon
  doi: 10.1038/nphoton.2014.248
– volume: 18
  year: 2016
  ident: CR42
  article-title: Non-reciprocal elastic wave propagation in spatiotemporal periodic structures
  publication-title: New J. Phys.
  doi: 10.1088/1367-2630/18/8/083047
– volume: 4
  year: 2015
  ident: CR50
  article-title: On-chip superconducting microwave circulator from synthetic rotation
  publication-title: Phys. Rev. Appl
  doi: 10.1103/PhysRevApplied.4.034002
– volume: 5
  start-page: 549
  year: 2011
  end-page: 553
  ident: CR72
  article-title: Reconfigurable light-driven opto-acoustic isolators in photonic crystal fibre
  publication-title: Nat. Photon
  doi: 10.1038/nphoton.2011.180
– volume: 111
  year: 2013
  ident: CR96
  article-title: Controlling the flow of light using the inhomogeneous effective gauge field that emerges from dynamic modulation
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.111.203901
– volume: 7
  year: 2017
  ident: CR80
  article-title: Complete linear optical isolation at the microscale with ultralow loss
  publication-title: Sci. Rep
  doi: 10.1038/s41598-017-01494-w
– volume: 21
  start-page: 14500
  year: 2013
  end-page: 14511
  ident: CR68
  article-title: Broadband on-chip optical non-reciprocity using phase modulators
  publication-title: Opt. Express
  doi: 10.1364/OE.21.014500
– volume: 108
  year: 2012
  ident: 51_CR51
  publication-title: Phys. Rev. Lett.
– volume: 335
  start-page: 38
  year: 2012
  ident: 51_CR3
  publication-title: Science
  doi: 10.1126/science.1216682
– volume: 4
  year: 2015
  ident: 51_CR50
  publication-title: Phys. Rev. Appl
  doi: 10.1103/PhysRevApplied.4.034002
– volume: 496
  start-page: 196
  year: 2013
  ident: 51_CR8
  publication-title: Nature
  doi: 10.1038/nature12066
– volume: 48
  start-page: 1424
  year: 1960
  ident: 51_CR21
  publication-title: Proc. IRE
  doi: 10.1109/JRPROC.1960.287569
– volume: 465
  start-page: 64
  year: 2010
  ident: 51_CR56
  publication-title: Nature
  doi: 10.1038/nature09035
– volume: 64
  start-page: 502
  year: 2016
  ident: 51_CR47
  publication-title: IEEE Trans. Microw. Theory Technol
– volume: 109
  start-page: 13194
  year: 2012
  ident: 51_CR19
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1210923109
– volume: 94
  year: 2009
  ident: 51_CR38
  publication-title: Appl. Phys. Lett.
– volume: 7
  year: 2016
  ident: 51_CR65
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms11217
– volume: 20
  start-page: 2135
  year: 2012
  ident: 51_CR69
  publication-title: Opt. Express
– volume: 67
  start-page: 717
  year: 2004
  ident: 51_CR1
  publication-title: Rep. Prog. Phys.
  doi: 10.1088/0034-4885/67/5/R03
– ident: 51_CR86
– volume: 5
  start-page: 2459
  year: 2015
  ident: 51_CR36
  publication-title: Opt. Mater. Express
  doi: 10.1364/OME.5.002459
– volume: 62
  start-page: 2260
  year: 2014
  ident: 51_CR32
  publication-title: IEEE Trans. Microw. Theory Technol
  doi: 10.1109/TMTT.2014.2347935
– volume: 8
  start-page: 821
  year: 2014
  ident: 51_CR7
  publication-title: Nat. Photon
  doi: 10.1038/nphoton.2014.248
– volume: 111
  year: 2013
  ident: 51_CR96
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.111.203901
– volume: 5
  year: 2015
  ident: 51_CR82
  publication-title: Phys. Rev. X
– volume: 22
  start-page: 4493
  year: 2014
  ident: 51_CR55
  publication-title: Opt. Express
  doi: 10.1364/OE.22.004493
– volume: 13
  start-page: 146
  year: 2016
  ident: 51_CR89
  publication-title: Nat. Phys
  doi: 10.1038/nphys3930
– volume: 343
  start-page: 516
  year: 2014
  ident: 51_CR16
  publication-title: Science
  doi: 10.1126/science.1246957
– volume: 339
  start-page: 1169
  year: 2013
  ident: 51_CR5
  publication-title: Science
  doi: 10.1126/science.1231930
– volume: 7
  year: 2017
  ident: 51_CR13
  publication-title: Sci. Rep
  doi: 10.1038/s41598-017-02340-9
– ident: 51_CR85
  doi: 10.1038/s41467-017-00447-1
– volume: 18
  year: 2016
  ident: 51_CR92
  publication-title: New J. Phys.
  doi: 10.1088/1367-2630/18/11/113029
– volume: 4
  year: 2013
  ident: 51_CR44
  publication-title: Nat. Commun.
– volume: 7
  year: 2017
  ident: 51_CR81
  publication-title: Phys. Rev. Appl
– volume: 13
  start-page: 465
  year: 2017
  ident: 51_CR83
  publication-title: Nat. Phys
  doi: 10.1038/nphys4009
– volume: 5
  year: 2015
  ident: 51_CR58
  publication-title: Phys. Rev. X
– volume: 10
  start-page: 923
  year: 2014
  ident: 51_CR46
  publication-title: Nat. Phys
  doi: 10.1038/nphys3134
– volume: 20
  start-page: 7672
  year: 2012
  ident: 51_CR75
  publication-title: Opt. Express
  doi: 10.1364/OE.20.007672
– volume: 109
  year: 2012
  ident: 51_CR31
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.109.033901
– volume: 7
  year: 2017
  ident: 51_CR66
  publication-title: Sci. Rep
– volume: 21
  start-page: 14500
  year: 2013
  ident: 51_CR68
  publication-title: Opt. Express
  doi: 10.1364/OE.21.014500
– volume: 79
  year: 2009
  ident: 51_CR93
  publication-title: Phys. Rev. B
– volume: 15
  start-page: 1529
  year: 2015
  ident: 51_CR37
  publication-title: IEEE Antenn. Wireless Propag. Lett
  doi: 10.1109/LAWP.2015.2510818
– volume: 7
  start-page: 311
  year: 2011
  ident: 51_CR60
  publication-title: Nat. Phys
  doi: 10.1038/nphys1893
– volume: 15
  start-page: 998
  year: 1997
  ident: 51_CR48
  publication-title: J. Lightwave Technol.
  doi: 10.1109/50.588673
– volume: 64
  year: 1901
  ident: 51_CR62
  publication-title: Nature
– volume: 7
  start-page: 1001
  year: 2013
  ident: 51_CR9
  publication-title: Nat. Photon
  doi: 10.1038/nphoton.2013.274
– volume: 12
  start-page: 233
  year: 2013
  ident: 51_CR87
  publication-title: Nat. Mater.
  doi: 10.1038/nmat3520
– volume: 17
  year: 2015
  ident: 51_CR61
  publication-title: New J. Phys.
  doi: 10.1088/1367-2630/17/2/023024
– volume: 5
  year: 2014
  ident: 51_CR53
  publication-title: Nat. Commun.
– volume: 65
  start-page: 442
  year: 2017
  ident: 51_CR34
  publication-title: IEEE Trans. Antennas Propag
  doi: 10.1109/TAP.2016.2632735
– volume: 113
  start-page: 285
  year: 1966
  ident: 51_CR64
  publication-title: Proc. IEE
– volume: 8
  start-page: 701
  year: 2014
  ident: 51_CR52
  publication-title: Nat. Photon
  doi: 10.1038/nphoton.2014.177
– volume: 5
  start-page: 549
  year: 2011
  ident: 51_CR72
  publication-title: Nat. Photon
  doi: 10.1038/nphoton.2011.180
– volume: 61
  start-page: 1030
  year: 2013
  ident: 51_CR18
  publication-title: IEEE Trans. Microw. Theory Technol.
  doi: 10.1109/TMTT.2013.2238246
– volume: 53
  start-page: 1674
  year: 1965
  ident: 51_CR22
  publication-title: Proc. IEEE
  doi: 10.1109/PROC.1965.4321
– volume: 92
  year: 2015
  ident: 51_CR35
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.92.100304
– volume: 7
  year: 2017
  ident: 51_CR80
  publication-title: Sci. Rep
– volume: 91
  year: 2015
  ident: 51_CR49
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.91.174306
– volume: 4
  year: 2014
  ident: 51_CR97
  publication-title: Phys. Rev. X
– volume: 15
  start-page: 301
  year: 1967
  ident: 51_CR24
  publication-title: IEEE Trans. Microw. Theory Technol
  doi: 10.1109/TMTT.1967.1126456
– volume: 110
  year: 2013
  ident: 51_CR41
  publication-title: Phys. Rev. Lett.
– volume: 7
  year: 2017
  ident: 51_CR59
  publication-title: Phys. Rev. Appl
  doi: 10.1103/PhysRevApplied.7.024028
– volume: 2
  start-page: 635
  year: 2015
  ident: 51_CR90
  publication-title: Optica
  doi: 10.1364/OPTICA.2.000635
– volume: 5
  start-page: 141
  year: 2011
  ident: 51_CR73
  publication-title: Nat. Photon
  doi: 10.1038/nphoton.2011.309
– volume: 9
  start-page: 388
  year: 2015
  ident: 51_CR12
  publication-title: Nat. Photon
  doi: 10.1038/nphoton.2015.79
– volume: 3
  start-page: 91
  year: 2009
  ident: 51_CR30
  publication-title: Nat. Photon
  doi: 10.1038/nphoton.2008.273
– volume: 181
  year: 1958
  ident: 51_CR20
  publication-title: Nature
  doi: 10.1038/181332a0
– volume: 11
  start-page: 417
  year: 2005
  ident: 51_CR27
  publication-title: IEEE J. Sel. Top. Quant. Electron
  doi: 10.1109/JSTQE.2005.845620
– ident: 51_CR71
– ident: 51_CR84
  doi: 10.1103/PhysRevX.7.031001
– volume: 118
  year: 2017
  ident: 51_CR14
  publication-title: Phys. Rev. Lett.
– volume: 54
  start-page: 96
  year: 1966
  ident: 51_CR23
  publication-title: Proc. IEEE
  doi: 10.1109/PROC.1966.4616
– volume: 8
  year: 2017
  ident: 51_CR67
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-017-00798-9
– volume: 23
  start-page: 10498
  year: 2015
  ident: 51_CR39
  publication-title: Opt. Express
  doi: 10.1364/OE.23.010498
– volume: 3
  year: 2013
  ident: 51_CR57
  publication-title: Phys. Rev. X
– ident: 51_CR4
– volume: 107
  year: 2011
  ident: 51_CR95
  publication-title: Phys. Rev. Lett.
– volume: 11
  start-page: 275
  year: 2015
  ident: 51_CR77
  publication-title: Nat. Phys
  doi: 10.1038/nphys3236
– volume: 82
  year: 2010
  ident: 51_CR94
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.82.235114
– volume: 7
  start-page: 579
  year: 2013
  ident: 51_CR2
  publication-title: Nat. Photon
  doi: 10.1038/nphoton.2013.185
– volume: 5
  year: 1997
  ident: 51_CR26
  publication-title: US patent
– volume: 9
  start-page: 511
  year: 2015
  ident: 51_CR29
  publication-title: Nat. Photon
  doi: 10.1038/nphoton.2015.122
– volume: 39
  start-page: 475
  year: 1967
  ident: 51_CR43
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.39.475
– volume: 113
  start-page: 3471
  year: 2016
  ident: 51_CR33
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1517363113
– volume: 20
  start-page: A293
  year: 2012
  ident: 51_CR99
  publication-title: Opt. Express
  doi: 10.1364/OE.20.00A293
– volume: 6
  year: 2015
  ident: 51_CR76
  publication-title: Nat. Commun.
– volume: 19
  start-page: 8285
  year: 2011
  ident: 51_CR70
  publication-title: Opt. Express
  doi: 10.1364/OE.19.008285
– volume: 17
  start-page: 343
  year: 1945
  ident: 51_CR15
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.17.343
– volume: 43
  start-page: 375
  year: 2013
  ident: 51_CR6
  publication-title: ACM SIGCOMM Comp. Commun. Rev
  doi: 10.1145/2534169.2486033
– volume: 5
  year: 2015
  ident: 51_CR91
  publication-title: Phys. Rev. X
– volume: 3
  year: 1969
  ident: 51_CR25
  publication-title: US patent
– volume: 110
  year: 2013
  ident: 51_CR40
  publication-title: Phys. Rev. Lett.
– ident: 51_CR63
– volume: 7
  year: 2016
  ident: 51_CR79
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms13662
– volume: 50
  start-page: 721
  year: 2002
  ident: 51_CR10
  publication-title: IEEE Trans. Microw. Theory Technol
  doi: 10.1109/22.989957
– volume: 10
  start-page: 657
  year: 2016
  ident: 51_CR78
  publication-title: Nat. Photon
  doi: 10.1038/nphoton.2016.161
– volume: 2
  year: 2012
  ident: 51_CR74
  publication-title: Phys. Rev. X
– volume: 1
  start-page: 198
  year: 2014
  ident: 51_CR45
  publication-title: ACS Photon
  doi: 10.1021/ph400058y
– volume: 6
  start-page: 782
  year: 2012
  ident: 51_CR88
  publication-title: Nat. Photon
  doi: 10.1038/nphoton.2012.236
– volume: 7
  year: 2016
  ident: 51_CR98
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms11744
– volume: 18
  year: 2016
  ident: 51_CR42
  publication-title: New J. Phys.
– volume: 99
  year: 2011
  ident: 51_CR17
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3615688
– volume: 22
  start-page: 240
  year: 2005
  ident: 51_CR11
  publication-title: J. Opt. Soc. Am. B
  doi: 10.1364/JOSAB.22.000240
– volume: 435
  start-page: 325
  year: 2005
  ident: 51_CR28
  publication-title: Nature
  doi: 10.1038/nature03569
– volume: 87
  year: 2013
  ident: 51_CR54
  publication-title: Phys. Rev. B
SSID ssj0053922
Score 2.694188
SecondaryResourceType review_article
Snippet Reciprocity is a fundamental principle in optics, requiring that the response of a transmission channel is symmetric when source and observation points are...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 774
SubjectTerms 639/624
639/925/927/1021
Applied and Technical Physics
Devices
Magnetic materials
Modulation
Modulators
Optical communication
Optical data processing
Optics
Photonics
Physics
Physics and Astronomy
Quantum Physics
Reciprocity
Review Article
Switches
Symmetry
Title Non-reciprocal photonics based on time modulation
URI https://link.springer.com/article/10.1038/s41566-017-0051-x
https://www.proquest.com/docview/1970634456
Volume 11
WOSCitedRecordID wos000416786100013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1749-4893
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0053922
  issn: 1749-4885
  databaseCode: P5Z
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Biological Science Database (ProQuest)
  customDbUrl:
  eissn: 1749-4893
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0053922
  issn: 1749-4885
  databaseCode: M7P
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1749-4893
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0053922
  issn: 1749-4885
  databaseCode: BENPR
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwED5By8BCeYpCQRmYQFYb52VPCFArBhRFCFDFEiW2K5AgKU1A_fn4EocCEl1YsiS2orvzfT7f-T6AE5ZOPMFTTqhMhA5QUo8wjVPE40K5dKI9YlWM-XAThCEbj3lkDtwKU1bZ-MTKUctc4Bl53-aBRlNX4_359I0gaxRmVw2Fxiq0sUuCU5XuRY0n9jT20_pCJCfaUL0mq-mwflEFLgR9NNolmf_EpcVm81d-tIKdUee_P7wJG2bDaV3UFrIFKyrbho7ZfFpmaRc7YId5RrDVBUKaHjB9yktsm1tYCHTSyjMLeeit11waxq9duB8N766uieFTIMJhtCSSOUomNtchlT9RWgrUFooPuF6yiidcMqZ8Hyn-KLaBVwFzlS2omjgDKZJU4_4etLI8U_tgcSqlo4T0pUTy4iDxA1ckwpWuDlh8L-3CoJFmLEyzceS8eImrpLfD4loBsVZAjAqI5104_RoyrTttLPu41wg9NouuiBcS78JZo7Zvr_-a7GD5ZIewTtFOqhqWHrTK2bs6gjXxUT4Xs2NoXw7D6Pa4sjz9jLzHTyk83QQ
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3JTsMwEB2VRYILO6KsOcAFZJE6m31ACAEViFJxAIS4mMR2RSWalCZsP8U3Ms7CJsGNA9cktqLM8mYy43kA6yzqeJJHnFAVSkxQIo8wxCnicald2kGPmDdjXraCdptdXfGzGrxWZ2FMW2XlE3NHrRJp_pFvN3iAaOoi3u_274lhjTLV1YpCo1CLE_3yhClbunN8gPLdoLR5eL5_REpWASIdRjOimKNViLk7BjsdbeO1htTcxtzb1jzkijHt-4bojpph6Dpgrm5IqjuOrWQYIfrhvkMw4rqYLKH9nHnXlef3MNagxQFMTtAwvKqK6rDtNE-UiMEEYwfk-SsOfgS33-qxOcw1J__bB5qCiTKgtvYKC5iGmo5nYLIMrq3SdaWz0GgnMTGjPAxk44L-bZKZscCpZYBcWUlsZd2etnqJKhnN5uDiT158HobjJNYLYHGqlKOl8pUy5MxB6AeuDKWrXEzIfC-qg11JT8hymLrh9LgTeVHfYaIQuECBCyNw8VyHzfcl_WKSyG8PL1dCFqVTScWHhOuwVanJp9s_bbb4-2ZrMHZ0ftoSreP2yRKMU6Ojeb_OMgxngwe9AqPyMeumg9Vc2y24-WvteQMWxzWV
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3JTtxAEC2xRCgXlgTEhM0HciFqjae9dR8QQsAIBBrNIUGIS2N3twUS2BPssPwaX0eVFwhIcOPA1Xa3LNfy6rmqqwDWRZIGWiaScRNrJChJwATiFAuktj5P0SNWxZjHR9FgIE5O5HAMHtqzMFRW2frEylGbXNM_8m5PRoimPuJ9N23KIoa7_a3RX0YTpCjT2o7TqFXk0N7fIn0rNg92UdY_Oe_v_d7ZZ82EAaY9wUtmhGdNjDweA5_Uunitp610kYe7VsbSCGHDkIbecWqMbiPh257mNvVco-MEkRD3HYfJCDkmWdcwOG1RIMC4g9eHMSVDIwnajKonukVFmhjhA9kEu3uJic-B7qvcbAV5_ZnP_LFmYboJtJ3t2jLmYMxm32CmCbqdxqUV36E3yDNGLT4IynHB6DwvqV1w4RDAGyfPnPLiyjpXuWkmnc3Dnw958QWYyPLMLoIjuTGe1SY0hoY2R3EY-TrWvvGRqIVB0gG3laTSTZN1mvVxqapkvydULXyFwlckfHXXgY2nJaO6w8h7Dy-3AleNsynUs7Q78KtVmf9uv7XZj_c3W4MpVBp1dDA4XIKvnNS1KuNZhony-p9dgS_6prworlcrxXfg7KOV5xH3oD5o
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Non-reciprocal+photonics+based+on+time+modulation&rft.jtitle=Nature+photonics&rft.au=Sounas%2C+Dimitrios+L.&rft.au=Al%C3%B9%2C+Andrea&rft.date=2017-12-01&rft.pub=Nature+Publishing+Group+UK&rft.issn=1749-4885&rft.eissn=1749-4893&rft.volume=11&rft.issue=12&rft.spage=774&rft.epage=783&rft_id=info:doi/10.1038%2Fs41566-017-0051-x&rft.externalDocID=10_1038_s41566_017_0051_x
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1749-4885&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1749-4885&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1749-4885&client=summon