Asynchronous block-iterative primal-dual decomposition methods for monotone inclusions

We propose new primal-dual decomposition algorithms for solving systems of inclusions involving sums of linearly composed maximally monotone operators. The principal innovation in these algorithms is that they are block-iterative in the sense that, at each iteration, only a subset of the monotone op...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Mathematical programming Ročník 168; číslo 1-2; s. 645 - 672
Hlavní autori: Combettes, Patrick L., Eckstein, Jonathan
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Berlin/Heidelberg Springer Berlin Heidelberg 01.03.2018
Springer Nature B.V
Predmet:
ISSN:0025-5610, 1436-4646
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract We propose new primal-dual decomposition algorithms for solving systems of inclusions involving sums of linearly composed maximally monotone operators. The principal innovation in these algorithms is that they are block-iterative in the sense that, at each iteration, only a subset of the monotone operators needs to be processed, as opposed to all operators as in established methods. Flexible strategies are used to select the blocks of operators activated at each iteration. In addition, we allow lags in operator processing, permitting asynchronous implementation. The decomposition phase of each iteration of our methods is to generate points in the graphs of the selected monotone operators, in order to construct a half-space containing the Kuhn–Tucker set associated with the system. The coordination phase of each iteration involves a projection onto this half-space. We present two related methods: the first method provides weakly convergent primal and dual sequences under general conditions, while the second is a variant in which strong convergence is guaranteed without additional assumptions. Neither algorithm requires prior knowledge of bounds on the linear operators involved or the inversion of linear operators. Our algorithmic framework unifies and significantly extends the approaches taken in earlier work on primal-dual projective splitting methods.
AbstractList We propose new primal-dual decomposition algorithms for solving systems of inclusions involving sums of linearly composed maximally monotone operators. The principal innovation in these algorithms is that they are block-iterative in the sense that, at each iteration, only a subset of the monotone operators needs to be processed, as opposed to all operators as in established methods. Flexible strategies are used to select the blocks of operators activated at each iteration. In addition, we allow lags in operator processing, permitting asynchronous implementation. The decomposition phase of each iteration of our methods is to generate points in the graphs of the selected monotone operators, in order to construct a half-space containing the Kuhn–Tucker set associated with the system. The coordination phase of each iteration involves a projection onto this half-space. We present two related methods: the first method provides weakly convergent primal and dual sequences under general conditions, while the second is a variant in which strong convergence is guaranteed without additional assumptions. Neither algorithm requires prior knowledge of bounds on the linear operators involved or the inversion of linear operators. Our algorithmic framework unifies and significantly extends the approaches taken in earlier work on primal-dual projective splitting methods.
Author Combettes, Patrick L.
Eckstein, Jonathan
Author_xml – sequence: 1
  givenname: Patrick L.
  surname: Combettes
  fullname: Combettes, Patrick L.
  email: plc@ljll.math.upmc.fr
  organization: Laboratoire Jacques-Louis Lions – UMR CNRS 7598, UPMC Université Paris 06
– sequence: 2
  givenname: Jonathan
  surname: Eckstein
  fullname: Eckstein, Jonathan
  organization: Department of Managemement Science and Information Systems and RUTCOR, Rutgers University
BookMark eNp9kMtKAzEUhoMo2FYfwN2A6-jJZGaSWZbiDQpu1G1Ik4xNnSY1yQh9e1NHEARdncX5v3P5pujYeWcQuiBwRQDYdSRAgGEgDSZQVRiO0IRUtMFVUzXHaAJQ1rhuCJyiaYwbACCU8wl6mce9U-vgnR9iseq9esM2mSCT_TDFLtit7LEeZF9oo_x256NN1rtia9La61h0PhTbDKd8TmGd6oeY2_EMnXSyj-b8u87Q8-3N0-IeLx_vHhbzJVaUlwlrDh2TLZO0ZabWIGtT005TMB2VquYdVZVmEiogasWZlFpp2immTUsrA5zO0OU4dxf8-2BiEhs_BJdXijJrYS2nhOQUG1Mq-BiD6YSySR7-SEHaXhAQB4lilCiyRHGQKCCT5Bf5pSTs_2XKkYk5615N-Lnpb-gTZx6IVw
CitedBy_id crossref_primary_10_1007_s10589_020_00238_3
crossref_primary_10_3390_sym13122415
crossref_primary_10_1007_s10589_019_00060_6
crossref_primary_10_1007_s10107_021_01758_4
crossref_primary_10_1007_s10957_022_02061_8
crossref_primary_10_1137_18M1203523
crossref_primary_10_1007_s10589_023_00489_w
crossref_primary_10_1007_s10898_024_01418_9
crossref_primary_10_1016_j_orl_2021_12_002
crossref_primary_10_1007_s11228_023_00700_4
crossref_primary_10_1287_moor_2022_1343
crossref_primary_10_1007_s10589_023_00528_6
crossref_primary_10_1007_s10957_023_02214_3
crossref_primary_10_1080_10556788_2022_2119233
crossref_primary_10_1137_20M1345062
crossref_primary_10_1007_s10898_019_00747_4
crossref_primary_10_1287_moor_2021_1161
crossref_primary_10_1007_s10589_018_0031_1
crossref_primary_10_1287_opre_2022_0228
crossref_primary_10_1007_s00245_022_09868_x
crossref_primary_10_1007_s10957_024_02560_w
crossref_primary_10_1007_s10092_018_0299_7
crossref_primary_10_1007_s10589_018_0037_8
crossref_primary_10_1017_S0013091522000049
crossref_primary_10_1007_s10107_019_01403_1
crossref_primary_10_3934_ipi_2021014
crossref_primary_10_1007_s11075_022_01280_4
crossref_primary_10_1137_18M1168297
crossref_primary_10_1007_s10957_017_1074_7
crossref_primary_10_1007_s00186_024_00878_9
crossref_primary_10_1007_s10589_020_00200_3
crossref_primary_10_1007_s10107_018_1303_3
crossref_primary_10_1016_j_jmaa_2020_124315
crossref_primary_10_1080_10618600_2023_2282501
crossref_primary_10_1007_s11228_022_00649_w
crossref_primary_10_1007_s10957_019_01542_7
crossref_primary_10_1007_s40314_024_03041_6
crossref_primary_10_1007_s10898_020_00940_w
crossref_primary_10_1007_s10107_019_01382_3
crossref_primary_10_1109_TGRS_2018_2870486
crossref_primary_10_1007_s10957_022_02074_3
crossref_primary_10_1007_s11590_019_01509_7
crossref_primary_10_1109_TSP_2021_3069677
crossref_primary_10_1137_18M1224763
crossref_primary_10_3390_axioms10030147
crossref_primary_10_1007_s10107_020_01565_3
crossref_primary_10_1287_moor_2024_0414
crossref_primary_10_1007_s10957_025_02827_w
crossref_primary_10_1080_02331934_2020_1858833
Cites_doi 10.1137/090759690
10.1137/070698816
10.1007/978-1-4419-9467-7
10.1007/BF00939552
10.1137/151003076
10.1137/S0036144593251710
10.1137/090754297
10.1137/10081602X
10.1007/s10957-015-0703-2
10.1137/140971233
10.1287/moor.26.2.248.10558
10.1137/130950616
10.1137/S1052623498340448
10.1016/j.aml.2004.09.013
10.1080/01630563.2015.1077864
10.11650/tjm.17.2013.3087
10.1007/BF02683333
10.1137/130904160
10.1007/s10107-014-0766-0
ContentType Journal Article
Copyright Springer-Verlag Berlin Heidelberg and Mathematical Optimization Society 2016
Mathematical Programming is a copyright of Springer, (2016). All Rights Reserved.
Copyright_xml – notice: Springer-Verlag Berlin Heidelberg and Mathematical Optimization Society 2016
– notice: Mathematical Programming is a copyright of Springer, (2016). All Rights Reserved.
DBID AAYXX
CITATION
3V.
7SC
7WY
7WZ
7XB
87Z
88I
8AL
8AO
8FD
8FE
8FG
8FK
8FL
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
HCIFZ
JQ2
K60
K6~
K7-
L.-
L6V
L7M
L~C
L~D
M0C
M0N
M2P
M7S
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PTHSS
Q9U
DOI 10.1007/s10107-016-1044-0
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Science Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni Edition)
SciTech Premium Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
Technology collection
ProQuest One Community College
ProQuest Central
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
SciTech Premium
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Computing Database
Science Database
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest One Academic
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
Engineering Collection
ProQuest Central Basic
DatabaseTitle CrossRef
ProQuest Business Collection (Alumni Edition)
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ABI/INFORM Complete
ProQuest One Applied & Life Sciences
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest Business Collection
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ABI/INFORM Global (Corporate)
ProQuest One Business
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Pharma Collection
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
ProQuest Central Korea
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest Computing (Alumni Edition)
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
Materials Science & Engineering Collection
ProQuest One Business (Alumni)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList ProQuest Business Collection (Alumni Edition)

Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Mathematics
EISSN 1436-4646
EndPage 672
ExternalDocumentID 10_1007_s10107_016_1044_0
GrantInformation_xml – fundername: CNRS Imag’in
  grantid: 2015OPTIMISME
– fundername: National Science Foundation
  grantid: CCF-1115638
  funderid: http://dx.doi.org/10.13039/100000001
– fundername: CNRS MASTODONS
  grantid: 2013MesureHD
GroupedDBID --K
--Z
-52
-5D
-5G
-BR
-EM
-Y2
-~C
-~X
.4S
.86
.DC
.VR
06D
0R~
0VY
199
1B1
1N0
1OL
1SB
203
28-
29M
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
6TJ
78A
7WY
88I
8AO
8FE
8FG
8FL
8TC
8UJ
8VB
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACNCT
ACOKC
ACOMO
ACPIV
ACUHS
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMOZ
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFFNX
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHQJS
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKVCP
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
B0M
BA0
BAPOH
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EAD
EAP
EBA
EBLON
EBR
EBS
EBU
ECS
EDO
EIOEI
EJD
EMI
EMK
EPL
ESBYG
EST
ESX
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
H~9
I-F
I09
IAO
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K1G
K60
K6V
K6~
K7-
KDC
KOV
KOW
L6V
LAS
LLZTM
M0C
M0N
M2P
M4Y
M7S
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQ-
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P62
P9R
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
PTHSS
Q2X
QOK
QOS
QWB
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RPZ
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDD
SDH
SDM
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TH9
TN5
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WH7
WK8
XPP
YLTOR
Z45
Z5O
Z7R
Z7S
Z7X
Z7Y
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8N
Z8R
Z8T
Z8W
Z92
ZL0
ZMTXR
ZWQNP
~02
~8M
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
ADXHL
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
7SC
7XB
8AL
8FD
8FK
JQ2
L.-
L7M
L~C
L~D
PKEHL
PQEST
PQUKI
PUEGO
Q9U
ID FETCH-LOGICAL-c382t-d80f7a97a397e5d0a5e53fd30ef3ac58f3c4d7a0401cb87aadcd3fc7de934e083
IEDL.DBID RSV
ISICitedReferencesCount 63
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000426071000027&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0025-5610
IngestDate Thu Sep 25 00:50:58 EDT 2025
Sat Nov 29 03:33:59 EST 2025
Tue Nov 18 20:15:36 EST 2025
Fri Feb 21 02:32:44 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1-2
Keywords Monotone inclusion
Primal-dual algorithm
65K05
90C25
Splitting algorithm
Duality
Monotone operator
49M27
Block-iterative algorithm
Asynchronous algorithm
47H05
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c382t-d80f7a97a397e5d0a5e53fd30ef3ac58f3c4d7a0401cb87aadcd3fc7de934e083
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2007798311
PQPubID 25307
PageCount 28
ParticipantIDs proquest_journals_2007798311
crossref_citationtrail_10_1007_s10107_016_1044_0
crossref_primary_10_1007_s10107_016_1044_0
springer_journals_10_1007_s10107_016_1044_0
PublicationCentury 2000
PublicationDate 2018-03-01
PublicationDateYYYYMMDD 2018-03-01
PublicationDate_xml – month: 03
  year: 2018
  text: 2018-03-01
  day: 01
PublicationDecade 2010
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationSubtitle A Publication of the Mathematical Optimization Society
PublicationTitle Mathematical programming
PublicationTitleAbbrev Math. Program
PublicationYear 2018
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References Pennanen (CR24) 2000; 10
Pesquet, Repetti (CR25) 2015; 16
Alotaibi, Combettes, Shahzad (CR2) 2015; 36
Bauschke (CR5) 2009; 48
Briceño-Arias, Combettes (CR12) 2011; 21
Eckstein, Svaiter (CR19) 2008; A111
Dong (CR18) 2005; 18
Combettes (CR13) 1997; 35
CR4
Bauschke, Combettes (CR7) 2001; 26
Eckstein, Svaiter (CR20) 2009; 48
Ottavy (CR23) 1988; 56
Davis (CR17) 2015; 25
Attouch, Briceño-Arias, Combettes (CR3) 2010; 48
Combettes (CR15) 2013; 23
Bauschke, Borwein (CR6) 1996; 38
Boţ, Csetnek, Nagy (CR10) 2013; 17
Bauschke, Combettes (CR8) 2011
Moreau (CR22) 1962; 255
CR21
Boţ, Csetnek, Heinrich, Hendrich (CR9) 2015; A150
Alotaibi, Combettes, Shahzad (CR1) 2014; 24
Briceño-Arias (CR11) 2015; 166
Combettes, Floudas, Pardalos (CR14) 2001
Combettes, Pesquet (CR16) 2015; 25
D Davis (1044_CR17) 2015; 25
PL Combettes (1044_CR16) 2015; 25
RI Boţ (1044_CR9) 2015; A150
HH Bauschke (1044_CR6) 1996; 38
1044_CR4
HH Bauschke (1044_CR7) 2001; 26
PL Combettes (1044_CR15) 2013; 23
H Attouch (1044_CR3) 2010; 48
LM Briceño-Arias (1044_CR11) 2015; 166
PL Combettes (1044_CR14) 2001
A Alotaibi (1044_CR1) 2014; 24
RI Boţ (1044_CR10) 2013; 17
Y Dong (1044_CR18) 2005; 18
J-C Pesquet (1044_CR25) 2015; 16
1044_CR21
LM Briceño-Arias (1044_CR12) 2011; 21
N Ottavy (1044_CR23) 1988; 56
A Alotaibi (1044_CR2) 2015; 36
J Eckstein (1044_CR20) 2009; 48
JJ Moreau (1044_CR22) 1962; 255
HH Bauschke (1044_CR8) 2011
J Eckstein (1044_CR19) 2008; A111
PL Combettes (1044_CR13) 1997; 35
HH Bauschke (1044_CR5) 2009; 48
T Pennanen (1044_CR24) 2000; 10
References_xml – volume: 48
  start-page: 2513
  year: 2009
  end-page: 2515
  ident: CR5
  article-title: A note on the paper by Eckstein and Svaiter on “General projective splitting methods for sums of maximal monotone operators”
  publication-title: SIAM J. Control Optim.
  doi: 10.1137/090759690
– volume: A111
  start-page: 173
  year: 2008
  end-page: 199
  ident: CR19
  article-title: A family of projective splitting methods for the sum of two maximal monotone operators
  publication-title: Math. Program.
– ident: CR4
– volume: 48
  start-page: 787
  year: 2009
  end-page: 811
  ident: CR20
  article-title: General projective splitting methods for sums of maximal monotone operators
  publication-title: SIAM J. Control Optim.
  doi: 10.1137/070698816
– year: 2011
  ident: CR8
  publication-title: Convex Analysis and Monotone Operator Theory in Hilbert Spaces
  doi: 10.1007/978-1-4419-9467-7
– volume: 255
  start-page: 2897
  year: 1962
  end-page: 2899
  ident: CR22
  article-title: Fonctions convexes duales et points proximaux dans un espace hilbertien
  publication-title: C. R. Acad. Sci. Paris Sér. A
– volume: 56
  start-page: 433
  year: 1988
  end-page: 461
  ident: CR23
  article-title: Strong convergence of projection-like methods in Hilbert spaces
  publication-title: J. Optim. Theory Appl.
  doi: 10.1007/BF00939552
– volume: 25
  start-page: 1912
  year: 2015
  end-page: 1943
  ident: CR17
  article-title: Convergence rate analysis of primal-dual splitting schemes
  publication-title: SIAM J. Optim.
  doi: 10.1137/151003076
– volume: 38
  start-page: 367
  year: 1996
  end-page: 426
  ident: CR6
  article-title: On projection algorithms for solving convex feasibility problems
  publication-title: SIAM Rev.
  doi: 10.1137/S0036144593251710
– volume: 48
  start-page: 3246
  year: 2010
  end-page: 3270
  ident: CR3
  article-title: A parallel splitting method for coupled monotone inclusions
  publication-title: SIAM J. Control Optim.
  doi: 10.1137/090754297
– ident: CR21
– volume: 21
  start-page: 1230
  year: 2011
  end-page: 1250
  ident: CR12
  article-title: A monotone+skew splitting model for composite monotone inclusions in duality
  publication-title: SIAM J. Optim.
  doi: 10.1137/10081602X
– volume: 166
  start-page: 391
  year: 2015
  end-page: 413
  ident: CR11
  article-title: Forward-partial inverse-forward splitting for solving monotone inclusions
  publication-title: J. Optim. Theory Appl.
  doi: 10.1007/s10957-015-0703-2
– start-page: 106
  year: 2001
  end-page: 114
  ident: CR14
  article-title: Fejér-monotonicity in convex optimization
  publication-title: Encyclopedia of Optimization
– volume: 25
  start-page: 1221
  year: 2015
  end-page: 1248
  ident: CR16
  article-title: Stochastic quasi-Fejér block-coordinate fixed point iterations with random sweeping
  publication-title: SIAM J. Optim.
  doi: 10.1137/140971233
– volume: 26
  start-page: 248
  year: 2001
  end-page: 264
  ident: CR7
  article-title: A weak-to-strong convergence principle for Fejér-monotone methods in Hilbert spaces
  publication-title: Math. Oper. Res.
  doi: 10.1287/moor.26.2.248.10558
– volume: 24
  start-page: 2076
  year: 2014
  end-page: 2095
  ident: CR1
  article-title: Solving coupled composite monotone inclusions by successive Fejér approximations of their Kuhn-Tucker set
  publication-title: SIAM J. Optim.
  doi: 10.1137/130950616
– volume: A150
  start-page: 251
  year: 2015
  end-page: 279
  ident: CR9
  article-title: On the convergence rate improvement of a primal-dual splitting algorithm for solving monotone inclusion problems
  publication-title: Math. Program.
– volume: 10
  start-page: 809
  year: 2000
  end-page: 835
  ident: CR24
  article-title: Dualization of generalized equations of maximal monotone type
  publication-title: SIAM J. Optim.
  doi: 10.1137/S1052623498340448
– volume: 18
  start-page: 843
  year: 2005
  end-page: 848
  ident: CR18
  article-title: An LS-free splitting method for composite mappings
  publication-title: Appl. Math. Lett.
  doi: 10.1016/j.aml.2004.09.013
– volume: 16
  start-page: 2453
  year: 2015
  end-page: 2490
  ident: CR25
  article-title: A class of randomized primal-dual algorithms for distributed optimization
  publication-title: J. Nonlinear Convex Anal.
– volume: 36
  start-page: 1513
  year: 2015
  end-page: 1532
  ident: CR2
  article-title: Best approximation from the Kuhn-Tucker set of composite monotone inclusions
  publication-title: Numer. Funct. Anal. Optim.
  doi: 10.1080/01630563.2015.1077864
– volume: 17
  start-page: 1983
  year: 2013
  end-page: 2009
  ident: CR10
  article-title: Solving systems of monotone inclusions via primal-dual splitting techniques
  publication-title: Taiwan. J. Math.
  doi: 10.11650/tjm.17.2013.3087
– volume: 35
  start-page: 311
  year: 1997
  end-page: 330
  ident: CR13
  article-title: Hilbertian convex feasibility problem: convergence of projection methods
  publication-title: Appl. Math. Optim.
  doi: 10.1007/BF02683333
– volume: 23
  start-page: 2420
  year: 2013
  end-page: 2447
  ident: CR15
  article-title: Systems of structured monotone inclusions: duality, algorithms, and applications
  publication-title: SIAM J. Optim.
  doi: 10.1137/130904160
– volume: 10
  start-page: 809
  year: 2000
  ident: 1044_CR24
  publication-title: SIAM J. Optim.
  doi: 10.1137/S1052623498340448
– volume: 48
  start-page: 787
  year: 2009
  ident: 1044_CR20
  publication-title: SIAM J. Control Optim.
  doi: 10.1137/070698816
– volume: A150
  start-page: 251
  year: 2015
  ident: 1044_CR9
  publication-title: Math. Program.
  doi: 10.1007/s10107-014-0766-0
– volume: 26
  start-page: 248
  year: 2001
  ident: 1044_CR7
  publication-title: Math. Oper. Res.
  doi: 10.1287/moor.26.2.248.10558
– volume: 17
  start-page: 1983
  year: 2013
  ident: 1044_CR10
  publication-title: Taiwan. J. Math.
  doi: 10.11650/tjm.17.2013.3087
– volume: 166
  start-page: 391
  year: 2015
  ident: 1044_CR11
  publication-title: J. Optim. Theory Appl.
  doi: 10.1007/s10957-015-0703-2
– volume: 23
  start-page: 2420
  year: 2013
  ident: 1044_CR15
  publication-title: SIAM J. Optim.
  doi: 10.1137/130904160
– ident: 1044_CR4
– volume: A111
  start-page: 173
  year: 2008
  ident: 1044_CR19
  publication-title: Math. Program.
– volume-title: Convex Analysis and Monotone Operator Theory in Hilbert Spaces
  year: 2011
  ident: 1044_CR8
  doi: 10.1007/978-1-4419-9467-7
– volume: 56
  start-page: 433
  year: 1988
  ident: 1044_CR23
  publication-title: J. Optim. Theory Appl.
  doi: 10.1007/BF00939552
– volume: 36
  start-page: 1513
  year: 2015
  ident: 1044_CR2
  publication-title: Numer. Funct. Anal. Optim.
  doi: 10.1080/01630563.2015.1077864
– volume: 48
  start-page: 2513
  year: 2009
  ident: 1044_CR5
  publication-title: SIAM J. Control Optim.
  doi: 10.1137/090759690
– ident: 1044_CR21
– volume: 48
  start-page: 3246
  year: 2010
  ident: 1044_CR3
  publication-title: SIAM J. Control Optim.
  doi: 10.1137/090754297
– volume: 25
  start-page: 1912
  year: 2015
  ident: 1044_CR17
  publication-title: SIAM J. Optim.
  doi: 10.1137/151003076
– volume: 255
  start-page: 2897
  year: 1962
  ident: 1044_CR22
  publication-title: C. R. Acad. Sci. Paris Sér. A
– volume: 25
  start-page: 1221
  year: 2015
  ident: 1044_CR16
  publication-title: SIAM J. Optim.
  doi: 10.1137/140971233
– volume: 21
  start-page: 1230
  year: 2011
  ident: 1044_CR12
  publication-title: SIAM J. Optim.
  doi: 10.1137/10081602X
– volume: 16
  start-page: 2453
  year: 2015
  ident: 1044_CR25
  publication-title: J. Nonlinear Convex Anal.
– volume: 24
  start-page: 2076
  year: 2014
  ident: 1044_CR1
  publication-title: SIAM J. Optim.
  doi: 10.1137/130950616
– volume: 35
  start-page: 311
  year: 1997
  ident: 1044_CR13
  publication-title: Appl. Math. Optim.
  doi: 10.1007/BF02683333
– start-page: 106
  volume-title: Encyclopedia of Optimization
  year: 2001
  ident: 1044_CR14
– volume: 18
  start-page: 843
  year: 2005
  ident: 1044_CR18
  publication-title: Appl. Math. Lett.
  doi: 10.1016/j.aml.2004.09.013
– volume: 38
  start-page: 367
  year: 1996
  ident: 1044_CR6
  publication-title: SIAM Rev.
  doi: 10.1137/S0036144593251710
SSID ssj0001388
Score 2.528367
Snippet We propose new primal-dual decomposition algorithms for solving systems of inclusions involving sums of linearly composed maximally monotone operators. The...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 645
SubjectTerms Algorithms
Calculus of Variations and Optimal Control; Optimization
Combinatorics
Convergence
Decomposition
Full Length Paper
Half spaces
Inclusions
Innovations
Linear operators
Mathematical and Computational Physics
Mathematical Methods in Physics
Mathematics
Mathematics and Statistics
Mathematics of Computing
Numerical Analysis
Theoretical
SummonAdditionalLinks – databaseName: Science Database
  dbid: M2P
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELagMMDAG1EoyAMTyMKuk9qZUIWoGGjVAapukeOHVFGlpWmR-Pf48mgBiS6MUZJz5HPOn-4-f4fQNZTWBI0S4sFDkwSKGpJoHhHdEq6luRA2l2MYPIteTw6HUb9MuGUlrbKKiXmgNhMNOfI7yKmJSHLG7qfvBLpGQXW1bKGxibY8smFA6eo2-8tIzLiUVctWwAlVVbM4Osdy0mXLB6IgIPTnvrQCm7_qo_m209n_7wcfoL0ScOJ2sUIO0YZNj9DuNxlCf9Vdardmx2jQzj5TDZq5k0WGE7_ZvZFCe9kHRjwFdYoxgRNc2FggpJesL1z0os6wR8HYjz0BlW88SvV4AQm57AS9dh5fHp5I2X2BaC6bc2IkdUJFQnnEYkNDVWhD7gyn1nGlQ-m4DoxQPggwnUihlNGGOy2MjXhgPbI7RbXUj3SGMNWKOS6NC7kNkjBKQid5oMJAe2ssYXVEq7mPdSlNDh0yxvFKVBncFQMdDdwV0zq6Wb4yLXQ51j3cqFwUl79oFq_8U0e3lZNXt_80dr7e2AXa8ZhKFjS1BqrNZwt7ibb1x3yUza7y9fkFJ1rsIg
  priority: 102
  providerName: ProQuest
Title Asynchronous block-iterative primal-dual decomposition methods for monotone inclusions
URI https://link.springer.com/article/10.1007/s10107-016-1044-0
https://www.proquest.com/docview/2007798311
Volume 168
WOSCitedRecordID wos000426071000027&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1436-4646
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001388
  issn: 0025-5610
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JSwMxFA5aPejBXaxLycGTEsg0kyZzrKVFUEtxqctlyGQBsVTptIL_3pdZWhUV9PIgTCYZsrz3Zd7L9xA69K41QaOEAHiok1BRQxLNIqIbwjU0E8JmdAz9c9Htyru7qFfc407LaPfSJZlp6g-X3YIsTLIBqiMMCZzTF8DaSZ-v4fKqP1W_AZOyzNPqwUHpyvyuic_GaIYwvzhFM1vTWf3XV66hlQJa4ma-FtbRnB1uoOUPhINQupiytKabqN9M34bas-PC8R8nYNaeSM6yDCoQv3geigHxd7WwsT70vIjvwnnW6RQD3sWwip89nzd-HOrBxP96S7fQTad93TolRZ4Fopmsj4mR1AkVCQXYxHJDFbecOcOodUxpLh3ToREKtnugEymUMtowp4WxEQstYLhtVBlCTzsIU60Cx6RxnNkw4VHCnWSh4qGG1oIkqCJaDnisCxJynwtjEM_ok_0Axj7wzA9gTKvoaPrKS87A8Vvl_XIW42Izpj7TphCRZAF0f1zO2uzxj43t_qn2HloCMCXz-LR9VBmPJvYALerX8WM6qqF5cXtfQwsn7W7vEkpngoC8oC0v6z0vxRXIHn-oZev5HUyW6J0
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9tAEB5BqER7KC1QNS2PPbSXohVr7zq7PlRVVEBBhIgDRdzMeh8SIkrSOGnFn-pv7I4fSVup3DhwtGyPZe-3M-Odb78B-IClNcnSnIbkIaZCM0tzw1NqOtJ3DJfSlXIMV305GKjr6_RiBX41e2GQVtn4xNJR27HBNfJDXFOTqeJR9GXynWLXKKyuNi00Klicufuf4Zet-Hx6FMb3YxyfHF9-7dG6qwA1XMUzahXzUqdSh0jsEst04hLuLWfOc20S5bkRVuoA7sjkSmptjeXeSOtSLlzIWILdVVgTqCyGVMH4YuH5I65U0yIW85Kmilpt1YtKkmcnOD4hKPs7Di6T23_qsWWYO9l4ah_oFbysE2rSrWbAa1hxo0148YfMYjg6X2jTFltw1S3uRwY1gcfzguQhmN_RSls6OH4yQfWNIcUdasQ6JNzXrDZS9douSMjySXjXMaqYk9uRGc5xwbHYhm-P8ppvoDUKT3oLhBkdea6sT7gTeZLmiVdc6ESYYC3KozawZqwzU0uvYweQYbYUjUZ4ZEi3Q3hkrA2fFrdMKt2Rhy7eaSCR1S6oyJZ4aMNBA6rl6f8ae_ewsX1Y712e97P-6eDsPTwP-aOqKHk70JpN524Xnpkfs9tiulfODQI3j4213wawTDE
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFA4yRfTBuzidmgeflLB2SZf0cahDcY6BOvZW0lxgOLqxdIL_3qSXbYoK4mNpelKS05MvPV--A8CFS61RL4yRBQ8NRLgnUSxwiEST6qbAlKpMjqHfod0uGwzCXlHn1JRs9zIlmZ9pcCpNSVqfSF1fOvjmZ5TJpg0jhCC7Z18ljkfvtutP_Xko9jFjZc1WBxTKtOZ3Jj4vTAu0-SVBmq077e1_v_EO2CogJ2zlPrILVlSyBzaXhAjt1eNcvdXsg37LvCfCqeaOZwbGdrl7Rbn6sg2NcOL0KUbIneGCUjlKesH7gnk1agMtDobWu8dO5xsOEzGauV9y5gC8tG-fr-9QUX8BCcwaKZLM05SHlFvMogLp8UAFWEvsKY25CJjGgkjKbRjwRcwo51JIrAWVKsREWWx3CCqJ7ekIQE9wX2MmdYAViYMwDjTDhAdEWGt-7FeBVw5-JApxclcjYxQtZJXdAEaOkOYGMPKq4HL-yCRX5vitca2c0aj4SI2rwElpyLBvu78qZ3Bx-0djx39qfQ7WezftqHPffTgBGxZvsZzCVgOVdDpTp2BNvKVDMz3LXPcDM6rtKg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Asynchronous+block-iterative+primal-dual+decomposition+methods+for+monotone+inclusions&rft.jtitle=Mathematical+programming&rft.au=Combettes%2C+Patrick+L.&rft.au=Eckstein%2C+Jonathan&rft.date=2018-03-01&rft.pub=Springer+Berlin+Heidelberg&rft.issn=0025-5610&rft.eissn=1436-4646&rft.volume=168&rft.issue=1-2&rft.spage=645&rft.epage=672&rft_id=info:doi/10.1007%2Fs10107-016-1044-0&rft.externalDocID=10_1007_s10107_016_1044_0
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0025-5610&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0025-5610&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0025-5610&client=summon