Asynchronous block-iterative primal-dual decomposition methods for monotone inclusions
We propose new primal-dual decomposition algorithms for solving systems of inclusions involving sums of linearly composed maximally monotone operators. The principal innovation in these algorithms is that they are block-iterative in the sense that, at each iteration, only a subset of the monotone op...
Uložené v:
| Vydané v: | Mathematical programming Ročník 168; číslo 1-2; s. 645 - 672 |
|---|---|
| Hlavní autori: | , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.03.2018
Springer Nature B.V |
| Predmet: | |
| ISSN: | 0025-5610, 1436-4646 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | We propose new primal-dual decomposition algorithms for solving systems of inclusions involving sums of linearly composed maximally monotone operators. The principal innovation in these algorithms is that they are block-iterative in the sense that, at each iteration, only a subset of the monotone operators needs to be processed, as opposed to all operators as in established methods. Flexible strategies are used to select the blocks of operators activated at each iteration. In addition, we allow lags in operator processing, permitting asynchronous implementation. The decomposition phase of each iteration of our methods is to generate points in the graphs of the selected monotone operators, in order to construct a half-space containing the Kuhn–Tucker set associated with the system. The coordination phase of each iteration involves a projection onto this half-space. We present two related methods: the first method provides weakly convergent primal and dual sequences under general conditions, while the second is a variant in which strong convergence is guaranteed without additional assumptions. Neither algorithm requires prior knowledge of bounds on the linear operators involved or the inversion of linear operators. Our algorithmic framework unifies and significantly extends the approaches taken in earlier work on primal-dual projective splitting methods. |
|---|---|
| AbstractList | We propose new primal-dual decomposition algorithms for solving systems of inclusions involving sums of linearly composed maximally monotone operators. The principal innovation in these algorithms is that they are block-iterative in the sense that, at each iteration, only a subset of the monotone operators needs to be processed, as opposed to all operators as in established methods. Flexible strategies are used to select the blocks of operators activated at each iteration. In addition, we allow lags in operator processing, permitting asynchronous implementation. The decomposition phase of each iteration of our methods is to generate points in the graphs of the selected monotone operators, in order to construct a half-space containing the Kuhn–Tucker set associated with the system. The coordination phase of each iteration involves a projection onto this half-space. We present two related methods: the first method provides weakly convergent primal and dual sequences under general conditions, while the second is a variant in which strong convergence is guaranteed without additional assumptions. Neither algorithm requires prior knowledge of bounds on the linear operators involved or the inversion of linear operators. Our algorithmic framework unifies and significantly extends the approaches taken in earlier work on primal-dual projective splitting methods. |
| Author | Combettes, Patrick L. Eckstein, Jonathan |
| Author_xml | – sequence: 1 givenname: Patrick L. surname: Combettes fullname: Combettes, Patrick L. email: plc@ljll.math.upmc.fr organization: Laboratoire Jacques-Louis Lions – UMR CNRS 7598, UPMC Université Paris 06 – sequence: 2 givenname: Jonathan surname: Eckstein fullname: Eckstein, Jonathan organization: Department of Managemement Science and Information Systems and RUTCOR, Rutgers University |
| BookMark | eNp9kMtKAzEUhoMo2FYfwN2A6-jJZGaSWZbiDQpu1G1Ik4xNnSY1yQh9e1NHEARdncX5v3P5pujYeWcQuiBwRQDYdSRAgGEgDSZQVRiO0IRUtMFVUzXHaAJQ1rhuCJyiaYwbACCU8wl6mce9U-vgnR9iseq9esM2mSCT_TDFLtit7LEeZF9oo_x256NN1rtia9La61h0PhTbDKd8TmGd6oeY2_EMnXSyj-b8u87Q8-3N0-IeLx_vHhbzJVaUlwlrDh2TLZO0ZabWIGtT005TMB2VquYdVZVmEiogasWZlFpp2immTUsrA5zO0OU4dxf8-2BiEhs_BJdXijJrYS2nhOQUG1Mq-BiD6YSySR7-SEHaXhAQB4lilCiyRHGQKCCT5Bf5pSTs_2XKkYk5615N-Lnpb-gTZx6IVw |
| CitedBy_id | crossref_primary_10_1007_s10589_020_00238_3 crossref_primary_10_3390_sym13122415 crossref_primary_10_1007_s10589_019_00060_6 crossref_primary_10_1007_s10107_021_01758_4 crossref_primary_10_1007_s10957_022_02061_8 crossref_primary_10_1137_18M1203523 crossref_primary_10_1007_s10589_023_00489_w crossref_primary_10_1007_s10898_024_01418_9 crossref_primary_10_1016_j_orl_2021_12_002 crossref_primary_10_1007_s11228_023_00700_4 crossref_primary_10_1287_moor_2022_1343 crossref_primary_10_1007_s10589_023_00528_6 crossref_primary_10_1007_s10957_023_02214_3 crossref_primary_10_1080_10556788_2022_2119233 crossref_primary_10_1137_20M1345062 crossref_primary_10_1007_s10898_019_00747_4 crossref_primary_10_1287_moor_2021_1161 crossref_primary_10_1007_s10589_018_0031_1 crossref_primary_10_1287_opre_2022_0228 crossref_primary_10_1007_s00245_022_09868_x crossref_primary_10_1007_s10957_024_02560_w crossref_primary_10_1007_s10092_018_0299_7 crossref_primary_10_1007_s10589_018_0037_8 crossref_primary_10_1017_S0013091522000049 crossref_primary_10_1007_s10107_019_01403_1 crossref_primary_10_3934_ipi_2021014 crossref_primary_10_1007_s11075_022_01280_4 crossref_primary_10_1137_18M1168297 crossref_primary_10_1007_s10957_017_1074_7 crossref_primary_10_1007_s00186_024_00878_9 crossref_primary_10_1007_s10589_020_00200_3 crossref_primary_10_1007_s10107_018_1303_3 crossref_primary_10_1016_j_jmaa_2020_124315 crossref_primary_10_1080_10618600_2023_2282501 crossref_primary_10_1007_s11228_022_00649_w crossref_primary_10_1007_s10957_019_01542_7 crossref_primary_10_1007_s40314_024_03041_6 crossref_primary_10_1007_s10898_020_00940_w crossref_primary_10_1007_s10107_019_01382_3 crossref_primary_10_1109_TGRS_2018_2870486 crossref_primary_10_1007_s10957_022_02074_3 crossref_primary_10_1007_s11590_019_01509_7 crossref_primary_10_1109_TSP_2021_3069677 crossref_primary_10_1137_18M1224763 crossref_primary_10_3390_axioms10030147 crossref_primary_10_1007_s10107_020_01565_3 crossref_primary_10_1287_moor_2024_0414 crossref_primary_10_1007_s10957_025_02827_w crossref_primary_10_1080_02331934_2020_1858833 |
| Cites_doi | 10.1137/090759690 10.1137/070698816 10.1007/978-1-4419-9467-7 10.1007/BF00939552 10.1137/151003076 10.1137/S0036144593251710 10.1137/090754297 10.1137/10081602X 10.1007/s10957-015-0703-2 10.1137/140971233 10.1287/moor.26.2.248.10558 10.1137/130950616 10.1137/S1052623498340448 10.1016/j.aml.2004.09.013 10.1080/01630563.2015.1077864 10.11650/tjm.17.2013.3087 10.1007/BF02683333 10.1137/130904160 10.1007/s10107-014-0766-0 |
| ContentType | Journal Article |
| Copyright | Springer-Verlag Berlin Heidelberg and Mathematical Optimization Society 2016 Mathematical Programming is a copyright of Springer, (2016). All Rights Reserved. |
| Copyright_xml | – notice: Springer-Verlag Berlin Heidelberg and Mathematical Optimization Society 2016 – notice: Mathematical Programming is a copyright of Springer, (2016). All Rights Reserved. |
| DBID | AAYXX CITATION 3V. 7SC 7WY 7WZ 7XB 87Z 88I 8AL 8AO 8FD 8FE 8FG 8FK 8FL ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FRNLG F~G GNUQQ HCIFZ JQ2 K60 K6~ K7- L.- L6V L7M L~C L~D M0C M0N M2P M7S P5Z P62 PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI PTHSS Q9U |
| DOI | 10.1007/s10107-016-1044-0 |
| DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Science Database (Alumni Edition) Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni Edition) SciTech Premium Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Business Premium Collection Technology collection ProQuest One Community College ProQuest Central Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student SciTech Premium ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database ABI/INFORM Professional Advanced ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ABI/INFORM Global Computing Database Science Database Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest One Academic ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition Engineering Collection ProQuest Central Basic |
| DatabaseTitle | CrossRef ProQuest Business Collection (Alumni Edition) Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ABI/INFORM Complete ProQuest One Applied & Life Sciences ProQuest Central (New) Engineering Collection Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest Business Collection ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ABI/INFORM Global (Corporate) ProQuest One Business Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Pharma Collection ProQuest Central ABI/INFORM Professional Advanced ProQuest Engineering Collection ProQuest Central Korea Advanced Technologies Database with Aerospace ABI/INFORM Complete (Alumni Edition) ProQuest Computing ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest Computing (Alumni Edition) ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database Materials Science & Engineering Collection ProQuest One Business (Alumni) ProQuest Central (Alumni) Business Premium Collection (Alumni) |
| DatabaseTitleList | ProQuest Business Collection (Alumni Edition) |
| Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Mathematics |
| EISSN | 1436-4646 |
| EndPage | 672 |
| ExternalDocumentID | 10_1007_s10107_016_1044_0 |
| GrantInformation_xml | – fundername: CNRS Imag’in grantid: 2015OPTIMISME – fundername: National Science Foundation grantid: CCF-1115638 funderid: http://dx.doi.org/10.13039/100000001 – fundername: CNRS MASTODONS grantid: 2013MesureHD |
| GroupedDBID | --K --Z -52 -5D -5G -BR -EM -Y2 -~C -~X .4S .86 .DC .VR 06D 0R~ 0VY 199 1B1 1N0 1OL 1SB 203 28- 29M 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 6TJ 78A 7WY 88I 8AO 8FE 8FG 8FL 8TC 8UJ 8VB 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDZT ABECU ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACGOD ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACNCT ACOKC ACOMO ACPIV ACUHS ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMOZ AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFFNX AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHQJS AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKVCP ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. B0M BA0 BAPOH BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EAD EAP EBA EBLON EBR EBS EBU ECS EDO EIOEI EJD EMI EMK EPL ESBYG EST ESX FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ H~9 I-F I09 IAO IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K1G K60 K6V K6~ K7- KDC KOV KOW L6V LAS LLZTM M0C M0N M2P M4Y M7S MA- N2Q N9A NB0 NDZJH NPVJJ NQ- NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P P62 P9R PF0 PQBIZ PQBZA PQQKQ PROAC PT4 PT5 PTHSS Q2X QOK QOS QWB R4E R89 R9I RHV RIG RNI RNS ROL RPX RPZ RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SDD SDH SDM SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TH9 TN5 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WH7 WK8 XPP YLTOR Z45 Z5O Z7R Z7S Z7X Z7Y Z7Z Z81 Z83 Z86 Z88 Z8M Z8N Z8R Z8T Z8W Z92 ZL0 ZMTXR ZWQNP ~02 ~8M ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG ADXHL AEZWR AFDZB AFFHD AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP AMVHM ATHPR AYFIA CITATION PHGZM PHGZT PQGLB 7SC 7XB 8AL 8FD 8FK JQ2 L.- L7M L~C L~D PKEHL PQEST PQUKI PUEGO Q9U |
| ID | FETCH-LOGICAL-c382t-d80f7a97a397e5d0a5e53fd30ef3ac58f3c4d7a0401cb87aadcd3fc7de934e083 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 63 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000426071000027&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0025-5610 |
| IngestDate | Thu Sep 25 00:50:58 EDT 2025 Sat Nov 29 03:33:59 EST 2025 Tue Nov 18 20:15:36 EST 2025 Fri Feb 21 02:32:44 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1-2 |
| Keywords | Monotone inclusion Primal-dual algorithm 65K05 90C25 Splitting algorithm Duality Monotone operator 49M27 Block-iterative algorithm Asynchronous algorithm 47H05 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c382t-d80f7a97a397e5d0a5e53fd30ef3ac58f3c4d7a0401cb87aadcd3fc7de934e083 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 2007798311 |
| PQPubID | 25307 |
| PageCount | 28 |
| ParticipantIDs | proquest_journals_2007798311 crossref_citationtrail_10_1007_s10107_016_1044_0 crossref_primary_10_1007_s10107_016_1044_0 springer_journals_10_1007_s10107_016_1044_0 |
| PublicationCentury | 2000 |
| PublicationDate | 2018-03-01 |
| PublicationDateYYYYMMDD | 2018-03-01 |
| PublicationDate_xml | – month: 03 year: 2018 text: 2018-03-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | Berlin/Heidelberg |
| PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
| PublicationSubtitle | A Publication of the Mathematical Optimization Society |
| PublicationTitle | Mathematical programming |
| PublicationTitleAbbrev | Math. Program |
| PublicationYear | 2018 |
| Publisher | Springer Berlin Heidelberg Springer Nature B.V |
| Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
| References | Pennanen (CR24) 2000; 10 Pesquet, Repetti (CR25) 2015; 16 Alotaibi, Combettes, Shahzad (CR2) 2015; 36 Bauschke (CR5) 2009; 48 Briceño-Arias, Combettes (CR12) 2011; 21 Eckstein, Svaiter (CR19) 2008; A111 Dong (CR18) 2005; 18 Combettes (CR13) 1997; 35 CR4 Bauschke, Combettes (CR7) 2001; 26 Eckstein, Svaiter (CR20) 2009; 48 Ottavy (CR23) 1988; 56 Davis (CR17) 2015; 25 Attouch, Briceño-Arias, Combettes (CR3) 2010; 48 Combettes (CR15) 2013; 23 Bauschke, Borwein (CR6) 1996; 38 Boţ, Csetnek, Nagy (CR10) 2013; 17 Bauschke, Combettes (CR8) 2011 Moreau (CR22) 1962; 255 CR21 Boţ, Csetnek, Heinrich, Hendrich (CR9) 2015; A150 Alotaibi, Combettes, Shahzad (CR1) 2014; 24 Briceño-Arias (CR11) 2015; 166 Combettes, Floudas, Pardalos (CR14) 2001 Combettes, Pesquet (CR16) 2015; 25 D Davis (1044_CR17) 2015; 25 PL Combettes (1044_CR16) 2015; 25 RI Boţ (1044_CR9) 2015; A150 HH Bauschke (1044_CR6) 1996; 38 1044_CR4 HH Bauschke (1044_CR7) 2001; 26 PL Combettes (1044_CR15) 2013; 23 H Attouch (1044_CR3) 2010; 48 LM Briceño-Arias (1044_CR11) 2015; 166 PL Combettes (1044_CR14) 2001 A Alotaibi (1044_CR1) 2014; 24 RI Boţ (1044_CR10) 2013; 17 Y Dong (1044_CR18) 2005; 18 J-C Pesquet (1044_CR25) 2015; 16 1044_CR21 LM Briceño-Arias (1044_CR12) 2011; 21 N Ottavy (1044_CR23) 1988; 56 A Alotaibi (1044_CR2) 2015; 36 J Eckstein (1044_CR20) 2009; 48 JJ Moreau (1044_CR22) 1962; 255 HH Bauschke (1044_CR8) 2011 J Eckstein (1044_CR19) 2008; A111 PL Combettes (1044_CR13) 1997; 35 HH Bauschke (1044_CR5) 2009; 48 T Pennanen (1044_CR24) 2000; 10 |
| References_xml | – volume: 48 start-page: 2513 year: 2009 end-page: 2515 ident: CR5 article-title: A note on the paper by Eckstein and Svaiter on “General projective splitting methods for sums of maximal monotone operators” publication-title: SIAM J. Control Optim. doi: 10.1137/090759690 – volume: A111 start-page: 173 year: 2008 end-page: 199 ident: CR19 article-title: A family of projective splitting methods for the sum of two maximal monotone operators publication-title: Math. Program. – ident: CR4 – volume: 48 start-page: 787 year: 2009 end-page: 811 ident: CR20 article-title: General projective splitting methods for sums of maximal monotone operators publication-title: SIAM J. Control Optim. doi: 10.1137/070698816 – year: 2011 ident: CR8 publication-title: Convex Analysis and Monotone Operator Theory in Hilbert Spaces doi: 10.1007/978-1-4419-9467-7 – volume: 255 start-page: 2897 year: 1962 end-page: 2899 ident: CR22 article-title: Fonctions convexes duales et points proximaux dans un espace hilbertien publication-title: C. R. Acad. Sci. Paris Sér. A – volume: 56 start-page: 433 year: 1988 end-page: 461 ident: CR23 article-title: Strong convergence of projection-like methods in Hilbert spaces publication-title: J. Optim. Theory Appl. doi: 10.1007/BF00939552 – volume: 25 start-page: 1912 year: 2015 end-page: 1943 ident: CR17 article-title: Convergence rate analysis of primal-dual splitting schemes publication-title: SIAM J. Optim. doi: 10.1137/151003076 – volume: 38 start-page: 367 year: 1996 end-page: 426 ident: CR6 article-title: On projection algorithms for solving convex feasibility problems publication-title: SIAM Rev. doi: 10.1137/S0036144593251710 – volume: 48 start-page: 3246 year: 2010 end-page: 3270 ident: CR3 article-title: A parallel splitting method for coupled monotone inclusions publication-title: SIAM J. Control Optim. doi: 10.1137/090754297 – ident: CR21 – volume: 21 start-page: 1230 year: 2011 end-page: 1250 ident: CR12 article-title: A monotone+skew splitting model for composite monotone inclusions in duality publication-title: SIAM J. Optim. doi: 10.1137/10081602X – volume: 166 start-page: 391 year: 2015 end-page: 413 ident: CR11 article-title: Forward-partial inverse-forward splitting for solving monotone inclusions publication-title: J. Optim. Theory Appl. doi: 10.1007/s10957-015-0703-2 – start-page: 106 year: 2001 end-page: 114 ident: CR14 article-title: Fejér-monotonicity in convex optimization publication-title: Encyclopedia of Optimization – volume: 25 start-page: 1221 year: 2015 end-page: 1248 ident: CR16 article-title: Stochastic quasi-Fejér block-coordinate fixed point iterations with random sweeping publication-title: SIAM J. Optim. doi: 10.1137/140971233 – volume: 26 start-page: 248 year: 2001 end-page: 264 ident: CR7 article-title: A weak-to-strong convergence principle for Fejér-monotone methods in Hilbert spaces publication-title: Math. Oper. Res. doi: 10.1287/moor.26.2.248.10558 – volume: 24 start-page: 2076 year: 2014 end-page: 2095 ident: CR1 article-title: Solving coupled composite monotone inclusions by successive Fejér approximations of their Kuhn-Tucker set publication-title: SIAM J. Optim. doi: 10.1137/130950616 – volume: A150 start-page: 251 year: 2015 end-page: 279 ident: CR9 article-title: On the convergence rate improvement of a primal-dual splitting algorithm for solving monotone inclusion problems publication-title: Math. Program. – volume: 10 start-page: 809 year: 2000 end-page: 835 ident: CR24 article-title: Dualization of generalized equations of maximal monotone type publication-title: SIAM J. Optim. doi: 10.1137/S1052623498340448 – volume: 18 start-page: 843 year: 2005 end-page: 848 ident: CR18 article-title: An LS-free splitting method for composite mappings publication-title: Appl. Math. Lett. doi: 10.1016/j.aml.2004.09.013 – volume: 16 start-page: 2453 year: 2015 end-page: 2490 ident: CR25 article-title: A class of randomized primal-dual algorithms for distributed optimization publication-title: J. Nonlinear Convex Anal. – volume: 36 start-page: 1513 year: 2015 end-page: 1532 ident: CR2 article-title: Best approximation from the Kuhn-Tucker set of composite monotone inclusions publication-title: Numer. Funct. Anal. Optim. doi: 10.1080/01630563.2015.1077864 – volume: 17 start-page: 1983 year: 2013 end-page: 2009 ident: CR10 article-title: Solving systems of monotone inclusions via primal-dual splitting techniques publication-title: Taiwan. J. Math. doi: 10.11650/tjm.17.2013.3087 – volume: 35 start-page: 311 year: 1997 end-page: 330 ident: CR13 article-title: Hilbertian convex feasibility problem: convergence of projection methods publication-title: Appl. Math. Optim. doi: 10.1007/BF02683333 – volume: 23 start-page: 2420 year: 2013 end-page: 2447 ident: CR15 article-title: Systems of structured monotone inclusions: duality, algorithms, and applications publication-title: SIAM J. Optim. doi: 10.1137/130904160 – volume: 10 start-page: 809 year: 2000 ident: 1044_CR24 publication-title: SIAM J. Optim. doi: 10.1137/S1052623498340448 – volume: 48 start-page: 787 year: 2009 ident: 1044_CR20 publication-title: SIAM J. Control Optim. doi: 10.1137/070698816 – volume: A150 start-page: 251 year: 2015 ident: 1044_CR9 publication-title: Math. Program. doi: 10.1007/s10107-014-0766-0 – volume: 26 start-page: 248 year: 2001 ident: 1044_CR7 publication-title: Math. Oper. Res. doi: 10.1287/moor.26.2.248.10558 – volume: 17 start-page: 1983 year: 2013 ident: 1044_CR10 publication-title: Taiwan. J. Math. doi: 10.11650/tjm.17.2013.3087 – volume: 166 start-page: 391 year: 2015 ident: 1044_CR11 publication-title: J. Optim. Theory Appl. doi: 10.1007/s10957-015-0703-2 – volume: 23 start-page: 2420 year: 2013 ident: 1044_CR15 publication-title: SIAM J. Optim. doi: 10.1137/130904160 – ident: 1044_CR4 – volume: A111 start-page: 173 year: 2008 ident: 1044_CR19 publication-title: Math. Program. – volume-title: Convex Analysis and Monotone Operator Theory in Hilbert Spaces year: 2011 ident: 1044_CR8 doi: 10.1007/978-1-4419-9467-7 – volume: 56 start-page: 433 year: 1988 ident: 1044_CR23 publication-title: J. Optim. Theory Appl. doi: 10.1007/BF00939552 – volume: 36 start-page: 1513 year: 2015 ident: 1044_CR2 publication-title: Numer. Funct. Anal. Optim. doi: 10.1080/01630563.2015.1077864 – volume: 48 start-page: 2513 year: 2009 ident: 1044_CR5 publication-title: SIAM J. Control Optim. doi: 10.1137/090759690 – ident: 1044_CR21 – volume: 48 start-page: 3246 year: 2010 ident: 1044_CR3 publication-title: SIAM J. Control Optim. doi: 10.1137/090754297 – volume: 25 start-page: 1912 year: 2015 ident: 1044_CR17 publication-title: SIAM J. Optim. doi: 10.1137/151003076 – volume: 255 start-page: 2897 year: 1962 ident: 1044_CR22 publication-title: C. R. Acad. Sci. Paris Sér. A – volume: 25 start-page: 1221 year: 2015 ident: 1044_CR16 publication-title: SIAM J. Optim. doi: 10.1137/140971233 – volume: 21 start-page: 1230 year: 2011 ident: 1044_CR12 publication-title: SIAM J. Optim. doi: 10.1137/10081602X – volume: 16 start-page: 2453 year: 2015 ident: 1044_CR25 publication-title: J. Nonlinear Convex Anal. – volume: 24 start-page: 2076 year: 2014 ident: 1044_CR1 publication-title: SIAM J. Optim. doi: 10.1137/130950616 – volume: 35 start-page: 311 year: 1997 ident: 1044_CR13 publication-title: Appl. Math. Optim. doi: 10.1007/BF02683333 – start-page: 106 volume-title: Encyclopedia of Optimization year: 2001 ident: 1044_CR14 – volume: 18 start-page: 843 year: 2005 ident: 1044_CR18 publication-title: Appl. Math. Lett. doi: 10.1016/j.aml.2004.09.013 – volume: 38 start-page: 367 year: 1996 ident: 1044_CR6 publication-title: SIAM Rev. doi: 10.1137/S0036144593251710 |
| SSID | ssj0001388 |
| Score | 2.528367 |
| Snippet | We propose new primal-dual decomposition algorithms for solving systems of inclusions involving sums of linearly composed maximally monotone operators. The... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 645 |
| SubjectTerms | Algorithms Calculus of Variations and Optimal Control; Optimization Combinatorics Convergence Decomposition Full Length Paper Half spaces Inclusions Innovations Linear operators Mathematical and Computational Physics Mathematical Methods in Physics Mathematics Mathematics and Statistics Mathematics of Computing Numerical Analysis Theoretical |
| SummonAdditionalLinks | – databaseName: Science Database dbid: M2P link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELagMMDAG1EoyAMTyMKuk9qZUIWoGGjVAapukeOHVFGlpWmR-Pf48mgBiS6MUZJz5HPOn-4-f4fQNZTWBI0S4sFDkwSKGpJoHhHdEq6luRA2l2MYPIteTw6HUb9MuGUlrbKKiXmgNhMNOfI7yKmJSHLG7qfvBLpGQXW1bKGxibY8smFA6eo2-8tIzLiUVctWwAlVVbM4Osdy0mXLB6IgIPTnvrQCm7_qo_m209n_7wcfoL0ScOJ2sUIO0YZNj9DuNxlCf9Vdardmx2jQzj5TDZq5k0WGE7_ZvZFCe9kHRjwFdYoxgRNc2FggpJesL1z0os6wR8HYjz0BlW88SvV4AQm57AS9dh5fHp5I2X2BaC6bc2IkdUJFQnnEYkNDVWhD7gyn1nGlQ-m4DoxQPggwnUihlNGGOy2MjXhgPbI7RbXUj3SGMNWKOS6NC7kNkjBKQid5oMJAe2ssYXVEq7mPdSlNDh0yxvFKVBncFQMdDdwV0zq6Wb4yLXQ51j3cqFwUl79oFq_8U0e3lZNXt_80dr7e2AXa8ZhKFjS1BqrNZwt7ibb1x3yUza7y9fkFJ1rsIg priority: 102 providerName: ProQuest |
| Title | Asynchronous block-iterative primal-dual decomposition methods for monotone inclusions |
| URI | https://link.springer.com/article/10.1007/s10107-016-1044-0 https://www.proquest.com/docview/2007798311 |
| Volume | 168 |
| WOSCitedRecordID | wos000426071000027&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1436-4646 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001388 issn: 0025-5610 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JSwMxFA5aPejBXaxLycGTEsg0kyZzrKVFUEtxqctlyGQBsVTptIL_3pdZWhUV9PIgTCYZsrz3Zd7L9xA69K41QaOEAHiok1BRQxLNIqIbwjU0E8JmdAz9c9Htyru7qFfc407LaPfSJZlp6g-X3YIsTLIBqiMMCZzTF8DaSZ-v4fKqP1W_AZOyzNPqwUHpyvyuic_GaIYwvzhFM1vTWf3XV66hlQJa4ma-FtbRnB1uoOUPhINQupiytKabqN9M34bas-PC8R8nYNaeSM6yDCoQv3geigHxd7WwsT70vIjvwnnW6RQD3sWwip89nzd-HOrBxP96S7fQTad93TolRZ4Fopmsj4mR1AkVCQXYxHJDFbecOcOodUxpLh3ToREKtnugEymUMtowp4WxEQstYLhtVBlCTzsIU60Cx6RxnNkw4VHCnWSh4qGG1oIkqCJaDnisCxJynwtjEM_ok_0Axj7wzA9gTKvoaPrKS87A8Vvl_XIW42Izpj7TphCRZAF0f1zO2uzxj43t_qn2HloCMCXz-LR9VBmPJvYALerX8WM6qqF5cXtfQwsn7W7vEkpngoC8oC0v6z0vxRXIHn-oZev5HUyW6J0 |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9tAEB5BqER7KC1QNS2PPbSXohVr7zq7PlRVVEBBhIgDRdzMeh8SIkrSOGnFn-pv7I4fSVup3DhwtGyPZe-3M-Odb78B-IClNcnSnIbkIaZCM0tzw1NqOtJ3DJfSlXIMV305GKjr6_RiBX41e2GQVtn4xNJR27HBNfJDXFOTqeJR9GXynWLXKKyuNi00Klicufuf4Zet-Hx6FMb3YxyfHF9-7dG6qwA1XMUzahXzUqdSh0jsEst04hLuLWfOc20S5bkRVuoA7sjkSmptjeXeSOtSLlzIWILdVVgTqCyGVMH4YuH5I65U0yIW85Kmilpt1YtKkmcnOD4hKPs7Di6T23_qsWWYO9l4ah_oFbysE2rSrWbAa1hxo0148YfMYjg6X2jTFltw1S3uRwY1gcfzguQhmN_RSls6OH4yQfWNIcUdasQ6JNzXrDZS9douSMjySXjXMaqYk9uRGc5xwbHYhm-P8ppvoDUKT3oLhBkdea6sT7gTeZLmiVdc6ESYYC3KozawZqwzU0uvYweQYbYUjUZ4ZEi3Q3hkrA2fFrdMKt2Rhy7eaSCR1S6oyJZ4aMNBA6rl6f8ae_ewsX1Y712e97P-6eDsPTwP-aOqKHk70JpN524Xnpkfs9tiulfODQI3j4213wawTDE |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFA4yRfTBuzidmgeflLB2SZf0cahDcY6BOvZW0lxgOLqxdIL_3qSXbYoK4mNpelKS05MvPV--A8CFS61RL4yRBQ8NRLgnUSxwiEST6qbAlKpMjqHfod0uGwzCXlHn1JRs9zIlmZ9pcCpNSVqfSF1fOvjmZ5TJpg0jhCC7Z18ljkfvtutP_Xko9jFjZc1WBxTKtOZ3Jj4vTAu0-SVBmq077e1_v_EO2CogJ2zlPrILVlSyBzaXhAjt1eNcvdXsg37LvCfCqeaOZwbGdrl7Rbn6sg2NcOL0KUbIneGCUjlKesH7gnk1agMtDobWu8dO5xsOEzGauV9y5gC8tG-fr-9QUX8BCcwaKZLM05SHlFvMogLp8UAFWEvsKY25CJjGgkjKbRjwRcwo51JIrAWVKsREWWx3CCqJ7ekIQE9wX2MmdYAViYMwDjTDhAdEWGt-7FeBVw5-JApxclcjYxQtZJXdAEaOkOYGMPKq4HL-yCRX5vitca2c0aj4SI2rwElpyLBvu78qZ3Bx-0djx39qfQ7WezftqHPffTgBGxZvsZzCVgOVdDpTp2BNvKVDMz3LXPcDM6rtKg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Asynchronous+block-iterative+primal-dual+decomposition+methods+for+monotone+inclusions&rft.jtitle=Mathematical+programming&rft.au=Combettes%2C+Patrick+L.&rft.au=Eckstein%2C+Jonathan&rft.date=2018-03-01&rft.pub=Springer+Berlin+Heidelberg&rft.issn=0025-5610&rft.eissn=1436-4646&rft.volume=168&rft.issue=1-2&rft.spage=645&rft.epage=672&rft_id=info:doi/10.1007%2Fs10107-016-1044-0&rft.externalDocID=10_1007_s10107_016_1044_0 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0025-5610&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0025-5610&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0025-5610&client=summon |