Graph Isomorphism, Color Refinement, and Compactness
Color refinement is a classical technique used to show that two given graphs G and H are non-isomorphic; it is very efficient, although it does not succeed on all graphs. We call a graph G amenable to color refinement if the color refinement procedure succeeds in distinguishing G from any non-isomor...
Uloženo v:
| Vydáno v: | Computational complexity Ročník 26; číslo 3; s. 627 - 685 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Cham
Springer International Publishing
01.09.2017
Springer Nature B.V |
| Témata: | |
| ISSN: | 1016-3328, 1420-8954 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Color refinement
is a classical technique used to show that two given graphs
G
and
H
are non-isomorphic; it is very efficient, although it does not succeed on all graphs. We call a graph
G
amenable
to color refinement if the color refinement procedure succeeds in distinguishing
G
from any non-isomorphic graph
H
. Babai et al. (SIAM J Comput 9(3):628–635,
1980
) have shown that random graphs are amenable with high probability. We determine the exact range of applicability of color refinement by showing that amenable graphs are recognizable in time
O
(
(
n
+
m
)
log
n
)
, where
n
and
m
denote the number of vertices and the number of edges in the input graph.
We use our characterization of amenable graphs to analyze the approach to Graph Isomorphism based on the notion of
compact graphs
. A graph is called compact if the polytope of its fractional automorphisms is integral. Tinhofer (Discrete Appl Math 30(2–3):253–264,
1991
) noted that isomorphism testing for compact graphs can be done quite efficiently by linear programming. However, the problem of characterizing compact graphs and recognizing them in polynomial time remains an open question. Our results in this direction are summarized below:
We show that all amenable graphs are compact. In other words, the applicability range for Tinhofer’s linear programming approach to isomorphism testing is at least as large as for the combinatorial approach based on color refinement.
Exploring the relationship between color refinement and compactness further, we study related combinatorial and algebraic graph properties introduced by Tinhofer and Godsil. We show that the corresponding classes of graphs form a hierarchy, and we prove that recognizing each of these graph classes is P-hard. In particular, this gives a first complexity lower bound for recognizing compact graphs. |
|---|---|
| AbstractList | Color refinement
is a classical technique used to show that two given graphs
G
and
H
are non-isomorphic; it is very efficient, although it does not succeed on all graphs. We call a graph
G
amenable
to color refinement if the color refinement procedure succeeds in distinguishing
G
from any non-isomorphic graph
H
. Babai et al. (SIAM J Comput 9(3):628–635,
1980
) have shown that random graphs are amenable with high probability. We determine the exact range of applicability of color refinement by showing that amenable graphs are recognizable in time
O
(
(
n
+
m
)
log
n
)
, where
n
and
m
denote the number of vertices and the number of edges in the input graph.
We use our characterization of amenable graphs to analyze the approach to Graph Isomorphism based on the notion of
compact graphs
. A graph is called compact if the polytope of its fractional automorphisms is integral. Tinhofer (Discrete Appl Math 30(2–3):253–264,
1991
) noted that isomorphism testing for compact graphs can be done quite efficiently by linear programming. However, the problem of characterizing compact graphs and recognizing them in polynomial time remains an open question. Our results in this direction are summarized below:
We show that all amenable graphs are compact. In other words, the applicability range for Tinhofer’s linear programming approach to isomorphism testing is at least as large as for the combinatorial approach based on color refinement.
Exploring the relationship between color refinement and compactness further, we study related combinatorial and algebraic graph properties introduced by Tinhofer and Godsil. We show that the corresponding classes of graphs form a hierarchy, and we prove that recognizing each of these graph classes is P-hard. In particular, this gives a first complexity lower bound for recognizing compact graphs. Color refinement is a classical technique used to show that two given graphs G and H are non-isomorphic; it is very efficient, although it does not succeed on all graphs. We call a graph Gamenable to color refinement if the color refinement procedure succeeds in distinguishing G from any non-isomorphic graph H. Babai et al. (SIAM J Comput 9(3):628–635, 1980) have shown that random graphs are amenable with high probability. We determine the exact range of applicability of color refinement by showing that amenable graphs are recognizable in time O ( ( n + m ) log n ) , where n and m denote the number of vertices and the number of edges in the input graph. We use our characterization of amenable graphs to analyze the approach to Graph Isomorphism based on the notion of compact graphs. A graph is called compact if the polytope of its fractional automorphisms is integral. Tinhofer (Discrete Appl Math 30(2–3):253–264, 1991) noted that isomorphism testing for compact graphs can be done quite efficiently by linear programming. However, the problem of characterizing compact graphs and recognizing them in polynomial time remains an open question. Our results in this direction are summarized below: ○ We show that all amenable graphs are compact. In other words, the applicability range for Tinhofer’s linear programming approach to isomorphism testing is at least as large as for the combinatorial approach based on color refinement. ○ Exploring the relationship between color refinement and compactness further, we study related combinatorial and algebraic graph properties introduced by Tinhofer and Godsil. We show that the corresponding classes of graphs form a hierarchy, and we prove that recognizing each of these graph classes is P -hard. In particular, this gives a first complexity lower bound for recognizing compact graphs. |
| Author | Rattan, Gaurav Köbler, Johannes Verbitsky, Oleg Arvind, V. |
| Author_xml | – sequence: 1 givenname: V. surname: Arvind fullname: Arvind, V. email: arvind@imsc.res.in organization: The Institute of Mathematical Sciences – sequence: 2 givenname: Johannes surname: Köbler fullname: Köbler, Johannes organization: Institut für Informatik, Humboldt Universität zu Berlin – sequence: 3 givenname: Gaurav surname: Rattan fullname: Rattan, Gaurav organization: The Institute of Mathematical Sciences – sequence: 4 givenname: Oleg surname: Verbitsky fullname: Verbitsky, Oleg organization: Institut für Informatik, Humboldt Universität zu Berlin |
| BookMark | eNp9kE1LAzEQhoNUsK3-AG8LXruar90kRylaCwVB9Byy2cRu6SZrkh7892ZZDyLoYZhhZp55h3cBZs47A8A1grcIQnYXIYSElRDVOSgr6zMwRxTDkouKznI9TgjB_AIsYjxAiCpO6BzQTVDDvthG3_sw7LvYr4q1P_pQvBjbOdMbl1aFcm3u9oPSyZkYL8G5Vcdorr7zErw9Pryun8rd82a7vt-VmnCcSt3WrTWYa04UJUILK1rRWmsVsqYxWBhKKqspagilLaPGqpoLUlWswcI2mizBzXR3CP7jZGKSB38KLktKJAiFBLGa5y00bengYwzGyiF0vQqfEkE5miMnc2S2QI7myDoz7Beju6RS510Kqjv-S-KJjFnFvZvw46c_oS_Pr3pI |
| CitedBy_id | crossref_primary_10_1137_20M1327550 crossref_primary_10_1016_j_disc_2021_112692 crossref_primary_10_1016_j_jcss_2020_04_003 crossref_primary_10_1145_3417515 crossref_primary_10_1017_jpr_2019_44 crossref_primary_10_1007_s00373_021_02364_z crossref_primary_10_1016_j_knosys_2019_105086 crossref_primary_10_1007_s00037_024_00255_2 crossref_primary_10_1007_s00373_021_02308_7 crossref_primary_10_1145_3436980_3436982 crossref_primary_10_1137_23M1575019 crossref_primary_10_1007_s10801_022_01193_4 crossref_primary_10_1007_s00373_023_02683_3 |
| Cites_doi | 10.1017/jsl.2015.28 10.1007/s004939970004 10.1145/1008354.1008356 10.1007/s10114-004-0485-1 10.1016/0095-8956(82)90042-9 10.1016/0166-218X(88)90100-X 10.1007/978-3-319-22177-9_26 10.1007/978-3-662-48054-0_3 10.1016/S0012-365X(00)00152-7 10.1016/0166-218X(91)90049-3 10.1007/978-1-4612-0333-9 10.1016/S0024-3795(97)83595-1 10.1007/978-1-4612-4478-3_5 10.1016/j.disopt.2014.01.004 10.1016/0012-365X(94)90241-0 10.2307/2371086 10.1016/S0012-365X(99)90071-7 10.1007/978-3-642-40450-4_13 10.1007/BF02240204 10.1016/0024-3795(88)90239-X 10.7155/jgaa.00229 10.1016/S0012-365X(99)00381-7 10.1016/0024-3795(88)90054-7 10.1137/0209047 10.1007/978-94-015-8937-6_3 10.1609/aaai.v28i1.8992 10.1007/978-3-662-48057-1_25 10.1137/120867834 10.1007/BF01305232 10.2140/pjm.1975.56.143 10.1017/CBO9780511721182 10.1016/0304-3975(82)90016-0 10.1007/978-3-662-44777-2_42 10.1016/S0095-8956(76)80006-8 |
| ContentType | Journal Article |
| Copyright | Springer International Publishing 2016 Copyright Springer Science & Business Media 2017 |
| Copyright_xml | – notice: Springer International Publishing 2016 – notice: Copyright Springer Science & Business Media 2017 |
| DBID | AAYXX CITATION JQ2 |
| DOI | 10.1007/s00037-016-0147-6 |
| DatabaseName | CrossRef ProQuest Computer Science Collection |
| DatabaseTitle | CrossRef ProQuest Computer Science Collection |
| DatabaseTitleList | ProQuest Computer Science Collection |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Mathematics Computer Science |
| EISSN | 1420-8954 |
| EndPage | 685 |
| ExternalDocumentID | 10_1007_s00037_016_0147_6 |
| GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C .86 .DC .VR 06D 0R~ 0VY 199 1N0 1SB 2.D 203 28- 29F 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 78A 8TC 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABLJU ABMNI ABMQK ABNWP ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BBWZM BDATZ BGNMA BSONS CAG COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ IHE IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW LAS LLZTM M4Y MA- MBV N2Q N9A NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P P9O PF0 PT4 PT5 QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7X Z83 Z88 Z8R Z8W Z92 ZMTXR ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABJCF ABRTQ ACSTC ADHKG AEZWR AFDZB AFFHD AFHIU AFKRA AFOHR AGQPQ AHPBZ AHWEU AIXLP ARAPS ATHPR AYFIA AZQEC BENPR BGLVJ CCPQU CITATION DWQXO GNUQQ HCIFZ K7- M2P M7S PHGZM PHGZT PQGLB PTHSS JQ2 |
| ID | FETCH-LOGICAL-c382t-cd6dfe28c83a439c9f9d9dfffa1febe29e435fc41b344d74efa6893557b29fbc3 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 19 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000408719300003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1016-3328 |
| IngestDate | Wed Sep 17 23:55:56 EDT 2025 Tue Nov 18 21:49:31 EST 2025 Sat Nov 29 02:52:51 EST 2025 Fri Feb 21 02:32:58 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Keywords | color refinement linear programming relaxation Graph Isomorphism 68Q25 Analysis of algorithms and problem complexity polytope of fractional automorphisms |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c382t-cd6dfe28c83a439c9f9d9dfffa1febe29e435fc41b344d74efa6893557b29fbc3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 1934031768 |
| PQPubID | 2044003 |
| PageCount | 59 |
| ParticipantIDs | proquest_journals_1934031768 crossref_primary_10_1007_s00037_016_0147_6 crossref_citationtrail_10_1007_s00037_016_0147_6 springer_journals_10_1007_s00037_016_0147_6 |
| PublicationCentury | 2000 |
| PublicationDate | 2017-09-01 |
| PublicationDateYYYYMMDD | 2017-09-01 |
| PublicationDate_xml | – month: 09 year: 2017 text: 2017-09-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | Cham |
| PublicationPlace_xml | – name: Cham – name: Heidelberg |
| PublicationTitle | Computational complexity |
| PublicationTitleAbbrev | comput. complex |
| PublicationYear | 2017 |
| Publisher | Springer International Publishing Springer Nature B.V |
| Publisher_xml | – name: Springer International Publishing – name: Springer Nature B.V |
| References | JohannesKöblerUweSchöningJacoboToránThe graph isomorphism problem: its structural complexity1993BostonMA: Birkhäuser.0813.68103 Ramana MotakuriV.Scheinerman EdwardR.UllmanDanielFractional isomorphism of graphsDiscrete Mathematics19941321-3247265129738510.1016/0012-365X(94)90241-00808.05077 Matan Ziv-Av (2013). Results of computer algebra calculations for triangle free strongly regular graphs. E-printhttp://www.math.bgu.ac.il/~zivav/math/eqpart.pdf. Boris Yu. Weisfeiler & Andrei A. Leman (1968). A reduction of a graph to a canonical form and an algebra arising during this reduction. Nauchno-Technicheskaya Informatsia, Seriya 229, 12–16. In Russian. Goldschlager LeslieM.The monotone and planar circuit value problems are log space complete for PSIGACT News19779252910.1145/1008354.10083560356.94042 Malkin PeterN.Sherali-Adams relaxations of graph isomorphism polytopesDiscrete Optimization2014127397318902710.1016/j.disopt.2014.01.0041308.90210 GottfriedTinhoferStrong tree-cographs are Birkhoff graphsDiscrete Applied Mathematics19892232752889832510672.05060 Sergei Evdokimov, Ilia N. Ponomarenko & Gottfried Tinhofer (2000). Forestal algebras and algebraic forests (on a new class of weakly compact graphs). Discrete Mathematics225(1–3), 149–172. Johnson RobertH.Simple separable graphsPacific Journal of Mathematics19755614315837396310.2140/pjm.1975.56.1430304.05105 SergeiEvdokimovMarek KarpinskiIlia N.PonomarenkoCompact cellular algebras and permutation groupsDiscrete Mathematics1999197-198247267167486610.1016/S0012-365X(99)90071-70960.20001 MichaelKorenPairs of sequences with a unique realization by bipartite graphsJournal of Combinatorial Theory, Series B197621322423444452510.1016/S0095-8956(76)80006-80298.05139 HelmutSchreckGottfriedTinhoferA note on certain subpolytopes of the assignment polytope associated with circulant graphsLinear Algebra and its Applications198811112513497404910.1016/0024-3795(88)90054-7 Kristian Kersting, Martin Mladenov, Roman Garnett & Martin Grohe (2014). Power iterated color refinement. In Proceedings of the Twenty-Eighth AAAI Conference on Artificial Intelligence, 1904–1910. AAAI Press. GottfriedTinhoferGraph isomorphism and theorems of Birkhoff typeComputing19863628530084393810.1007/BF02240204 LászlóBabaiPaul Erdős & Stanley M.SelkowRandom graph isomorphismSIAM Journal on Computing19809362863558451710.1137/02090470454.05038 Robert G. Busacker & Thomas L. Saaty (1965). Finite graphs and networks: an introduction with applications. International Series in Pure and Applied Mathematics. McGraw-Hill Book Company, New York etc. AtseriasAlbertManeva ElitzaN.Sherali-Adams relaxations and indistinguishability in counting logicsSIAM Journal on Computing2013421112137303312310.1137/1208678341286.68175 Sandra Kiefer, Pascal Schweitzer & Erkal Selman (2015). Graphs identified by logics with counting. In Proceedings of the 40th International Symposium on Mathematical Foundations of Computer Science (MFCS), volume 9234 of Lecture Notes in Computer Science, 319–330. Springer. A full version is available as an e-print http://arxiv.org/abs/1503.08792. Dana Angluin (1980). Local and global properties in networks of processors. In Proceedings of the 12th Annual ACM Symposium on Theory of Computing, 82–93. ACM. Christoph Berkholz, Paul Bonsma & Martin Grohe (2013). Tight lower and upper bounds for the complexity of canonical colour refinement. In Proceedings of 21st Annual European Symposium on Algorithms (ESA), volume 8125 of Lecture Notes in Computer Science, 145–156. Springer. Jin-Yi Cai, Martin Fürer & Neil Immerman (1992). An optimal lower bound on the number of variables for graph identification. Combinatorica12(4), 389–410. Neil Immerman & Eric Lander (1990). Describing graphs: A first-order approach to graph canonization. In Complexity Theory Retrospective, 59–81. Springer. Andreas Krebs & Oleg Verbitsky (2015). Universal covers, color refinement, and two-variable logic with counting quantifiers: Lower bounds for the depth. In Proceedings of the 30-th ACM/IEEE Annual Symposium on Logic in Computer Science (LICS), 689–700. IEEE Computer Society. Nino Shervashidze, Pascal Schweitzer, Erik Jan van Leeuwen, Kurt Mehlhorn & Karsten M. Borgwardt (2011). Weisfeiler-Lehman graph kernels. Journal of Machine Learning Research12, 2539–2561. László Babai & Ludek Kučera (1979). Canonical labelling of graphs in linear average time. In Proceedings of the 20th Annual Symposium on Foundations of Computer Science, 39–46. HasslerWhitneyCongruent graphs and connectivity of graphsAmerican Journal of Mathematics193254150168150688110.2307/23710860003.32804 Godsil ChrisD.Compact graphs and equitable partitionsLinear Algebra and its Applications19972551–3259266143324210.1016/S0024-3795(97)83595-10872.05033 Gottfried Tinhofer & Mikhail Klin (1999). Algebraic combinatorics in mathematical chemistry. Methods and algorithms III. Graph invariants and stabilization methods. Technical Report TUM-M9902, Technische Universität München. GottfriedTinhoferA note on compact graphsDiscrete Applied Mathematics1991302–32532641095378 CardonA.MaximeCrochemorePartitioning a graph in O(|A|log2|V|)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${O(|A| \log_2 |V|)}$$\end{document}Theoretical Computer Science198219859866441410.1016/0304-3975(82)90016-00478.68067 Ada Chan & Chris D. Godsil (1997). Symmetry and eigenvectors. In Graph symmetry, volume 497, 75–106. Kluwer Acad. Publ., Dordrecht. V. Arvind, Johannes Köbler, Gaurav Rattan & Oleg Verbitsky (2015a). On the power of color refinement. In Proceedings of the 20th International Symposium on Fundamentals of Computation Theory (FCT), volume 9210 of Lecture Notes in Computer Science, 339–350. Springer. Alessandro Borri, Tiziana Calamoneri & Rossella Petreschi (2011). Recognition of unigraphs through superposition of graphs. Journal of Graph Algorithms and Applications15(3), 323–343. MartinGroheEquivalence in finite-variable logics is complete for polynomial timeCombinatorica1999194507532177365510.1007/s0049399700040987.03033 MartinGroheMartinOttoPebble games and linear equationsThe Journal of Symbolic Logic2015803797844339535110.1017/jsl.2015.281353.03018 László Babai (1995). Automorphism groups, isomorphism, reconstruction. In Handbook of Combinatorics, chapter 27, 1447–1540. Elsevier. Frank ThomsonLeightonFinite common coverings of graphsJournal of Combinatorial Theory, Series B198233323123869336210.1016/0095-8956(82)90042-90488.05033 Richard A.BrualdiSome applications of doubly stochastic matricesLinear Algebra and its Applications19881077710096013910.1016/0024-3795(88)90239-X0657.15016 Richard A. Brualdi (2006). Combinatorial matrix classes. Cambridge University Press. PingWang&Jiong ShengLiOn compact graphsActa Mathematica Sinica200521510871092217631910.1007/s10114-004-0485-1 Martin Grohe, Kristian Kersting, Martin Mladenov & Erkal Selman (2014). Dimension reduction via colour refinement. In Proceeding of 22th Annual European Symposium on Algorithms (ESA), volume 8737 of Lecture Notes in Computer Science, 505–516. Springer. ReginaTyshkevichDecomposition of graphical sequences and unigraphsDiscrete Mathematics20002201–320123817603070944.05025 V. Arvind, Johannes Köbler, Gaurav Rattan & Oleg Verbitsky (2015b). On Tinhofer’s linear programming approach to isomorphism testing. In Proceedings of the 40th International Symposium on Mathematical Foundations of Computer Science (MFCS), volume 9235 of Lecture Notes in Computer Science, 26–37. Springer. Tinhofer Gottfried (147_CR35) 1986; 36 Leighton Frank Thomson (147_CR30) 1982; 33 147_CR41 147_CR23 Albert Atserias (147_CR4) 2013; 42 147_CR21 147_CR43 M. Goldschlager Leslie (147_CR19) 1977; 9 147_CR26 Schreck Helmut (147_CR33) 1988; 111 147_CR25 Evdokimov Sergei (147_CR16) 1999; 197-198 147_CR17 Tinhofer Gottfried (147_CR36) 1989; 22 Grohe Martin (147_CR22) 2015; 80 Li PingWang&Jiong Sheng (147_CR40) 2005; 21 147_CR1 147_CR2 147_CR3 V. Ramana Motakuri (147_CR32) 1994; 132 147_CR5 147_CR7 147_CR8 147_CR9 Whitney Hassler (147_CR42) 1932; 54 Koren Michael (147_CR28) 1976; 21 Brualdi Richard A. (147_CR10) 1988; 107 Köbler Johannes (147_CR27) 1993 A. Cardon (147_CR14) 1982; 19 147_CR11 147_CR12 147_CR34 147_CR15 Tinhofer Gottfried (147_CR37) 1991; 30 147_CR38 147_CR13 D. Godsil Chris (147_CR18) 1997; 255 Grohe Martin (147_CR20) 1999; 19 147_CR29 N. Malkin Peter (147_CR31) 2014; 12 Tyshkevich Regina (147_CR39) 2000; 220 Babai László (147_CR6) 1980; 9 H. Johnson Robert (147_CR24) 1975; 56 |
| References_xml | – reference: László Babai & Ludek Kučera (1979). Canonical labelling of graphs in linear average time. In Proceedings of the 20th Annual Symposium on Foundations of Computer Science, 39–46. – reference: JohannesKöblerUweSchöningJacoboToránThe graph isomorphism problem: its structural complexity1993BostonMA: Birkhäuser.0813.68103 – reference: Boris Yu. Weisfeiler & Andrei A. Leman (1968). A reduction of a graph to a canonical form and an algebra arising during this reduction. Nauchno-Technicheskaya Informatsia, Seriya 229, 12–16. In Russian. – reference: Andreas Krebs & Oleg Verbitsky (2015). Universal covers, color refinement, and two-variable logic with counting quantifiers: Lower bounds for the depth. In Proceedings of the 30-th ACM/IEEE Annual Symposium on Logic in Computer Science (LICS), 689–700. IEEE Computer Society. – reference: Ramana MotakuriV.Scheinerman EdwardR.UllmanDanielFractional isomorphism of graphsDiscrete Mathematics19941321-3247265129738510.1016/0012-365X(94)90241-00808.05077 – reference: Frank ThomsonLeightonFinite common coverings of graphsJournal of Combinatorial Theory, Series B198233323123869336210.1016/0095-8956(82)90042-90488.05033 – reference: HasslerWhitneyCongruent graphs and connectivity of graphsAmerican Journal of Mathematics193254150168150688110.2307/23710860003.32804 – reference: Christoph Berkholz, Paul Bonsma & Martin Grohe (2013). Tight lower and upper bounds for the complexity of canonical colour refinement. In Proceedings of 21st Annual European Symposium on Algorithms (ESA), volume 8125 of Lecture Notes in Computer Science, 145–156. Springer. – reference: Goldschlager LeslieM.The monotone and planar circuit value problems are log space complete for PSIGACT News19779252910.1145/1008354.10083560356.94042 – reference: ReginaTyshkevichDecomposition of graphical sequences and unigraphsDiscrete Mathematics20002201–320123817603070944.05025 – reference: HelmutSchreckGottfriedTinhoferA note on certain subpolytopes of the assignment polytope associated with circulant graphsLinear Algebra and its Applications198811112513497404910.1016/0024-3795(88)90054-7 – reference: Richard A.BrualdiSome applications of doubly stochastic matricesLinear Algebra and its Applications19881077710096013910.1016/0024-3795(88)90239-X0657.15016 – reference: Neil Immerman & Eric Lander (1990). Describing graphs: A first-order approach to graph canonization. In Complexity Theory Retrospective, 59–81. Springer. – reference: Sergei Evdokimov, Ilia N. Ponomarenko & Gottfried Tinhofer (2000). Forestal algebras and algebraic forests (on a new class of weakly compact graphs). Discrete Mathematics225(1–3), 149–172. – reference: Alessandro Borri, Tiziana Calamoneri & Rossella Petreschi (2011). Recognition of unigraphs through superposition of graphs. Journal of Graph Algorithms and Applications15(3), 323–343. – reference: Godsil ChrisD.Compact graphs and equitable partitionsLinear Algebra and its Applications19972551–3259266143324210.1016/S0024-3795(97)83595-10872.05033 – reference: Matan Ziv-Av (2013). Results of computer algebra calculations for triangle free strongly regular graphs. E-printhttp://www.math.bgu.ac.il/~zivav/math/eqpart.pdf. – reference: Martin Grohe, Kristian Kersting, Martin Mladenov & Erkal Selman (2014). Dimension reduction via colour refinement. In Proceeding of 22th Annual European Symposium on Algorithms (ESA), volume 8737 of Lecture Notes in Computer Science, 505–516. Springer. – reference: GottfriedTinhoferStrong tree-cographs are Birkhoff graphsDiscrete Applied Mathematics19892232752889832510672.05060 – reference: V. Arvind, Johannes Köbler, Gaurav Rattan & Oleg Verbitsky (2015a). On the power of color refinement. In Proceedings of the 20th International Symposium on Fundamentals of Computation Theory (FCT), volume 9210 of Lecture Notes in Computer Science, 339–350. Springer. – reference: LászlóBabaiPaul Erdős & Stanley M.SelkowRandom graph isomorphismSIAM Journal on Computing19809362863558451710.1137/02090470454.05038 – reference: PingWang&Jiong ShengLiOn compact graphsActa Mathematica Sinica200521510871092217631910.1007/s10114-004-0485-1 – reference: Kristian Kersting, Martin Mladenov, Roman Garnett & Martin Grohe (2014). Power iterated color refinement. In Proceedings of the Twenty-Eighth AAAI Conference on Artificial Intelligence, 1904–1910. AAAI Press. – reference: Dana Angluin (1980). Local and global properties in networks of processors. In Proceedings of the 12th Annual ACM Symposium on Theory of Computing, 82–93. ACM. – reference: MartinGroheMartinOttoPebble games and linear equationsThe Journal of Symbolic Logic2015803797844339535110.1017/jsl.2015.281353.03018 – reference: Malkin PeterN.Sherali-Adams relaxations of graph isomorphism polytopesDiscrete Optimization2014127397318902710.1016/j.disopt.2014.01.0041308.90210 – reference: Ada Chan & Chris D. Godsil (1997). Symmetry and eigenvectors. In Graph symmetry, volume 497, 75–106. Kluwer Acad. Publ., Dordrecht. – reference: GottfriedTinhoferA note on compact graphsDiscrete Applied Mathematics1991302–32532641095378 – reference: Robert G. Busacker & Thomas L. Saaty (1965). Finite graphs and networks: an introduction with applications. International Series in Pure and Applied Mathematics. McGraw-Hill Book Company, New York etc. – reference: AtseriasAlbertManeva ElitzaN.Sherali-Adams relaxations and indistinguishability in counting logicsSIAM Journal on Computing2013421112137303312310.1137/1208678341286.68175 – reference: MartinGroheEquivalence in finite-variable logics is complete for polynomial timeCombinatorica1999194507532177365510.1007/s0049399700040987.03033 – reference: CardonA.MaximeCrochemorePartitioning a graph in O(|A|log2|V|)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${O(|A| \log_2 |V|)}$$\end{document}Theoretical Computer Science198219859866441410.1016/0304-3975(82)90016-00478.68067 – reference: Nino Shervashidze, Pascal Schweitzer, Erik Jan van Leeuwen, Kurt Mehlhorn & Karsten M. Borgwardt (2011). Weisfeiler-Lehman graph kernels. Journal of Machine Learning Research12, 2539–2561. – reference: Sandra Kiefer, Pascal Schweitzer & Erkal Selman (2015). Graphs identified by logics with counting. In Proceedings of the 40th International Symposium on Mathematical Foundations of Computer Science (MFCS), volume 9234 of Lecture Notes in Computer Science, 319–330. Springer. A full version is available as an e-print http://arxiv.org/abs/1503.08792. – reference: Richard A. Brualdi (2006). Combinatorial matrix classes. Cambridge University Press. – reference: SergeiEvdokimovMarek KarpinskiIlia N.PonomarenkoCompact cellular algebras and permutation groupsDiscrete Mathematics1999197-198247267167486610.1016/S0012-365X(99)90071-70960.20001 – reference: V. Arvind, Johannes Köbler, Gaurav Rattan & Oleg Verbitsky (2015b). On Tinhofer’s linear programming approach to isomorphism testing. In Proceedings of the 40th International Symposium on Mathematical Foundations of Computer Science (MFCS), volume 9235 of Lecture Notes in Computer Science, 26–37. Springer. – reference: GottfriedTinhoferGraph isomorphism and theorems of Birkhoff typeComputing19863628530084393810.1007/BF02240204 – reference: László Babai (1995). Automorphism groups, isomorphism, reconstruction. In Handbook of Combinatorics, chapter 27, 1447–1540. Elsevier. – reference: Jin-Yi Cai, Martin Fürer & Neil Immerman (1992). An optimal lower bound on the number of variables for graph identification. Combinatorica12(4), 389–410. – reference: Johnson RobertH.Simple separable graphsPacific Journal of Mathematics19755614315837396310.2140/pjm.1975.56.1430304.05105 – reference: MichaelKorenPairs of sequences with a unique realization by bipartite graphsJournal of Combinatorial Theory, Series B197621322423444452510.1016/S0095-8956(76)80006-80298.05139 – reference: Gottfried Tinhofer & Mikhail Klin (1999). Algebraic combinatorics in mathematical chemistry. Methods and algorithms III. Graph invariants and stabilization methods. Technical Report TUM-M9902, Technische Universität München. – volume: 80 start-page: 797 issue: 3 year: 2015 ident: 147_CR22 publication-title: The Journal of Symbolic Logic doi: 10.1017/jsl.2015.28 – volume: 19 start-page: 507 issue: 4 year: 1999 ident: 147_CR20 publication-title: Combinatorica doi: 10.1007/s004939970004 – ident: 147_CR34 – volume: 9 start-page: 25 year: 1977 ident: 147_CR19 publication-title: SIGACT News doi: 10.1145/1008354.1008356 – volume: 21 start-page: 1087 issue: 5 year: 2005 ident: 147_CR40 publication-title: Acta Mathematica Sinica doi: 10.1007/s10114-004-0485-1 – volume: 33 start-page: 231 issue: 3 year: 1982 ident: 147_CR30 publication-title: Journal of Combinatorial Theory, Series B doi: 10.1016/0095-8956(82)90042-9 – volume: 22 start-page: 275 issue: 3 year: 1989 ident: 147_CR36 publication-title: Discrete Applied Mathematics doi: 10.1016/0166-218X(88)90100-X – ident: 147_CR2 doi: 10.1007/978-3-319-22177-9_26 – ident: 147_CR3 doi: 10.1007/978-3-662-48054-0_3 – ident: 147_CR17 doi: 10.1016/S0012-365X(00)00152-7 – volume: 30 start-page: 253 issue: 2–3 year: 1991 ident: 147_CR37 publication-title: Discrete Applied Mathematics doi: 10.1016/0166-218X(91)90049-3 – volume-title: The graph isomorphism problem: its structural complexity year: 1993 ident: 147_CR27 doi: 10.1007/978-1-4612-0333-9 – volume: 255 start-page: 259 issue: 1–3 year: 1997 ident: 147_CR18 publication-title: Linear Algebra and its Applications doi: 10.1016/S0024-3795(97)83595-1 – ident: 147_CR43 – ident: 147_CR23 doi: 10.1007/978-1-4612-4478-3_5 – volume: 12 start-page: 73 year: 2014 ident: 147_CR31 publication-title: Discrete Optimization doi: 10.1016/j.disopt.2014.01.004 – ident: 147_CR41 – ident: 147_CR38 – volume: 132 start-page: 247 issue: 1-3 year: 1994 ident: 147_CR32 publication-title: Discrete Mathematics doi: 10.1016/0012-365X(94)90241-0 – volume: 54 start-page: 150 year: 1932 ident: 147_CR42 publication-title: American Journal of Mathematics doi: 10.2307/2371086 – volume: 197-198 start-page: 247 year: 1999 ident: 147_CR16 publication-title: Discrete Mathematics doi: 10.1016/S0012-365X(99)90071-7 – ident: 147_CR8 doi: 10.1007/978-3-642-40450-4_13 – ident: 147_CR1 – volume: 36 start-page: 285 year: 1986 ident: 147_CR35 publication-title: Computing doi: 10.1007/BF02240204 – ident: 147_CR7 – ident: 147_CR12 – ident: 147_CR29 – ident: 147_CR5 – volume: 107 start-page: 77 year: 1988 ident: 147_CR10 publication-title: Linear Algebra and its Applications doi: 10.1016/0024-3795(88)90239-X – ident: 147_CR9 doi: 10.7155/jgaa.00229 – volume: 220 start-page: 201 issue: 1–3 year: 2000 ident: 147_CR39 publication-title: Discrete Mathematics doi: 10.1016/S0012-365X(99)00381-7 – volume: 111 start-page: 125 year: 1988 ident: 147_CR33 publication-title: Linear Algebra and its Applications doi: 10.1016/0024-3795(88)90054-7 – volume: 9 start-page: 628 issue: 3 year: 1980 ident: 147_CR6 publication-title: SIAM Journal on Computing doi: 10.1137/0209047 – ident: 147_CR15 doi: 10.1007/978-94-015-8937-6_3 – ident: 147_CR25 doi: 10.1609/aaai.v28i1.8992 – ident: 147_CR26 doi: 10.1007/978-3-662-48057-1_25 – volume: 42 start-page: 112 issue: 1 year: 2013 ident: 147_CR4 publication-title: SIAM Journal on Computing doi: 10.1137/120867834 – ident: 147_CR13 doi: 10.1007/BF01305232 – volume: 56 start-page: 143 year: 1975 ident: 147_CR24 publication-title: Pacific Journal of Mathematics doi: 10.2140/pjm.1975.56.143 – ident: 147_CR11 doi: 10.1017/CBO9780511721182 – volume: 19 start-page: 85 year: 1982 ident: 147_CR14 publication-title: Theoretical Computer Science doi: 10.1016/0304-3975(82)90016-0 – ident: 147_CR21 doi: 10.1007/978-3-662-44777-2_42 – volume: 21 start-page: 224 issue: 3 year: 1976 ident: 147_CR28 publication-title: Journal of Combinatorial Theory, Series B doi: 10.1016/S0095-8956(76)80006-8 |
| SSID | ssj0015834 |
| Score | 2.3132157 |
| Snippet | Color refinement
is a classical technique used to show that two given graphs
G
and
H
are non-isomorphic; it is very efficient, although it does not succeed on... Color refinement is a classical technique used to show that two given graphs G and H are non-isomorphic; it is very efficient, although it does not succeed on... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 627 |
| SubjectTerms | Algorithm Analysis and Problem Complexity Automorphisms Color Combinatorial analysis Computational Mathematics and Numerical Analysis Computer Science Graph theory Graphs Isomorphism Linear programming |
| Title | Graph Isomorphism, Color Refinement, and Compactness |
| URI | https://link.springer.com/article/10.1007/s00037-016-0147-6 https://www.proquest.com/docview/1934031768 |
| Volume | 26 |
| WOSCitedRecordID | wos000408719300003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1420-8954 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0015834 issn: 1016-3328 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwED90-qAPTqfidEoefNIFZpM2yaMMp4IOmTr2VrJ8wMB1slb_fpOurR-ooM-9hnKXu_td7_ILwLG2KuRMMaxdPsOUWo551BE4otwoLrWwOdvn8Ib1-3w0EnfFOe60nHYvW5J5pK4Ou-VcKa709RUwZThahhWX7bj3xsH9sGodhHzRSvaChAS8bGV-t8TnZPSOML80RfNc06v_6ys3YaOAluh8sRe2YMkkDaiX1zagwosbsH5bUbWm20AvPWU1uk5n05nT-SSdtlHXRcQ5GhjrIKj_e9hGMtEoDx0q87FxBx57Fw_dK1xcpYAV4UGGlY60NQFXnEgHQZSwQgttrZVn1pkxEMbBJqvo2ZhQqhk1VkbcU6-zcSDsWJFdqCWzxOwBkqFikgmuO9JSqqyQgSIq1NRwIaklTeiUOo1VwTPur7t4iiuG5FxHsZ8t8zqKoyacVK88L0g2fhNulYaKC39LYwdDqQtPrnZqwmlpmA-Pf1ps_0_SB7AW-Kyej5i1oJbNX8whrKrXbJLOj_Jt-AbTndYf |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dT8IwEL8omqgPoqgRRe2DT-oS2LqtfTREhAjEIBLeltKPhESGYdO_37Zs8yNqos-7Nctde_e73fV3AOdCcZ-EPHSEjmcOxoo4JKhTJ8BEcsIEVZbtc9QN-30yHtP77B53kne75yVJ66mLy26WK0WnviYDxqETrMIa1gHL9PENHkZF6cAny1KyEfQ8l-SlzO-W-ByM3hHml6KojTWt8r--cge2M2iJrpd7YRdWZFyBcj62AWWnuAJbvYKqNdkDfGsoq1Enmc_mWufTZHaFmtojLtBAKg1Bzd_DK8Rigazr4Knxjfvw2LoZNttONkrB4R5xU4eLQCjpEk48piEIp4oKKpRSrKG0GV0qNWxSHDcmHsYixFKxgBjq9XDiUjXh3gGU4nksDwExn4cspETUmcKYK8pc7nFfYEkow8qrQj3XacQznnEz7uIpKhiSrY4i01tmdBQFVbgoXnlekmz8JlzLDRVl5y2JNAzF2j3p3KkKl7lhPjz-abGjP0mfwUZ72OtG3U7_7hg2XRPhbbtZDUrp4kWewDp_TafJ4tRuyTfmAtkD |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dT8IwEL8oGqMPoqgRRd2DT8oCbGVrHw2KEpEQPwhvS2l7CYkMwqZ_v-3Y5kfUxPi8W7PctXe_211_B3AqUTSpL3xb6nhmE4LUpl6d2R6hSlAuGSZsn4Ou3-vR4ZD10zmnUdbtnpUkF3caDEtTGNdmEmv5xbeEN0WnwSYbJr7tLcMKMTODTLr-MMjLCE26KCsbQdd1aFbW_G6Jz4HpHW1-KZAmcadd_PcXb8FmCjmti8Ue2YYlFZagmI1zsNLTXYKNu5zCNdoBcm2orK1ONJ1MtS3G0aRqtbSnnFv3CjU0NX8VqxYPpZW4FBEbn7kLT-2rx9aNnY5YsIVLndgW0pOoHCqoyzU0EQyZZBIReQO1eR2mNJxCQRojlxDpE4Xco4aS3R85DEfC3YNCOA3VPli8KXzuMyrrHAkRyLgjXNGURFHGCbplqGf6DUTKP27GYDwHOXNyoqPA9JwZHQVeGc7yV2YL8o3fhCuZ0YL0HEaBhqdEuy2dU5XhPDPSh8c_LXbwJ-kTWOtftoNup3d7COuOCfxJF1oFCvH8RR3BqniNx9H8ONmdb5dm4ec |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Graph+Isomorphism%2C+Color+Refinement%2C+and+Compactness&rft.jtitle=Computational+complexity&rft.au=Arvind%2C+V&rft.au=K%C3%B6bler%2C+Johannes&rft.au=Rattan%2C+Gaurav&rft.au=Verbitsky%2C+Oleg&rft.date=2017-09-01&rft.pub=Springer+Nature+B.V&rft.issn=1016-3328&rft.eissn=1420-8954&rft.volume=26&rft.issue=3&rft.spage=627&rft.epage=685&rft_id=info:doi/10.1007%2Fs00037-016-0147-6&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1016-3328&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1016-3328&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1016-3328&client=summon |