Graph Isomorphism, Color Refinement, and Compactness

Color refinement is a classical technique used to show that two given graphs G and H are non-isomorphic; it is very efficient, although it does not succeed on all graphs. We call a graph G amenable to color refinement if the color refinement procedure succeeds in distinguishing G from any non-isomor...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Computational complexity Ročník 26; číslo 3; s. 627 - 685
Hlavní autori: Arvind, V., Köbler, Johannes, Rattan, Gaurav, Verbitsky, Oleg
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Cham Springer International Publishing 01.09.2017
Springer Nature B.V
Predmet:
ISSN:1016-3328, 1420-8954
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Color refinement is a classical technique used to show that two given graphs G and H are non-isomorphic; it is very efficient, although it does not succeed on all graphs. We call a graph G amenable to color refinement if the color refinement procedure succeeds in distinguishing G from any non-isomorphic graph H . Babai et al. (SIAM J Comput 9(3):628–635, 1980 ) have shown that random graphs are amenable with high probability. We determine the exact range of applicability of color refinement by showing that amenable graphs are recognizable in time O ( ( n + m ) log n ) , where n and m denote the number of vertices and the number of edges in the input graph. We use our characterization of amenable graphs to analyze the approach to Graph Isomorphism based on the notion of compact graphs . A graph is called compact if the polytope of its fractional automorphisms is integral. Tinhofer (Discrete Appl Math 30(2–3):253–264, 1991 ) noted that isomorphism testing for compact graphs can be done quite efficiently by linear programming. However, the problem of characterizing compact graphs and recognizing them in polynomial time remains an open question. Our results in this direction are summarized below: We show that all amenable graphs are compact. In other words, the applicability range for Tinhofer’s linear programming approach to isomorphism testing is at least as large as for the combinatorial approach based on color refinement. Exploring the relationship between color refinement and compactness further, we study related combinatorial and algebraic graph properties introduced by Tinhofer and Godsil. We show that the corresponding classes of graphs form a hierarchy, and we prove that recognizing each of these graph classes is P-hard. In particular, this gives a first complexity lower bound for recognizing compact graphs.
AbstractList Color refinement is a classical technique used to show that two given graphs G and H are non-isomorphic; it is very efficient, although it does not succeed on all graphs. We call a graph G amenable to color refinement if the color refinement procedure succeeds in distinguishing G from any non-isomorphic graph H . Babai et al. (SIAM J Comput 9(3):628–635, 1980 ) have shown that random graphs are amenable with high probability. We determine the exact range of applicability of color refinement by showing that amenable graphs are recognizable in time O ( ( n + m ) log n ) , where n and m denote the number of vertices and the number of edges in the input graph. We use our characterization of amenable graphs to analyze the approach to Graph Isomorphism based on the notion of compact graphs . A graph is called compact if the polytope of its fractional automorphisms is integral. Tinhofer (Discrete Appl Math 30(2–3):253–264, 1991 ) noted that isomorphism testing for compact graphs can be done quite efficiently by linear programming. However, the problem of characterizing compact graphs and recognizing them in polynomial time remains an open question. Our results in this direction are summarized below: We show that all amenable graphs are compact. In other words, the applicability range for Tinhofer’s linear programming approach to isomorphism testing is at least as large as for the combinatorial approach based on color refinement. Exploring the relationship between color refinement and compactness further, we study related combinatorial and algebraic graph properties introduced by Tinhofer and Godsil. We show that the corresponding classes of graphs form a hierarchy, and we prove that recognizing each of these graph classes is P-hard. In particular, this gives a first complexity lower bound for recognizing compact graphs.
Color refinement is a classical technique used to show that two given graphs G and H are non-isomorphic; it is very efficient, although it does not succeed on all graphs. We call a graph Gamenable to color refinement if the color refinement procedure succeeds in distinguishing G from any non-isomorphic graph H. Babai et al. (SIAM J Comput 9(3):628–635, 1980) have shown that random graphs are amenable with high probability. We determine the exact range of applicability of color refinement by showing that amenable graphs are recognizable in time O ( ( n + m ) log n ) , where n and m denote the number of vertices and the number of edges in the input graph. We use our characterization of amenable graphs to analyze the approach to Graph Isomorphism based on the notion of compact graphs. A graph is called compact if the polytope of its fractional automorphisms is integral. Tinhofer (Discrete Appl Math 30(2–3):253–264, 1991) noted that isomorphism testing for compact graphs can be done quite efficiently by linear programming. However, the problem of characterizing compact graphs and recognizing them in polynomial time remains an open question. Our results in this direction are summarized below: ○ We show that all amenable graphs are compact. In other words, the applicability range for Tinhofer’s linear programming approach to isomorphism testing is at least as large as for the combinatorial approach based on color refinement. ○ Exploring the relationship between color refinement and compactness further, we study related combinatorial and algebraic graph properties introduced by Tinhofer and Godsil. We show that the corresponding classes of graphs form a hierarchy, and we prove that recognizing each of these graph classes is P -hard. In particular, this gives a first complexity lower bound for recognizing compact graphs.
Author Rattan, Gaurav
Köbler, Johannes
Verbitsky, Oleg
Arvind, V.
Author_xml – sequence: 1
  givenname: V.
  surname: Arvind
  fullname: Arvind, V.
  email: arvind@imsc.res.in
  organization: The Institute of Mathematical Sciences
– sequence: 2
  givenname: Johannes
  surname: Köbler
  fullname: Köbler, Johannes
  organization: Institut für Informatik, Humboldt Universität zu Berlin
– sequence: 3
  givenname: Gaurav
  surname: Rattan
  fullname: Rattan, Gaurav
  organization: The Institute of Mathematical Sciences
– sequence: 4
  givenname: Oleg
  surname: Verbitsky
  fullname: Verbitsky, Oleg
  organization: Institut für Informatik, Humboldt Universität zu Berlin
BookMark eNp9kE1LAzEQhoNUsK3-AG8LXruar90kRylaCwVB9Byy2cRu6SZrkh7892ZZDyLoYZhhZp55h3cBZs47A8A1grcIQnYXIYSElRDVOSgr6zMwRxTDkouKznI9TgjB_AIsYjxAiCpO6BzQTVDDvthG3_sw7LvYr4q1P_pQvBjbOdMbl1aFcm3u9oPSyZkYL8G5Vcdorr7zErw9Pryun8rd82a7vt-VmnCcSt3WrTWYa04UJUILK1rRWmsVsqYxWBhKKqspagilLaPGqpoLUlWswcI2mizBzXR3CP7jZGKSB38KLktKJAiFBLGa5y00bengYwzGyiF0vQqfEkE5miMnc2S2QI7myDoz7Beju6RS510Kqjv-S-KJjFnFvZvw46c_oS_Pr3pI
CitedBy_id crossref_primary_10_1137_20M1327550
crossref_primary_10_1016_j_disc_2021_112692
crossref_primary_10_1016_j_jcss_2020_04_003
crossref_primary_10_1145_3417515
crossref_primary_10_1017_jpr_2019_44
crossref_primary_10_1007_s00373_021_02364_z
crossref_primary_10_1016_j_knosys_2019_105086
crossref_primary_10_1007_s00037_024_00255_2
crossref_primary_10_1007_s00373_021_02308_7
crossref_primary_10_1145_3436980_3436982
crossref_primary_10_1137_23M1575019
crossref_primary_10_1007_s10801_022_01193_4
crossref_primary_10_1007_s00373_023_02683_3
Cites_doi 10.1017/jsl.2015.28
10.1007/s004939970004
10.1145/1008354.1008356
10.1007/s10114-004-0485-1
10.1016/0095-8956(82)90042-9
10.1016/0166-218X(88)90100-X
10.1007/978-3-319-22177-9_26
10.1007/978-3-662-48054-0_3
10.1016/S0012-365X(00)00152-7
10.1016/0166-218X(91)90049-3
10.1007/978-1-4612-0333-9
10.1016/S0024-3795(97)83595-1
10.1007/978-1-4612-4478-3_5
10.1016/j.disopt.2014.01.004
10.1016/0012-365X(94)90241-0
10.2307/2371086
10.1016/S0012-365X(99)90071-7
10.1007/978-3-642-40450-4_13
10.1007/BF02240204
10.1016/0024-3795(88)90239-X
10.7155/jgaa.00229
10.1016/S0012-365X(99)00381-7
10.1016/0024-3795(88)90054-7
10.1137/0209047
10.1007/978-94-015-8937-6_3
10.1609/aaai.v28i1.8992
10.1007/978-3-662-48057-1_25
10.1137/120867834
10.1007/BF01305232
10.2140/pjm.1975.56.143
10.1017/CBO9780511721182
10.1016/0304-3975(82)90016-0
10.1007/978-3-662-44777-2_42
10.1016/S0095-8956(76)80006-8
ContentType Journal Article
Copyright Springer International Publishing 2016
Copyright Springer Science & Business Media 2017
Copyright_xml – notice: Springer International Publishing 2016
– notice: Copyright Springer Science & Business Media 2017
DBID AAYXX
CITATION
JQ2
DOI 10.1007/s00037-016-0147-6
DatabaseName CrossRef
ProQuest Computer Science Collection
DatabaseTitle CrossRef
ProQuest Computer Science Collection
DatabaseTitleList
ProQuest Computer Science Collection
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
Computer Science
EISSN 1420-8954
EndPage 685
ExternalDocumentID 10_1007_s00037_016_0147_6
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.86
.DC
.VR
06D
0R~
0VY
199
1N0
1SB
2.D
203
28-
29F
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
78A
8TC
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BBWZM
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAS
LLZTM
M4Y
MA-
MBV
N2Q
N9A
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P9O
PF0
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7X
Z83
Z88
Z8R
Z8W
Z92
ZMTXR
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABJCF
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFFHD
AFHIU
AFKRA
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ARAPS
ATHPR
AYFIA
AZQEC
BENPR
BGLVJ
CCPQU
CITATION
DWQXO
GNUQQ
HCIFZ
K7-
M2P
M7S
PHGZM
PHGZT
PQGLB
PTHSS
JQ2
ID FETCH-LOGICAL-c382t-cd6dfe28c83a439c9f9d9dfffa1febe29e435fc41b344d74efa6893557b29fbc3
IEDL.DBID RSV
ISICitedReferencesCount 19
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000408719300003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1016-3328
IngestDate Wed Sep 17 23:55:56 EDT 2025
Tue Nov 18 21:49:31 EST 2025
Sat Nov 29 02:52:51 EST 2025
Fri Feb 21 02:32:58 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords color refinement
linear programming relaxation
Graph Isomorphism
68Q25 Analysis of algorithms and problem complexity
polytope of fractional automorphisms
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c382t-cd6dfe28c83a439c9f9d9dfffa1febe29e435fc41b344d74efa6893557b29fbc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 1934031768
PQPubID 2044003
PageCount 59
ParticipantIDs proquest_journals_1934031768
crossref_primary_10_1007_s00037_016_0147_6
crossref_citationtrail_10_1007_s00037_016_0147_6
springer_journals_10_1007_s00037_016_0147_6
PublicationCentury 2000
PublicationDate 2017-09-01
PublicationDateYYYYMMDD 2017-09-01
PublicationDate_xml – month: 09
  year: 2017
  text: 2017-09-01
  day: 01
PublicationDecade 2010
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: Heidelberg
PublicationTitle Computational complexity
PublicationTitleAbbrev comput. complex
PublicationYear 2017
Publisher Springer International Publishing
Springer Nature B.V
Publisher_xml – name: Springer International Publishing
– name: Springer Nature B.V
References JohannesKöblerUweSchöningJacoboToránThe graph isomorphism problem: its structural complexity1993BostonMA: Birkhäuser.0813.68103
Ramana MotakuriV.Scheinerman EdwardR.UllmanDanielFractional isomorphism of graphsDiscrete Mathematics19941321-3247265129738510.1016/0012-365X(94)90241-00808.05077
Matan Ziv-Av (2013). Results of computer algebra calculations for triangle free strongly regular graphs. E-printhttp://www.math.bgu.ac.il/~zivav/math/eqpart.pdf.
Boris Yu. Weisfeiler & Andrei A. Leman (1968). A reduction of a graph to a canonical form and an algebra arising during this reduction. Nauchno-Technicheskaya Informatsia, Seriya 229, 12–16. In Russian.
Goldschlager LeslieM.The monotone and planar circuit value problems are log space complete for PSIGACT News19779252910.1145/1008354.10083560356.94042
Malkin PeterN.Sherali-Adams relaxations of graph isomorphism polytopesDiscrete Optimization2014127397318902710.1016/j.disopt.2014.01.0041308.90210
GottfriedTinhoferStrong tree-cographs are Birkhoff graphsDiscrete Applied Mathematics19892232752889832510672.05060
Sergei Evdokimov, Ilia N. Ponomarenko & Gottfried Tinhofer (2000). Forestal algebras and algebraic forests (on a new class of weakly compact graphs). Discrete Mathematics225(1–3), 149–172.
Johnson RobertH.Simple separable graphsPacific Journal of Mathematics19755614315837396310.2140/pjm.1975.56.1430304.05105
SergeiEvdokimovMarek KarpinskiIlia N.PonomarenkoCompact cellular algebras and permutation groupsDiscrete Mathematics1999197-198247267167486610.1016/S0012-365X(99)90071-70960.20001
MichaelKorenPairs of sequences with a unique realization by bipartite graphsJournal of Combinatorial Theory, Series B197621322423444452510.1016/S0095-8956(76)80006-80298.05139
HelmutSchreckGottfriedTinhoferA note on certain subpolytopes of the assignment polytope associated with circulant graphsLinear Algebra and its Applications198811112513497404910.1016/0024-3795(88)90054-7
Kristian Kersting, Martin Mladenov, Roman Garnett & Martin Grohe (2014). Power iterated color refinement. In Proceedings of the Twenty-Eighth AAAI Conference on Artificial Intelligence, 1904–1910. AAAI Press.
GottfriedTinhoferGraph isomorphism and theorems of Birkhoff typeComputing19863628530084393810.1007/BF02240204
LászlóBabaiPaul Erdős & Stanley M.SelkowRandom graph isomorphismSIAM Journal on Computing19809362863558451710.1137/02090470454.05038
Robert G. Busacker & Thomas L. Saaty (1965). Finite graphs and networks: an introduction with applications. International Series in Pure and Applied Mathematics. McGraw-Hill Book Company, New York etc.
AtseriasAlbertManeva ElitzaN.Sherali-Adams relaxations and indistinguishability in counting logicsSIAM Journal on Computing2013421112137303312310.1137/1208678341286.68175
Sandra Kiefer, Pascal Schweitzer & Erkal Selman (2015). Graphs identified by logics with counting. In Proceedings of the 40th International Symposium on Mathematical Foundations of Computer Science (MFCS), volume 9234 of Lecture Notes in Computer Science, 319–330. Springer. A full version is available as an e-print http://arxiv.org/abs/1503.08792.
Dana Angluin (1980). Local and global properties in networks of processors. In Proceedings of the 12th Annual ACM Symposium on Theory of Computing, 82–93. ACM.
Christoph Berkholz, Paul Bonsma & Martin Grohe (2013). Tight lower and upper bounds for the complexity of canonical colour refinement. In Proceedings of 21st Annual European Symposium on Algorithms (ESA), volume 8125 of Lecture Notes in Computer Science, 145–156. Springer.
Jin-Yi Cai, Martin Fürer & Neil Immerman (1992). An optimal lower bound on the number of variables for graph identification. Combinatorica12(4), 389–410.
Neil Immerman & Eric Lander (1990). Describing graphs: A first-order approach to graph canonization. In Complexity Theory Retrospective, 59–81. Springer.
Andreas Krebs & Oleg Verbitsky (2015). Universal covers, color refinement, and two-variable logic with counting quantifiers: Lower bounds for the depth. In Proceedings of the 30-th ACM/IEEE Annual Symposium on Logic in Computer Science (LICS), 689–700. IEEE Computer Society.
Nino Shervashidze, Pascal Schweitzer, Erik Jan van Leeuwen, Kurt Mehlhorn & Karsten M. Borgwardt (2011). Weisfeiler-Lehman graph kernels. Journal of Machine Learning Research12, 2539–2561.
László Babai & Ludek Kučera (1979). Canonical labelling of graphs in linear average time. In Proceedings of the 20th Annual Symposium on Foundations of Computer Science, 39–46.
HasslerWhitneyCongruent graphs and connectivity of graphsAmerican Journal of Mathematics193254150168150688110.2307/23710860003.32804
Godsil ChrisD.Compact graphs and equitable partitionsLinear Algebra and its Applications19972551–3259266143324210.1016/S0024-3795(97)83595-10872.05033
Gottfried Tinhofer & Mikhail Klin (1999). Algebraic combinatorics in mathematical chemistry. Methods and algorithms III. Graph invariants and stabilization methods. Technical Report TUM-M9902, Technische Universität München.
GottfriedTinhoferA note on compact graphsDiscrete Applied Mathematics1991302–32532641095378
CardonA.MaximeCrochemorePartitioning a graph in O(|A|log2|V|)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${O(|A| \log_2 |V|)}$$\end{document}Theoretical Computer Science198219859866441410.1016/0304-3975(82)90016-00478.68067
Ada Chan & Chris D. Godsil (1997). Symmetry and eigenvectors. In Graph symmetry, volume 497, 75–106. Kluwer Acad. Publ., Dordrecht.
V. Arvind, Johannes Köbler, Gaurav Rattan & Oleg Verbitsky (2015a). On the power of color refinement. In Proceedings of the 20th International Symposium on Fundamentals of Computation Theory (FCT), volume 9210 of Lecture Notes in Computer Science, 339–350. Springer.
Alessandro Borri, Tiziana Calamoneri & Rossella Petreschi (2011). Recognition of unigraphs through superposition of graphs. Journal of Graph Algorithms and Applications15(3), 323–343.
MartinGroheEquivalence in finite-variable logics is complete for polynomial timeCombinatorica1999194507532177365510.1007/s0049399700040987.03033
MartinGroheMartinOttoPebble games and linear equationsThe Journal of Symbolic Logic2015803797844339535110.1017/jsl.2015.281353.03018
László Babai (1995). Automorphism groups, isomorphism, reconstruction. In Handbook of Combinatorics, chapter 27, 1447–1540. Elsevier.
Frank ThomsonLeightonFinite common coverings of graphsJournal of Combinatorial Theory, Series B198233323123869336210.1016/0095-8956(82)90042-90488.05033
Richard A.BrualdiSome applications of doubly stochastic matricesLinear Algebra and its Applications19881077710096013910.1016/0024-3795(88)90239-X0657.15016
Richard A. Brualdi (2006). Combinatorial matrix classes. Cambridge University Press.
PingWang&Jiong ShengLiOn compact graphsActa Mathematica Sinica200521510871092217631910.1007/s10114-004-0485-1
Martin Grohe, Kristian Kersting, Martin Mladenov & Erkal Selman (2014). Dimension reduction via colour refinement. In Proceeding of 22th Annual European Symposium on Algorithms (ESA), volume 8737 of Lecture Notes in Computer Science, 505–516. Springer.
ReginaTyshkevichDecomposition of graphical sequences and unigraphsDiscrete Mathematics20002201–320123817603070944.05025
V. Arvind, Johannes Köbler, Gaurav Rattan & Oleg Verbitsky (2015b). On Tinhofer’s linear programming approach to isomorphism testing. In Proceedings of the 40th International Symposium on Mathematical Foundations of Computer Science (MFCS), volume 9235 of Lecture Notes in Computer Science, 26–37. Springer.
Tinhofer Gottfried (147_CR35) 1986; 36
Leighton Frank Thomson (147_CR30) 1982; 33
147_CR41
147_CR23
Albert Atserias (147_CR4) 2013; 42
147_CR21
147_CR43
M. Goldschlager Leslie (147_CR19) 1977; 9
147_CR26
Schreck Helmut (147_CR33) 1988; 111
147_CR25
Evdokimov Sergei (147_CR16) 1999; 197-198
147_CR17
Tinhofer Gottfried (147_CR36) 1989; 22
Grohe Martin (147_CR22) 2015; 80
Li PingWang&Jiong Sheng (147_CR40) 2005; 21
147_CR1
147_CR2
147_CR3
V. Ramana Motakuri (147_CR32) 1994; 132
147_CR5
147_CR7
147_CR8
147_CR9
Whitney Hassler (147_CR42) 1932; 54
Koren Michael (147_CR28) 1976; 21
Brualdi Richard A. (147_CR10) 1988; 107
Köbler Johannes (147_CR27) 1993
A. Cardon (147_CR14) 1982; 19
147_CR11
147_CR12
147_CR34
147_CR15
Tinhofer Gottfried (147_CR37) 1991; 30
147_CR38
147_CR13
D. Godsil Chris (147_CR18) 1997; 255
Grohe Martin (147_CR20) 1999; 19
147_CR29
N. Malkin Peter (147_CR31) 2014; 12
Tyshkevich Regina (147_CR39) 2000; 220
Babai László (147_CR6) 1980; 9
H. Johnson Robert (147_CR24) 1975; 56
References_xml – reference: László Babai & Ludek Kučera (1979). Canonical labelling of graphs in linear average time. In Proceedings of the 20th Annual Symposium on Foundations of Computer Science, 39–46.
– reference: JohannesKöblerUweSchöningJacoboToránThe graph isomorphism problem: its structural complexity1993BostonMA: Birkhäuser.0813.68103
– reference: Boris Yu. Weisfeiler & Andrei A. Leman (1968). A reduction of a graph to a canonical form and an algebra arising during this reduction. Nauchno-Technicheskaya Informatsia, Seriya 229, 12–16. In Russian.
– reference: Andreas Krebs & Oleg Verbitsky (2015). Universal covers, color refinement, and two-variable logic with counting quantifiers: Lower bounds for the depth. In Proceedings of the 30-th ACM/IEEE Annual Symposium on Logic in Computer Science (LICS), 689–700. IEEE Computer Society.
– reference: Ramana MotakuriV.Scheinerman EdwardR.UllmanDanielFractional isomorphism of graphsDiscrete Mathematics19941321-3247265129738510.1016/0012-365X(94)90241-00808.05077
– reference: Frank ThomsonLeightonFinite common coverings of graphsJournal of Combinatorial Theory, Series B198233323123869336210.1016/0095-8956(82)90042-90488.05033
– reference: HasslerWhitneyCongruent graphs and connectivity of graphsAmerican Journal of Mathematics193254150168150688110.2307/23710860003.32804
– reference: Christoph Berkholz, Paul Bonsma & Martin Grohe (2013). Tight lower and upper bounds for the complexity of canonical colour refinement. In Proceedings of 21st Annual European Symposium on Algorithms (ESA), volume 8125 of Lecture Notes in Computer Science, 145–156. Springer.
– reference: Goldschlager LeslieM.The monotone and planar circuit value problems are log space complete for PSIGACT News19779252910.1145/1008354.10083560356.94042
– reference: ReginaTyshkevichDecomposition of graphical sequences and unigraphsDiscrete Mathematics20002201–320123817603070944.05025
– reference: HelmutSchreckGottfriedTinhoferA note on certain subpolytopes of the assignment polytope associated with circulant graphsLinear Algebra and its Applications198811112513497404910.1016/0024-3795(88)90054-7
– reference: Richard A.BrualdiSome applications of doubly stochastic matricesLinear Algebra and its Applications19881077710096013910.1016/0024-3795(88)90239-X0657.15016
– reference: Neil Immerman & Eric Lander (1990). Describing graphs: A first-order approach to graph canonization. In Complexity Theory Retrospective, 59–81. Springer.
– reference: Sergei Evdokimov, Ilia N. Ponomarenko & Gottfried Tinhofer (2000). Forestal algebras and algebraic forests (on a new class of weakly compact graphs). Discrete Mathematics225(1–3), 149–172.
– reference: Alessandro Borri, Tiziana Calamoneri & Rossella Petreschi (2011). Recognition of unigraphs through superposition of graphs. Journal of Graph Algorithms and Applications15(3), 323–343.
– reference: Godsil ChrisD.Compact graphs and equitable partitionsLinear Algebra and its Applications19972551–3259266143324210.1016/S0024-3795(97)83595-10872.05033
– reference: Matan Ziv-Av (2013). Results of computer algebra calculations for triangle free strongly regular graphs. E-printhttp://www.math.bgu.ac.il/~zivav/math/eqpart.pdf.
– reference: Martin Grohe, Kristian Kersting, Martin Mladenov & Erkal Selman (2014). Dimension reduction via colour refinement. In Proceeding of 22th Annual European Symposium on Algorithms (ESA), volume 8737 of Lecture Notes in Computer Science, 505–516. Springer.
– reference: GottfriedTinhoferStrong tree-cographs are Birkhoff graphsDiscrete Applied Mathematics19892232752889832510672.05060
– reference: V. Arvind, Johannes Köbler, Gaurav Rattan & Oleg Verbitsky (2015a). On the power of color refinement. In Proceedings of the 20th International Symposium on Fundamentals of Computation Theory (FCT), volume 9210 of Lecture Notes in Computer Science, 339–350. Springer.
– reference: LászlóBabaiPaul Erdős & Stanley M.SelkowRandom graph isomorphismSIAM Journal on Computing19809362863558451710.1137/02090470454.05038
– reference: PingWang&Jiong ShengLiOn compact graphsActa Mathematica Sinica200521510871092217631910.1007/s10114-004-0485-1
– reference: Kristian Kersting, Martin Mladenov, Roman Garnett & Martin Grohe (2014). Power iterated color refinement. In Proceedings of the Twenty-Eighth AAAI Conference on Artificial Intelligence, 1904–1910. AAAI Press.
– reference: Dana Angluin (1980). Local and global properties in networks of processors. In Proceedings of the 12th Annual ACM Symposium on Theory of Computing, 82–93. ACM.
– reference: MartinGroheMartinOttoPebble games and linear equationsThe Journal of Symbolic Logic2015803797844339535110.1017/jsl.2015.281353.03018
– reference: Malkin PeterN.Sherali-Adams relaxations of graph isomorphism polytopesDiscrete Optimization2014127397318902710.1016/j.disopt.2014.01.0041308.90210
– reference: Ada Chan & Chris D. Godsil (1997). Symmetry and eigenvectors. In Graph symmetry, volume 497, 75–106. Kluwer Acad. Publ., Dordrecht.
– reference: GottfriedTinhoferA note on compact graphsDiscrete Applied Mathematics1991302–32532641095378
– reference: Robert G. Busacker & Thomas L. Saaty (1965). Finite graphs and networks: an introduction with applications. International Series in Pure and Applied Mathematics. McGraw-Hill Book Company, New York etc.
– reference: AtseriasAlbertManeva ElitzaN.Sherali-Adams relaxations and indistinguishability in counting logicsSIAM Journal on Computing2013421112137303312310.1137/1208678341286.68175
– reference: MartinGroheEquivalence in finite-variable logics is complete for polynomial timeCombinatorica1999194507532177365510.1007/s0049399700040987.03033
– reference: CardonA.MaximeCrochemorePartitioning a graph in O(|A|log2|V|)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${O(|A| \log_2 |V|)}$$\end{document}Theoretical Computer Science198219859866441410.1016/0304-3975(82)90016-00478.68067
– reference: Nino Shervashidze, Pascal Schweitzer, Erik Jan van Leeuwen, Kurt Mehlhorn & Karsten M. Borgwardt (2011). Weisfeiler-Lehman graph kernels. Journal of Machine Learning Research12, 2539–2561.
– reference: Sandra Kiefer, Pascal Schweitzer & Erkal Selman (2015). Graphs identified by logics with counting. In Proceedings of the 40th International Symposium on Mathematical Foundations of Computer Science (MFCS), volume 9234 of Lecture Notes in Computer Science, 319–330. Springer. A full version is available as an e-print http://arxiv.org/abs/1503.08792.
– reference: Richard A. Brualdi (2006). Combinatorial matrix classes. Cambridge University Press.
– reference: SergeiEvdokimovMarek KarpinskiIlia N.PonomarenkoCompact cellular algebras and permutation groupsDiscrete Mathematics1999197-198247267167486610.1016/S0012-365X(99)90071-70960.20001
– reference: V. Arvind, Johannes Köbler, Gaurav Rattan & Oleg Verbitsky (2015b). On Tinhofer’s linear programming approach to isomorphism testing. In Proceedings of the 40th International Symposium on Mathematical Foundations of Computer Science (MFCS), volume 9235 of Lecture Notes in Computer Science, 26–37. Springer.
– reference: GottfriedTinhoferGraph isomorphism and theorems of Birkhoff typeComputing19863628530084393810.1007/BF02240204
– reference: László Babai (1995). Automorphism groups, isomorphism, reconstruction. In Handbook of Combinatorics, chapter 27, 1447–1540. Elsevier.
– reference: Jin-Yi Cai, Martin Fürer & Neil Immerman (1992). An optimal lower bound on the number of variables for graph identification. Combinatorica12(4), 389–410.
– reference: Johnson RobertH.Simple separable graphsPacific Journal of Mathematics19755614315837396310.2140/pjm.1975.56.1430304.05105
– reference: MichaelKorenPairs of sequences with a unique realization by bipartite graphsJournal of Combinatorial Theory, Series B197621322423444452510.1016/S0095-8956(76)80006-80298.05139
– reference: Gottfried Tinhofer & Mikhail Klin (1999). Algebraic combinatorics in mathematical chemistry. Methods and algorithms III. Graph invariants and stabilization methods. Technical Report TUM-M9902, Technische Universität München.
– volume: 80
  start-page: 797
  issue: 3
  year: 2015
  ident: 147_CR22
  publication-title: The Journal of Symbolic Logic
  doi: 10.1017/jsl.2015.28
– volume: 19
  start-page: 507
  issue: 4
  year: 1999
  ident: 147_CR20
  publication-title: Combinatorica
  doi: 10.1007/s004939970004
– ident: 147_CR34
– volume: 9
  start-page: 25
  year: 1977
  ident: 147_CR19
  publication-title: SIGACT News
  doi: 10.1145/1008354.1008356
– volume: 21
  start-page: 1087
  issue: 5
  year: 2005
  ident: 147_CR40
  publication-title: Acta Mathematica Sinica
  doi: 10.1007/s10114-004-0485-1
– volume: 33
  start-page: 231
  issue: 3
  year: 1982
  ident: 147_CR30
  publication-title: Journal of Combinatorial Theory, Series B
  doi: 10.1016/0095-8956(82)90042-9
– volume: 22
  start-page: 275
  issue: 3
  year: 1989
  ident: 147_CR36
  publication-title: Discrete Applied Mathematics
  doi: 10.1016/0166-218X(88)90100-X
– ident: 147_CR2
  doi: 10.1007/978-3-319-22177-9_26
– ident: 147_CR3
  doi: 10.1007/978-3-662-48054-0_3
– ident: 147_CR17
  doi: 10.1016/S0012-365X(00)00152-7
– volume: 30
  start-page: 253
  issue: 2–3
  year: 1991
  ident: 147_CR37
  publication-title: Discrete Applied Mathematics
  doi: 10.1016/0166-218X(91)90049-3
– volume-title: The graph isomorphism problem: its structural complexity
  year: 1993
  ident: 147_CR27
  doi: 10.1007/978-1-4612-0333-9
– volume: 255
  start-page: 259
  issue: 1–3
  year: 1997
  ident: 147_CR18
  publication-title: Linear Algebra and its Applications
  doi: 10.1016/S0024-3795(97)83595-1
– ident: 147_CR43
– ident: 147_CR23
  doi: 10.1007/978-1-4612-4478-3_5
– volume: 12
  start-page: 73
  year: 2014
  ident: 147_CR31
  publication-title: Discrete Optimization
  doi: 10.1016/j.disopt.2014.01.004
– ident: 147_CR41
– ident: 147_CR38
– volume: 132
  start-page: 247
  issue: 1-3
  year: 1994
  ident: 147_CR32
  publication-title: Discrete Mathematics
  doi: 10.1016/0012-365X(94)90241-0
– volume: 54
  start-page: 150
  year: 1932
  ident: 147_CR42
  publication-title: American Journal of Mathematics
  doi: 10.2307/2371086
– volume: 197-198
  start-page: 247
  year: 1999
  ident: 147_CR16
  publication-title: Discrete Mathematics
  doi: 10.1016/S0012-365X(99)90071-7
– ident: 147_CR8
  doi: 10.1007/978-3-642-40450-4_13
– ident: 147_CR1
– volume: 36
  start-page: 285
  year: 1986
  ident: 147_CR35
  publication-title: Computing
  doi: 10.1007/BF02240204
– ident: 147_CR7
– ident: 147_CR12
– ident: 147_CR29
– ident: 147_CR5
– volume: 107
  start-page: 77
  year: 1988
  ident: 147_CR10
  publication-title: Linear Algebra and its Applications
  doi: 10.1016/0024-3795(88)90239-X
– ident: 147_CR9
  doi: 10.7155/jgaa.00229
– volume: 220
  start-page: 201
  issue: 1–3
  year: 2000
  ident: 147_CR39
  publication-title: Discrete Mathematics
  doi: 10.1016/S0012-365X(99)00381-7
– volume: 111
  start-page: 125
  year: 1988
  ident: 147_CR33
  publication-title: Linear Algebra and its Applications
  doi: 10.1016/0024-3795(88)90054-7
– volume: 9
  start-page: 628
  issue: 3
  year: 1980
  ident: 147_CR6
  publication-title: SIAM Journal on Computing
  doi: 10.1137/0209047
– ident: 147_CR15
  doi: 10.1007/978-94-015-8937-6_3
– ident: 147_CR25
  doi: 10.1609/aaai.v28i1.8992
– ident: 147_CR26
  doi: 10.1007/978-3-662-48057-1_25
– volume: 42
  start-page: 112
  issue: 1
  year: 2013
  ident: 147_CR4
  publication-title: SIAM Journal on Computing
  doi: 10.1137/120867834
– ident: 147_CR13
  doi: 10.1007/BF01305232
– volume: 56
  start-page: 143
  year: 1975
  ident: 147_CR24
  publication-title: Pacific Journal of Mathematics
  doi: 10.2140/pjm.1975.56.143
– ident: 147_CR11
  doi: 10.1017/CBO9780511721182
– volume: 19
  start-page: 85
  year: 1982
  ident: 147_CR14
  publication-title: Theoretical Computer Science
  doi: 10.1016/0304-3975(82)90016-0
– ident: 147_CR21
  doi: 10.1007/978-3-662-44777-2_42
– volume: 21
  start-page: 224
  issue: 3
  year: 1976
  ident: 147_CR28
  publication-title: Journal of Combinatorial Theory, Series B
  doi: 10.1016/S0095-8956(76)80006-8
SSID ssj0015834
Score 2.3132157
Snippet Color refinement is a classical technique used to show that two given graphs G and H are non-isomorphic; it is very efficient, although it does not succeed on...
Color refinement is a classical technique used to show that two given graphs G and H are non-isomorphic; it is very efficient, although it does not succeed on...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 627
SubjectTerms Algorithm Analysis and Problem Complexity
Automorphisms
Color
Combinatorial analysis
Computational Mathematics and Numerical Analysis
Computer Science
Graph theory
Graphs
Isomorphism
Linear programming
Title Graph Isomorphism, Color Refinement, and Compactness
URI https://link.springer.com/article/10.1007/s00037-016-0147-6
https://www.proquest.com/docview/1934031768
Volume 26
WOSCitedRecordID wos000408719300003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1420-8954
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0015834
  issn: 1016-3328
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFH_o9KAHp1NxOqUHT7pCm6RNcpTh1IND5ge7lTRNQHCdrNW_3yRr6wcq6K3Q5FHey_vqe_k9gGPJjeFPCfV1mGrfPIW-kFnq84goGmYhpZFwwyboaMQmE35T3eMu6m73uiTpLHVz2c1hpZjU12bAhni8DCvG2zGrjePbh6Z0ELFFKdkuxBixupT5HYnPzug9wvxSFHW-Ztj-11duwkYVWnpni7OwBUsq70C7HtvgVVrcgfXrBqq12AZyYSGrvatiNp0Znj8W0743MBZx7o2VNiGo_XvY90Seec50yNLaxh24H57fDS79apSCLzFDpS-zONMKMcmwMCGI5JpnPNNai1AbMSKuTNikJQlTTEhGidIiZhZ6naaI61TiXWjls1ztgRdrhKMgkJLEilAj4oAjlmJBA6oIE7ILQc3TRFY443bcxVPSICQ7HiW2t8zyKIm7cNJseV6AbPy2uFcLKqn0rUhMGEqMeTK5UxdOa8F8eP0Tsf0_rT6ANWS9umsx60GrnL-oQ1iVr-VjMT9yx_ANjDLVhA
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB60CurBalWsVs3BkzaQxya7e5RibbEtUqv0Fjb7gIJtpYn-fnfTJD5QQW-BzA5hZncemdlvAM451YY_RthWbqxs_eTajIvYpgGS2BUuxgHLhk3gwYCMx_Quv8edFN3uRUkys9TlZbcMK0WnviYD1szDVVhD2mGZPr7h_WNZOgjIspRsCH3fI0Up8zsWn53Re4T5pSia-Zp29V9fuQPbeWhpXS33wi6syFkNqsXYBis_xTXY6pdQrckeoBsDWW11k_l0rmU-SaZNq6Ut4sIaSqVDUPP3sGmxmbAy08FTYxv34aF9PWp17HyUgs194qU2F6FQ0iOc-EyHIJwqKqhQSjFXaTV6VOqwSXHkxj5CAiOpWEgM9DqOPapi7h9AZTafyUOwQuX5geNwjkKJsFaxQz0S-ww7WCLCeB2cQqYRz3HGzbiLp6hESM5kFJneMiOjKKzDRbnkeQmy8Rtxo1BUlJ-3JNJhKNLmSedOdbgsFPPh9U_Mjv5EfQYbnVG_F_W6g9tj2PSMh8_azRpQSRcv8gTW-Ws6SRan2ZZ8A5dT2Gg
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB60iujBalWsVs3BkzY0j0129yjValFL8UVvIdkHFGxamujvdzcvH6gg3gLZbMLM7sw3mdlvAI4ZVYY_QtiUdiRNdWWbIeORST0ksM1tjL0wazaBBwMyGtFh0ec0Kavdy5RkfqZBszTFaWfGZac6-JbxpqgwWEfD6kX-Iiwh3TNIh-v3T1UawSN5WlkPdF2HlGnN76b47Jje0eaXBGnmd3r1f3_xBqwXkNM4y9fIJiyIuAH1sp2DUezuBqzdVhSuyRagS01lbfST6WSqdDFOJm2jqyzl3LgTUkFT_VexbYQxNzKTwlJtM7fhsXfx0L0yixYLJnOJk5qM-1wKhzDihgqaMCopp1xKGdpSqdehQsEpyZAduQhxjIQMfaIp2XHkUBkxdwdq8TQWu2D40nE9y2IM-QJhpXqLOiRyQ2xhgUjImmCV8g1YwT-u22A8BxVzciajQNecaRkFfhNOqkdmOfnGb4NbpdKCYh8mgYKnSJktFVM14bRU0ofbP02296fRR7AyPO8FN_3B9T6sOtrxZ1VoLail8xdxAMvsNR0n88Nsdb4BTkrhTA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Graph+Isomorphism%2C+Color+Refinement%2C+and+Compactness&rft.jtitle=Computational+complexity&rft.au=Arvind%2C+V.&rft.au=K%C3%B6bler%2C+Johannes&rft.au=Rattan%2C+Gaurav&rft.au=Verbitsky%2C+Oleg&rft.date=2017-09-01&rft.issn=1016-3328&rft.eissn=1420-8954&rft.volume=26&rft.issue=3&rft.spage=627&rft.epage=685&rft_id=info:doi/10.1007%2Fs00037-016-0147-6&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00037_016_0147_6
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1016-3328&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1016-3328&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1016-3328&client=summon