Learning Algorithms for Quaternion-Valued Neural Networks
This paper presents the deduction of the enhanced gradient descent, conjugate gradient, scaled conjugate gradient, quasi-Newton, and Levenberg–Marquardt methods for training quaternion-valued feedforward neural networks, using the framework of the HR calculus. The performances of these algorithms in...
Uložené v:
| Vydané v: | Neural processing letters Ročník 47; číslo 3; s. 949 - 973 |
|---|---|
| Hlavný autor: | |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
New York
Springer US
01.06.2018
Springer Nature B.V |
| Predmet: | |
| ISSN: | 1370-4621, 1573-773X |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | This paper presents the deduction of the enhanced gradient descent, conjugate gradient, scaled conjugate gradient, quasi-Newton, and Levenberg–Marquardt methods for training quaternion-valued feedforward neural networks, using the framework of the HR calculus. The performances of these algorithms in the real- and complex-valued cases led to the idea of extending them to the quaternion domain, also. Experiments done using the proposed training methods on time series prediction applications showed a significant performance improvement over the quaternion gradient descent algorithm. |
|---|---|
| Bibliografia: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 1370-4621 1573-773X |
| DOI: | 10.1007/s11063-017-9716-1 |