Resilient and Trustworthy Dynamic Data-driven Application Systems (DDDAS) Services for Crisis Management Environments

Future crisis management systems needresilient and trustworthy infrastructures to quickly develop reliable applications and processes, andensure end-to-end security, trust, and privacy. Due to the multiplicity and diversity of involved actors, volumes of data, and heterogeneity of shared information...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Procedia computer science Ročník 51; s. 2623 - 2637
Hlavní autoři: Badr, Youakim, Hariri, Salim, AL-Nashif, Youssif, Blasch, Erik
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier B.V 2015
Elsevier
Témata:
ISSN:1877-0509, 1877-0509
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Future crisis management systems needresilient and trustworthy infrastructures to quickly develop reliable applications and processes, andensure end-to-end security, trust, and privacy. Due to the multiplicity and diversity of involved actors, volumes of data, and heterogeneity of shared information;crisis management systems tend to be highly vulnerable and subjectto unforeseen incidents. As a result, the dependability of crisis management systems can be at risk. This paper presents a cloud-based resilient and trustworthy infrastructure (known as rDaaS) to quickly develop securecrisis management systems. The rDaaSintegrates the Dynamic Data-DrivenApplication Systems (DDDAS) paradigm into a service-oriented architectureover cloud technology andprovidesa set of resilient DDDAS-As-A Service (rDaaS)components to build secure and trusted adaptable crisis processes. The rDaaSalso ensures resilience and security by obfuscating the execution environment andapplying Behavior Software Encryption and Moving Technique Defense. A simulation environment for a nuclear plant crisis managementcase study is illustrated to build resilient and trusted crisis response processes.
AbstractList In this paper, the multi-criteria decision making in which criteria are assumed to be dependent with each other is investigated. Choquet integral is employed to aggregate the criteria evaluations of alternatives to reflect the interactions of the criteria. Objective and subjective information are integrated to derive the interactions of the criteria. The objective information of alternatives is expressed by decision matrix, whereas the subjective information is expressed by utilities or interval preference relations. Models are given to minimize the objective and subjective information. The proposed method can be considered as an extension of the existing methods, and can obtain smaller deviations and better overall evaluations of alternatives.
Future crisis management systems needresilient and trustworthy infrastructures to quickly develop reliable applications and processes, andensure end-to-end security, trust, and privacy. Due to the multiplicity and diversity of involved actors, volumes of data, and heterogeneity of shared information;crisis management systems tend to be highly vulnerable and subjectto unforeseen incidents. As a result, the dependability of crisis management systems can be at risk. This paper presents a cloud-based resilient and trustworthy infrastructure (known as rDaaS) to quickly develop securecrisis management systems. The rDaaSintegrates the Dynamic Data-DrivenApplication Systems (DDDAS) paradigm into a service-oriented architectureover cloud technology andprovidesa set of resilient DDDAS-As-A Service (rDaaS)components to build secure and trusted adaptable crisis processes. The rDaaSalso ensures resilience and security by obfuscating the execution environment andapplying Behavior Software Encryption and Moving Technique Defense. A simulation environment for a nuclear plant crisis managementcase study is illustrated to build resilient and trusted crisis response processes.
Author Badr, Youakim
AL-Nashif, Youssif
Blasch, Erik
Hariri, Salim
Author_xml – sequence: 1
  givenname: Youakim
  surname: Badr
  fullname: Badr, Youakim
  organization: Université de Lyon, CNRS LIRIS, UMR5205, INSA-Lyon, France
– sequence: 2
  givenname: Salim
  surname: Hariri
  fullname: Hariri, Salim
  organization: Center for Cloud and Autonomic Computing The University of Arizona, Tucson, Arizona
– sequence: 3
  givenname: Youssif
  surname: AL-Nashif
  fullname: AL-Nashif, Youssif
  organization: Old Dominion University, Norfolk, Virginia
– sequence: 4
  givenname: Erik
  surname: Blasch
  fullname: Blasch, Erik
  organization: Air Force Research Laboratory, Information Directorate, Rome, NY
BackLink https://hal.science/hal-01212583$$DView record in HAL
BookMark eNqFkU1v2zAMhoWhA9Z1_QW76Nge7Ip2HMuHHYK4X0CGAUt3FhiJbhU4UiCpLvLvazfDUOyw8UKCeB8eHn5mJ847YuwriBwEzK-2-T54HfNCQJWLKi9r8YGdgqzrTFSiOXk3f2LnMW7FWKWUDdSn7PknRdtbcomjM_whPMf04kN6OvD24HBnNW8xYWaCHcjxxX7fW43JesfXh5hoF_lF27aL9SVfUxispsg7H_gy2Ggj_44OH2k3nb92gw3eTXP8wj522Ec6_93P2K-b64flXbb6cXu_XKwyXcoiZRrm2Blqim4mhdBQaQDaQCOkEWbTwabB2bzThazlTEKDdQXzGSE0ZsyBwfKMXR7vPmGv9sHuMByUR6vuFis17QQUUFSyHGDMlsesDj7GQN0fAISaRKutehOtJtFKVGoUPVLNX5S26c1PCmj7_7DfjiyNCgZLQUU9fkKTsYF0Usbbf_Kv3MGd4Q
CitedBy_id crossref_primary_10_1109_TNS_2022_3162216
crossref_primary_10_3390_ijgi5040042
crossref_primary_10_1109_TNSM_2021_3071774
crossref_primary_10_1016_j_cose_2024_103792
crossref_primary_10_1177_0037549719856100
Cites_doi 10.1145/375663.375668
10.1109/ICCSN.2011.6014783
10.1016/j.procs.2014.05.117
10.1109/CCNC.2011.5766528
10.1109/MAES.2012.6366088
10.1145/948143.948147
10.1016/j.procs.2013.05.369
10.5120/7292-0578
10.1145/2480741.2480757
10.1109/TSE.1985.231893
10.1145/775047.775103
10.1145/347090.347160
10.1109/MILCOM.2011.6127486
10.1016/j.jnca.2010.07.006
10.1117/12.2050255
10.1109/ARES.2008.171
10.1109/TSE.1987.232894
10.1109/ICIF.2006.301670
10.1109/MSP.2009.87
10.1002/qre.392
10.1145/342009.335388
10.1109/ICDCSW.2012.42
10.1007/978-3-642-40543-3_71
10.1016/j.infsof.2008.02.006
10.1109/12.24266
10.1109/MAES.2014.130115
10.1117/12.2016326
10.1016/j.ins.2007.03.025
10.1109/PDP.2011.45
10.6028/NIST.SP.800-94
10.1109/SECPRI.1988.8098
10.1117/12.2054690
10.1109/DSNW.2012.6264686
10.1145/2480362.2480505
10.1007/978-1-4615-0953-0_4
10.1016/S0065-2458(08)60008-X
10.1145/586110.586146
10.1109/AICCSA.2011.6126606
10.1109/NAECON.2014.7045790
10.1109/ICAC.2008.25
10.1109/ICCIS.2013.515
10.1007/s10846-013-9964-x
10.1145/335191.335437
10.1109/ICIF.2006.301581
10.1109/SERVICES.2011.45
10.1117/12.2050782
10.1109/ICCAC.2014.35
10.3233/JCS-2002-101-205
10.1007/s11227-012-0831-5
10.1007/978-1-4614-0977-9_2
10.1504/IJCC.2013.055266
10.1109/NAECON.2011.6183090
10.1016/S1389-1286(99)00112-7
10.1007/978-1-4614-3296-8_4
10.1117/12.720090
ContentType Journal Article
Copyright 2015
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2015
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID 6I.
AAFTH
AAYXX
CITATION
1XC
DOI 10.1016/j.procs.2015.05.370
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Hyper Article en Ligne (HAL)
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1877-0509
EndPage 2637
ExternalDocumentID oai:HAL:hal-01212583v1
10_1016_j_procs_2015_05_370
S1877050915011783
GroupedDBID --K
0R~
0SF
1B1
457
5VS
6I.
71M
AACTN
AAEDT
AAEDW
AAFTH
AAIKJ
AALRI
AAQFI
AAXUO
ABMAC
ACGFS
ADBBV
ADEZE
AEXQZ
AFTJW
AGHFR
AITUG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
E3Z
EBS
EJD
EP3
FDB
FNPLU
HZ~
IXB
KQ8
M41
M~E
NCXOZ
O-L
O9-
OK1
P2P
RIG
ROL
SES
SSZ
9DU
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEUPX
AFPUW
AIGII
AKBMS
AKRWK
AKYEP
CITATION
~HD
1XC
ID FETCH-LOGICAL-c382t-c16afde92f4800c15c11eb1908d0dbf1b9a46fc28784819a75164ea19d11e1da3
ISICitedReferencesCount 17
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000373939100268&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1877-0509
IngestDate Tue Oct 14 20:24:32 EDT 2025
Tue Nov 18 22:11:29 EST 2025
Sat Nov 29 07:53:13 EST 2025
Wed May 17 01:33:35 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords service-oriented computing
cloud computing
resilience
trust and security
rDaaS
subjective information
Choquet integral
Multi-criteria decision making
objective information
Language English
License http://creativecommons.org/licenses/by-nc-nd/4.0
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c382t-c16afde92f4800c15c11eb1908d0dbf1b9a46fc28784819a75164ea19d11e1da3
ORCID 0000-0002-8976-7894
OpenAccessLink https://dx.doi.org/10.1016/j.procs.2015.05.370
PageCount 15
ParticipantIDs hal_primary_oai_HAL_hal_01212583v1
crossref_primary_10_1016_j_procs_2015_05_370
crossref_citationtrail_10_1016_j_procs_2015_05_370
elsevier_sciencedirect_doi_10_1016_j_procs_2015_05_370
PublicationCentury 2000
PublicationDate 2015
2015-00-00
PublicationDateYYYYMMDD 2015-01-01
PublicationDate_xml – year: 2015
  text: 2015
PublicationDecade 2010
PublicationTitle Procedia computer science
PublicationYear 2015
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References M. Abbasy and B. Shanmugam, “Enabling Data Hiding for Resource Sharing in Cloud Computing Environments Based on DNA Sequences,” in
K. Scarfone and Peter Mell, Guide to Intrusion Detection and Prevention Systems (IDPS). Computer Security Resource Center (National Institute of Standards and Technology) (800-94), 2007, Retrieved 1 January 2010.
D. L. Pipkin.
E. Blasch, “Context aided Sensor and Human-based Information Fusion”
Information Fusion in a Cloud Computing Era: A Systems-Level Perspective
A. Tyrrell, “Recovery Blocks and Algorithm Based Fault tolerance,” in
16 September 2009. [Accessed January 2013].]. Available: http://www.cyber.st.dhs.gov/docs/National_Cyber_Leap_Year_Summit_2009_Co-Chairs_Report.pdf.
P. C. G. Costa, K.B. Laskey
D. Evans, A. Nguyen-Tuong and J. Knight, “Effectiveness of Moving Target Defenses,” in
pp. 18-21, 1988.
pp. 427-438, 2000.
V. Paxson, “Bro: a system for detecting network intruders in real-time,”
CRC Press, Taylor & Francis Group, 2015.
C. C. Aggarwal and P. S. Yu, “Outlier detection for high dimensional data,”
E. Blasch, R. Breton, and P. Valin, “Using the C-OODA Model for CIMIC Analysis,”
H. Zeng, “Research on Developing an Attack and Defense Lab Environment for Cross Site Scripting Education in Higher Vocational Colleges,”
M. Rosenblum and T. Garfinkel, “When virtual is harder than real: security challenges in virtual machine based computing environments,” in
H. Alipour, Y. Al-Nashif, S. Hariri, “DNS Anomaly Behavior Analysis against Cyber Attacks”, submitted to
10(1-2):105-136, 2002.
Springer Publishing, 2013.
C. Tunc, F. Fargo, Y. Al-Nashif, S. Hariri, J. Hughes, Autonomic Resilient Cloud Management (ARCM)
E. Blasch, A. Steinberg, S. Das, J. Llinas, C.-Y. Chong, O. Kessler, E. Waltz, and F. White, “Revisiting the JDL model for information Exploitation,”
E. Blasch, K.B. Laskey, A-L. Joussselme, V. Dragos, P.C. G. Costa, and J. Dezert, “URREF Reliability versus Credibility in Information Fusion (STANAG 2511),”
Context aided Video-to-Text Information Fusion
B. Liu, E. Blasch, Y. Chen, A.J. Aved
Computer Science Laboratory, SRI International, 1995.
E. Blasch, A. Jøsang, J. Dezert, P.C. G. Costa, K.B. Laskey, A-L. Jousselme, “URREF Self-Confidence in Information Fusion Trust,”
2010.
M. S., Siddiqui, DVerma, “Cross site request forgery: A common web application weakness,”
M. Roesch, “Snort - Lightweight Intrusion Detection for Networks,”
G. Dsouza, G. Rodríguez, Y.B. Al-Nashif, S. Hariri, “Building resilient cloud services using DDDAS and moving target defence,”
1999.
(Amsterdam, Netherlands: 1999), 31(23-24):2435-2463, 1999.
13(2):222-232, 1987.
.
K. Yamanishi, J. Takeuchi, G.J. Williams, and P. Milne, “On-line unsupervised outlier detection using finite mixtures with discounting learning algorithms,”
177(18):3799-3821, 2007.
J. Feng, Y. Chen, D. Summerville, W. Ku, Z. Su, “Enhancing cloud storage security against roll-back attacks with a new fair multi-party non-repudiation protocol,” in
vol. 38, no. 5, pp. pp. 626-636, 1989.
E. Blasch, Y Al-Nashif, and S. Hariri, “Static versus Dynamic Data Information Fusion analysis using DDDAS for Cyber Trust,”
High Level Information Fusion (HLIF) Survey of Models, Issues, and Grand Challenges
Kluwer Academics, 78-100, 2002.
G. Chen, D. Shen, C. Kwan, J. Cruz
Vols. SE-11, no. 12, 1985.
2(2/3): 171-190, 2013.
A platform for event-driven agility of processes: A delivery context use-case.
Towards Unbiased Evaluation of Uncertainty Reasoning: The URREF Ontology
R. P. Viswanathan, Y. Al-Nashif, S. Hariri, “Application Attack Detection System (AADS): An Anomaly Based Behavior Analysis Approach,”
1996.
vol. 9, 2011.
L. Ge, W. Yu, D. Shen, G. Chen, K. Pham, et al., “Toward Effectiveness and Agility of Network Security Situational Awareness using Moving Target Defense (MTD),” Proc. SPIE, Vol. 9085, 2014.
A-M. Barthe-Delanoë
Vol. 29, No. 10, pp. 16-24, 2014.
50 (12), 1281-1294, 2008.
W. Toy, “Fault-Tolerant Computing,” in
Artech House, Norwood, MA, 2012.
W. Li, Y. Badr, F. Biennier, “Service Farming: An Ad-hoc and QoS-aware Web Service Composition Approach,” Dans SAC 2013, Coimbra, Portugal, pp. 750-756, 2013.
R. Bhadauria and S. Sanyal, “Survey on Security Issues in Cloud Computing and Associated Mitigation Techniques,”
Technical Report, SRI International Menlo Park, California, 1994.
G. Vallee, C. Engelmann, A. Tikotekar, T. Naughton, K. Charoenpornwattana, C. Leangsuksun and S. Scott, “A Framework for Proactive Fault Tolerance,”
2003.
vol. 34, pp. 1-11, 2011.
S. Staniford, J.A. Hoagland, and J. M. McAlerney, “Practical automated detection of stealthy portscans,”
E. Blasch, “Trust Metrics in Information Fusion,” Proc. SPIE, Vol. 9091, 2014.
D. Jeffrey, G. Sanjay, “MapReduce: Simplified Data Processing on Large Clusters,” In
Vol. 29, No. 10, pp. 16-24, Oct. 2014.
pp. 320-324, 2000.
Vol. 74, pp. 421-436, 2014.
K. Sequeira and M. Zaki, “Admit: anomaly-based data mining for intrusions,” Proceedings of ACM SIGKDD international conference on Knowledge discovery and data mining (KDD), pp. 386-395, 2002.
R. Sekar, A. Gupta, J. Frullo, T. Shanbhag, A. Tiwari, H. Yang, and S. Zhou, “Specification-based anomaly detection: a new approach for detecting network intrusions.”, In
M. M. Breunig, H. Kriegel, R.T. Ng, and J. Sander, “LOF: identifying density-based local outliers,”
C. Cadar, P. Akritidis, M. Costa, J.-P. Martin, M. Castro, “Data Randomization,”
E. Eskin, A. Arnold, M. Prerau, L. Portnoy, and S. Stolfo, “A geometric framework for unsupervised anomaly detection: Detecting intrusions in unlabeled data,” In
“PaX Homepage,” 2000. [Online]. Available: http://pax.grsecurity.net/. [Accessed October 2012].
pp. 1-32, 2012.
pp. 93-104, 2000.
E. Cheng, L. Ma, A. Blaisse, et al., “Efficient Feature Extraction fromWide Area Motion Imagery by MapReduce in Hadoop,” Proc. SPIE, Vol. 9089, 2014.
2004.
D. Chen, G. Chen, J. Cruz, L Haynes, et al., “A Markov Game Theoretic Data Fusion Approach for Cyber Situational Awareness,” Proc. of SPIE, Vol. 6571, 2007.
H. Alipour, Y. Al-Nashif, S. Hariri, “IEEE 802.11 Anomaly Behavior Analysis”, submitted to
Vol. 27, No. 9, Sept. 2012.
Minds - Minnesota intrusion detection system
V. S. Subashini, “A survey on security issues in service delivery models of cloud computing,”
C. Modi, D. Patel, B. Borisaniya, A. Patel and M. Rajarajan, “A survey on security issues and solutions at different layers of Cloud computing,”
(CAC ‘14), 2014.
Procedia Computer Science, 2014.
E Blasch, J Dezert, B Pannetier, “Overview of Dempster-Shafer and belief function tracking methods,”Proc. SPIE, Vol. 8745, 2013.
131-140, 2008.
T.F. Lunt and R. Jagannathan, “A prototype real-time intrusion-detection expert system”, In Proceedings of the
2001.
2013.
R. M. Dijkman, M. Dumas, and C. Ouyang. “Semantics and analysis of business process models in BPMN,”
45, 3, Article 40 (July 2013), 34 pages.
D. Luo and J. Wang, “CC-VIT: Virtualization Intrusion Tolerance Based on Cloud Computing,” in 2nd
Vol. 18, pp. 1999-2007, 2013.
L. Ertöz, E. Eilertson, A. Lazarevic, P. Tan, V. Kumar, J. Srivastava
Academic Press, pp. 201-279, 1987.
Towards MapReduce Based Machine Learning Techniques for Processing Massive Network Threat Monitoring Data
A. N. Steinberg, C.L. Bowman, G. Haith
D. E. Denning, “An intrusion-detection model,”
pages 265-274, New York, NY, USA,;1; 2002.
S. Narain, “Moving Target Defense With Configuration Space Randomization,” [Accessed 30 Jan. 2013]. Available: https://www.ncsi.com/nsatc11/presentations/thursday/emerging_technologies/narain.pdf.
G. Pék, L. Buttýan, and B. Bencsáth. A survey of security issues in hardware virtualization.
E. Blasch, G. Seetharaman, and K. Reinhardt, “Dynamic Data Driven Applications System concept for Information Fusion,”
E. Blasch, J. Nagy, A. Aved, W.M. Pottenger, M. Schneider, R. Hammoud, E.K. Jones, A. Basharat
Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 2000.
D. Goodin, “Webhost Hack Wipes Out Data for 100,000 Sites,” 8 June 2009. [Online]. Available: http://www.theregister.co.uk/2009/06/08/webhost_attack/. [Accessed 15 January 2013].
E. M. Knorr and R. T. Ng, “Algorithms for mining distance-based outliers in large datasets”, In Proc. 24th
vol. 47, no. 18, pp. 47-66, 2012.
M. Dunlop, S. Groat, W. Urbanski, R. Marchany and J. Tront, “MT6D:a moving target IPv6 defense,” in
Game Theoretic Approach to Threat Prediction and Situation Awareness
2014.
Adaptive Context Assessment and Context Management
Intrusion Detection: Randomized Instruction Set Emulation to Disrupt Binary Code Injection Attacks
P. Verissimo, A. Bessani and M. Pasin, ‘The TClouds Architecture: Open and Resilient Cloud-of-clouds Computing
E. P. Blasch, D.A. Lambert, P. Valin
July 2006.
2011.
MIT Press, 2004.
P.A. Porras and P.G. Neumann, “Emerald: Event monitoring enabling responses to anomalous live disturbances,” In
L. Kaufman, “Data security in the world of cloud computing,”
H. S. Javitz and A. Valdes
Berkeley, 2005.
vol. 7, no. 4, pp. 61-64, 2009.
T. Shon and J. Moon, “A hybrid machine learning approach to network anomaly detection,”
K. Kim and H. Welch, “Distributed Execution of Recovery Blocks:An Approach for Uniform Treatment of Hardware and Software Faults in Real-Time Applications,”
K. Kim, “ROAFTS: A Middleware Architecture for Real-time Object-oriented Adaptive Fault Tolerance Support,” in IEEE CS 1998 High-Assurance Systems Engineering (HASE) Symp., Washington, D.C., 1998.
Springer, 2011, pp. 29-39.
A. Keromytis, G.R. S. Sethumadhavan, S. Stolfo, Y. Junfeng, A. Benameur, M. Dacier, M. Elder, D. Kienzle and A. Stavrou, “The MEERKATS Cloud Security Architecture,” in
N. Ye and Q. Chen, “An anomaly detection technique based on a chi-square statistic for detecting intrusions into in-formation systems,” Quality and Reliability Engineering International, 17, 105-112, 2001.
E. Barrantes, D. Ackley, S. Forrest
N. Ye, “A markov chain model of temporal behavior for anomaly detection,” In
M. Schmidt, L. Baumgartner, P. Graubner, D. Bock and B. Freisleben, “Malware Detection and Kernel Rootkit Prevention in Cloud Computing Environments,” in
S. Ramaswamy, R. Rastogi, and K. Shim. “Efficie
10.1016/j.procs.2015.05.370_bib0105
10.1016/j.procs.2015.05.370_bib0425
10.1016/j.procs.2015.05.370_bib0305
10.1016/j.procs.2015.05.370_bib0190
10.1016/j.procs.2015.05.370_bib0070
10.1016/j.procs.2015.05.370_bib0390
10.1016/j.procs.2015.05.370_bib0270
10.1016/j.procs.2015.05.370_bib0150
10.1016/j.procs.2015.05.370_bib0030
10.1016/j.procs.2015.05.370_bib0195
10.1016/j.procs.2015.05.370_bib0075
10.1016/j.procs.2015.05.370_bib0350
10.1016/j.procs.2015.05.370_bib0230
10.1016/j.procs.2015.05.370_bib0395
10.1016/j.procs.2015.05.370_bib0110
10.1016/j.procs.2015.05.370_bib0275
10.1016/j.procs.2015.05.370_bib0155
10.1016/j.procs.2015.05.370_bib0430
10.1016/j.procs.2015.05.370_bib0035
10.1016/j.procs.2015.05.370_bib0310
10.1016/j.procs.2015.05.370_bib0355
10.1016/j.procs.2015.05.370_bib0235
10.1016/j.procs.2015.05.370_bib0115
10.1016/j.procs.2015.05.370_bib0435
10.1016/j.procs.2015.05.370_bib0315
10.1016/j.procs.2015.05.370_bib0080
10.1016/j.procs.2015.05.370_bib0280
10.1016/j.procs.2015.05.370_bib0160
10.1016/j.procs.2015.05.370_bib0040
10.1016/j.procs.2015.05.370_bib0085
10.1016/j.procs.2015.05.370_bib0360
10.1016/j.procs.2015.05.370_bib0240
10.1016/j.procs.2015.05.370_bib0120
10.1016/j.procs.2015.05.370_bib0285
10.1016/j.procs.2015.05.370_bib0165
10.1016/j.procs.2015.05.370_bib0045
10.1016/j.procs.2015.05.370_bib0320
10.1016/j.procs.2015.05.370_bib0200
10.1016/j.procs.2015.05.370_bib0365
10.1016/j.procs.2015.05.370_bib0245
10.1016/j.procs.2015.05.370_bib0125
10.1016/j.procs.2015.05.370_bib0400
10.1016/j.procs.2015.05.370_bib0005
10.1016/j.procs.2015.05.370_bib0325
10.1016/j.procs.2015.05.370_bib0205
10.1016/j.procs.2015.05.370_bib0405
10.1016/j.procs.2015.05.370_bib0090
10.1016/j.procs.2015.05.370_bib0290
10.1016/j.procs.2015.05.370_bib0170
10.1016/j.procs.2015.05.370_bib0050
10.1016/j.procs.2015.05.370_bib0095
10.1016/j.procs.2015.05.370_bib0370
10.1016/j.procs.2015.05.370_bib0250
10.1016/j.procs.2015.05.370_bib0130
10.1016/j.procs.2015.05.370_bib0295
10.1016/j.procs.2015.05.370_bib0010
10.1016/j.procs.2015.05.370_bib0175
10.1016/j.procs.2015.05.370_bib0055
10.1016/j.procs.2015.05.370_bib0330
10.1016/j.procs.2015.05.370_bib0210
10.1016/j.procs.2015.05.370_bib0375
10.1016/j.procs.2015.05.370_bib0255
10.1016/j.procs.2015.05.370_bib0135
10.1016/j.procs.2015.05.370_bib0410
10.1016/j.procs.2015.05.370_bib0015
10.1016/j.procs.2015.05.370_bib0335
10.1016/j.procs.2015.05.370_bib0215
10.1016/j.procs.2015.05.370_bib0415
10.1016/j.procs.2015.05.370_bib0180
10.1016/j.procs.2015.05.370_bib0060
10.1016/j.procs.2015.05.370_bib0380
10.1016/j.procs.2015.05.370_bib0260
10.1016/j.procs.2015.05.370_bib0140
10.1016/j.procs.2015.05.370_bib0020
10.1016/j.procs.2015.05.370_bib0185
10.1016/j.procs.2015.05.370_bib0065
10.1016/j.procs.2015.05.370_bib0340
10.1016/j.procs.2015.05.370_bib0220
10.1016/j.procs.2015.05.370_bib0385
10.1016/j.procs.2015.05.370_bib0100
10.1016/j.procs.2015.05.370_bib0265
10.1016/j.procs.2015.05.370_bib0145
10.1016/j.procs.2015.05.370_bib0420
10.1016/j.procs.2015.05.370_bib0025
10.1016/j.procs.2015.05.370_bib0300
10.1016/j.procs.2015.05.370_bib0345
10.1016/j.procs.2015.05.370_bib0225
References_xml – reference: : 131-140, 2008.
– reference: ., “Intrusion Detection: Randomized Instruction Set Emulation to Disrupt Binary Code Injection Attacks,”
– reference: R. Sekar, A. Gupta, J. Frullo, T. Shanbhag, A. Tiwari, H. Yang, and S. Zhou, “Specification-based anomaly detection: a new approach for detecting network intrusions.”, In
– reference: . MIT Press, 2004.
– reference: M. Schmidt, L. Baumgartner, P. Graubner, D. Bock and B. Freisleben, “Malware Detection and Kernel Rootkit Prevention in Cloud Computing Environments,” in
– reference: , Vol. 18, pp. 1999-2007, 2013.
– reference: E. Blasch, R. Breton, and P. Valin, “Using the C-OODA Model for CIMIC Analysis,”
– reference: M. M. Breunig, H. Kriegel, R.T. Ng, and J. Sander, “LOF: identifying density-based local outliers,”
– reference: G. Pék, L. Buttýan, and B. Bencsáth. A survey of security issues in hardware virtualization.
– reference: . Kluwer Academics, 78-100, 2002.
– reference: E. P. Blasch, D.A. Lambert, P. Valin,
– reference: L. Ge, H. Zhang, G. Xu, W. Yu,
– reference: . “A platform for event-driven agility of processes: A delivery context use-case.”
– reference: ., “High Level Information Fusion (HLIF) Survey of Models, Issues, and Grand Challenges,”
– reference: “Security as a Service,” Cloud Security Alliance, [Online]. Available: https://cloudsecurityalliance.org/research/secaas/. [Accessed January 2013].
– reference: , Vol. 74, pp. 421-436, 2014.
– reference: , vol. 38, no. 5, pp. pp. 626-636, 1989.
– reference: A. Tyrrell, “Recovery Blocks and Algorithm Based Fault tolerance,” in
– reference: , 2001.
– reference: , Academic Press, pp. 201-279, 1987.
– reference: R. P. Viswanathan, Y. Al-Nashif, S. Hariri, “Application Attack Detection System (AADS): An Anomaly Based Behavior Analysis Approach,”
– reference: , pp. 18-21, 1988.
– reference: , 2012.
– reference: R. Zhuang, S. Zhang, S.A. DeLoach, X. Ou and A. Singhal, “Simulation-based approaches to studying effectiveness of moving-target network defense,” in
– reference: E Blasch, J Dezert, B Pannetier, “Overview of Dempster-Shafer and belief function tracking methods,”Proc. SPIE, Vol. 8745, 2013.
– reference: “PaX Homepage,” 2000. [Online]. Available: http://pax.grsecurity.net/. [Accessed October 2012].
– reference: L. Ertöz, E. Eilertson, A. Lazarevic, P. Tan, V. Kumar, J. Srivastava,
– reference: . pp. 93-104, 2000.
– reference: ., “Context aided Video-to-Text Information Fusion,”
– reference: ., “Adaptive Context Assessment and Context Management,”
– reference: J. Feng, Y. Chen, D. Summerville, W. Ku, Z. Su, “Enhancing cloud storage security against roll-back attacks with a new fair multi-party non-repudiation protocol,” in
– reference: P. Verissimo, A. Bessani and M. Pasin, ‘The TClouds Architecture: Open and Resilient Cloud-of-clouds Computing,”
– reference: , Springer Publishing, 2013.
– reference: K. Kim, “ROAFTS: A Middleware Architecture for Real-time Object-oriented Adaptive Fault Tolerance Support,” in IEEE CS 1998 High-Assurance Systems Engineering (HASE) Symp., Washington, D.C., 1998.
– reference: 1999.
– reference: Y. B. Al-Nashif, A. Kumar, S. Hariri, Y. Luo, F. Szidarovszky, and G. Qu: “Multi-Level Intrusion Detection System (ML-IDS),”
– reference: S. Ramaswamy, R. Rastogi, and K. Shim. “Efficient algorithms for mining outliers from large datasets,”
– reference: W. Toy, “Fault-Tolerant Computing,” in
– reference: H. Alipour, Y. Al-Nashif, S. Hariri, “IEEE 802.11 Anomaly Behavior Analysis”, submitted to
– reference: P. C. G. Costa, K.B. Laskey,
– reference: (Amsterdam, Netherlands: 1999), 31(23-24):2435-2463, 1999.
– reference: G. Vallee, C. Engelmann, A. Tikotekar, T. Naughton, K. Charoenpornwattana, C. Leangsuksun and S. Scott, “A Framework for Proactive Fault Tolerance,”
– reference: , 2011.
– reference: , 2003.
– reference: C. C. Aggarwal and P. S. Yu, “Outlier detection for high dimensional data,”
– reference: E. Blasch, “Context aided Sensor and Human-based Information Fusion”
– reference: E. Blasch, A. Jøsang, J. Dezert, P.C. G. Costa, K.B. Laskey, A-L. Jousselme, “URREF Self-Confidence in Information Fusion Trust,”
– reference: V. Paxson, “Bro: a system for detecting network intruders in real-time,”
– reference: ., “Minds - Minnesota intrusion detection system,”
– reference: B. Liu, E. Blasch, Y. Chen, A.J. Aved,
– reference: M. Rosenblum and T. Garfinkel, “When virtual is harder than real: security challenges in virtual machine based computing environments,” in
– reference: , July 2006.
– reference: ., “Game Theoretic Approach to Threat Prediction and Situation Awareness,”
– reference: 2(2/3): 171-190, 2013.
– reference: ., “Towards Unbiased Evaluation of Uncertainty Reasoning: The URREF Ontology,”
– reference: , (CAC ‘14), 2014.
– reference: M. Abbasy and B. Shanmugam, “Enabling Data Hiding for Resource Sharing in Cloud Computing Environments Based on DNA Sequences,” in
– reference: E. Blasch, K.B. Laskey, A-L. Joussselme, V. Dragos, P.C. G. Costa, and J. Dezert, “URREF Reliability versus Credibility in Information Fusion (STANAG 2511),”
– reference: V. S. Subashini, “A survey on security issues in service delivery models of cloud computing,”
– reference: , 177(18):3799-3821, 2007.
– reference: , vol. 34, pp. 1-11, 2011.
– reference: A. Keromytis, G.R. S. Sethumadhavan, S. Stolfo, Y. Junfeng, A. Benameur, M. Dacier, M. Elder, D. Kienzle and A. Stavrou, “The MEERKATS Cloud Security Architecture,” in
– reference: L. Kaufman, “Data security in the world of cloud computing,”
– reference: M. Roesch, “Snort - Lightweight Intrusion Detection for Networks,”
– reference: . Springer Berlin Heidelberg, 2013. 681-690.
– reference: E. Blasch, Y. Chen, G. Chen, D. Shen, and R. Kohler, “Information Fusion in a Cloud-Enabled Environment,” in Keesook Han, Baek-Young Choi, Sejun Song (Eds.),
– reference: H. Alipour, Y. Al-Nashif, S. Hariri, “DNS Anomaly Behavior Analysis against Cyber Attacks”, submitted to
– reference: , Vol. 27, No. 9, Sept. 2012.
– reference: D. Anderson, T.F. Lunt, H. Javitz, A. Tamaru, and A. Valdes, “Detecting unusual program behavior using the statistical component of the next-generation intrusion detection expert system nides”, Technical Report
– reference: , 50 (12), 1281-1294, 2008.
– reference: 16 September 2009. [Accessed January 2013].]. Available: http://www.cyber.st.dhs.gov/docs/National_Cyber_Leap_Year_Summit_2009_Co-Chairs_Report.pdf.
– reference: , pp. 353-365, 1997.
– reference: D. L. Pipkin.
– reference: D. E. Denning, “An intrusion-detection model,”
– reference: , 13(2):222-232, 1987.
– reference: G. Chen, D. Shen, C. Kwan, J. Cruz,
– reference: K. Kim and H. Welch, “Distributed Execution of Recovery Blocks:An Approach for Uniform Treatment of Hardware and Software Faults in Real-Time Applications,”
– reference: (ICCSN), pp.538-543, 2011.
– reference: E. Cheng, L. Ma, A. Blaisse, et al., “Efficient Feature Extraction fromWide Area Motion Imagery by MapReduce in Hadoop,” Proc. SPIE, Vol. 9089, 2014.
– reference: , pp. 427-438, 2000.
– reference: P.A. Porras and P.G. Neumann, “Emerald: Event monitoring enabling responses to anomalous live disturbances,” In
– reference: T.F. Lunt and R. Jagannathan, “A prototype real-time intrusion-detection expert system”, In Proceedings of the
– reference: , 2008.
– reference: . 45, 3, Article 40 (July 2013), 34 pages.
– reference: E. Eskin, A. Arnold, M. Prerau, L. Portnoy, and S. Stolfo, “A geometric framework for unsupervised anomaly detection: Detecting intrusions in unlabeled data,” In
– reference: C. Tunc, F. Fargo, Y. Al-Nashif, S. Hariri, J. Hughes, Autonomic Resilient Cloud Management (ARCM),
– reference: , Technical Report, SRI International Menlo Park, California, 1994.
– reference: , vol. 7, no. 4, pp. 61-64, 2009.
– reference: , pp. 320-324, 2000.
– reference: , “Towards MapReduce Based Machine Learning Techniques for Processing Massive Network Threat Monitoring Data,”
– reference: D. Goodin, “Webhost Hack Wipes Out Data for 100,000 Sites,” 8 June 2009. [Online]. Available: http://www.theregister.co.uk/2009/06/08/webhost_attack/. [Accessed 15 January 2013].
– reference: M. Dunlop, S. Groat, W. Urbanski, R. Marchany and J. Tront, “MT6D:a moving target IPv6 defense,” in
– reference: E. Blasch, J. Nagy, A. Aved, W.M. Pottenger, M. Schneider, R. Hammoud, E.K. Jones, A. Basharat,
– reference: W. Li, Y. Badr, F. Biennier, “Service Farming: An Ad-hoc and QoS-aware Web Service Composition Approach,” Dans SAC 2013, Coimbra, Portugal, pp. 750-756, 2013.
– reference: E. M. Knorr and R. T. Ng, “Algorithms for mining distance-based outliers in large datasets”, In Proc. 24th
– reference: , 2010.
– reference: , Springer, 2011, pp. 29-39.
– reference: , vol. 47, no. 18, pp. 47-66, 2012.
– reference: C. Modi, D. Patel, B. Borisaniya, A. Patel and M. Rajarajan, “A survey on security issues and solutions at different layers of Cloud computing,”
– reference: E. Blasch, “Level 5 (User Refinement) issues supporting Information Fusion Management”
– reference: R. Bhadauria and S. Sanyal, “Survey on Security Issues in Cloud Computing and Associated Mitigation Techniques,”
– reference: E. Blasch, “Trust Metrics in Information Fusion,” Proc. SPIE, Vol. 9091, 2014.
– reference: , 2013.
– reference: , Berkeley, 2005.
– reference: , Artech House, Norwood, MA, 2012.
– reference: , Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 2000.
– reference: D. Luo and J. Wang, “CC-VIT: Virtualization Intrusion Tolerance Based on Cloud Computing,” in 2nd
– reference: D. Chen, G. Chen, J. Cruz, L Haynes, et al., “A Markov Game Theoretic Data Fusion Approach for Cyber Situational Awareness,” Proc. of SPIE, Vol. 6571, 2007.
– reference: , Vol. 29, No. 10, pp. 16-24, 2014.
– reference: N. Ye and Q. Chen, “An anomaly detection technique based on a chi-square statistic for detecting intrusions into in-formation systems,” Quality and Reliability Engineering International, 17, 105-112, 2001.
– reference: E. Blasch, A. Steinberg, S. Das, J. Llinas, C.-Y. Chong, O. Kessler, E. Waltz, and F. White, “Revisiting the JDL model for information Exploitation,”
– reference: K. Yamanishi, J. Takeuchi, G.J. Williams, and P. Milne, “On-line unsupervised outlier detection using finite mixtures with discounting learning algorithms,”
– reference: H. Zeng, “Research on Developing an Attack and Defense Lab Environment for Cross Site Scripting Education in Higher Vocational Colleges,”
– reference: K. Scarfone and Peter Mell, Guide to Intrusion Detection and Prevention Systems (IDPS). Computer Security Resource Center (National Institute of Standards and Technology) (800-94), 2007, Retrieved 1 January 2010.
– reference: S. Latif-Shabgahi, “An Integrated Voting Algorithm for Fault Tolerant Systems”, in
– reference: ., “Information Fusion in a Cloud Computing Era: A Systems-Level Perspective,”
– reference: , Vol. 2, No. 1, 1-14, June 2007.
– reference: T. Shon and J. Moon, “A hybrid machine learning approach to network anomaly detection,”
– reference: ), vol. 9, 2011.
– reference: C. Cadar, P. Akritidis, M. Costa, J.-P. Martin, M. Castro, “Data Randomization,”
– reference: , 2014.
– reference: , 10(1-2):105-136, 2002.
– reference: D. Jeffrey, G. Sanjay, “MapReduce: Simplified Data Processing on Large Clusters,” In
– reference: A. N. Steinberg, C.L. Bowman, G. Haith,
– reference: S. Narain, “Moving Target Defense With Configuration Space Randomization,” [Accessed 30 Jan. 2013]. Available: https://www.ncsi.com/nsatc11/presentations/thursday/emerging_technologies/narain.pdf.
– reference: B. Liu, Y. Chen, A. Hadiks,
– reference: K. Sequeira and M. Zaki, “Admit: anomaly-based data mining for intrusions,” Proceedings of ACM SIGKDD international conference on Knowledge discovery and data mining (KDD), pp. 386-395, 2002.
– reference: H. S. Javitz and A. Valdes,
– reference: S. Staniford, J.A. Hoagland, and J. M. McAlerney, “Practical automated detection of stealthy portscans,”
– reference: L. Ge, W. Yu, D. Shen, G. Chen, K. Pham, et al., “Toward Effectiveness and Agility of Network Security Situational Awareness using Moving Target Defense (MTD),” Proc. SPIE, Vol. 9085, 2014.
– reference: G. Dsouza, G. Rodríguez, Y.B. Al-Nashif, S. Hariri, “Building resilient cloud services using DDDAS and moving target defence,”
– reference: E. P. Blasch, E. Bosse, and D. A. Lambert,
– reference: E. Blasch, G. Seetharaman, and K. Reinhardt, “Dynamic Data Driven Applications System concept for Information Fusion,”
– reference: . 2004.
– reference: L. Peng, D. Lipinski, K. Mohseni, “Dynamic Data Driven Application System for plume estimation using UAVs,”
– reference: , VLDB, pages 392-403, 24-27 1998.
– reference: , CRC Press, Taylor & Francis Group, 2015.
– reference: ., 1996.
– reference: E. Blasch, Y Al-Nashif, and S. Hariri, “Static versus Dynamic Data Information Fusion analysis using DDDAS for Cyber Trust,”
– reference: .
– reference: A. Avizienis, “The N-Version Approach to fault Tolerant Software,”
– reference: , Computer Science Laboratory, SRI International, 1995.
– reference: , pages 265-274, New York, NY, USA,;1; 2002.
– reference: M. S., Siddiqui, DVerma, “Cross site request forgery: A common web application weakness,”
– reference: D. Evans, A. Nguyen-Tuong and J. Knight, “Effectiveness of Moving Target Defenses,” in
– reference: E. Barrantes, D. Ackley, S. Forrest,
– reference: R. M. Dijkman, M. Dumas, and C. Ouyang. “Semantics and analysis of business process models in BPMN,”
– reference: A-M. Barthe-Delanoë,
– reference: , pp. 1-32, 2012.
– reference: , Procedia Computer Science, 2014.
– reference: , Vol. 29, No. 10, pp. 16-24, Oct. 2014.
– reference: N. Ye, “A markov chain model of temporal behavior for anomaly detection,” In
– reference: , Vols. SE-11, no. 12, 1985.
– ident: 10.1016/j.procs.2015.05.370_bib0105
  doi: 10.1145/375663.375668
– ident: 10.1016/j.procs.2015.05.370_bib0180
  doi: 10.1109/ICCSN.2011.6014783
– ident: 10.1016/j.procs.2015.05.370_bib0005
– ident: 10.1016/j.procs.2015.05.370_bib0030
– ident: 10.1016/j.procs.2015.05.370_bib0385
  doi: 10.1016/j.procs.2014.05.117
– ident: 10.1016/j.procs.2015.05.370_bib0195
  doi: 10.1109/CCNC.2011.5766528
– ident: 10.1016/j.procs.2015.05.370_bib0400
  doi: 10.1109/MAES.2012.6366088
– ident: 10.1016/j.procs.2015.05.370_bib0285
  doi: 10.1145/948143.948147
– ident: 10.1016/j.procs.2015.05.370_bib0210
  doi: 10.1016/j.procs.2013.05.369
– ident: 10.1016/j.procs.2015.05.370_bib0165
  doi: 10.5120/7292-0578
– ident: 10.1016/j.procs.2015.05.370_bib0185
  doi: 10.1145/2480741.2480757
– ident: 10.1016/j.procs.2015.05.370_bib0265
  doi: 10.1109/TSE.1985.231893
– ident: 10.1016/j.procs.2015.05.370_bib0080
  doi: 10.1145/775047.775103
– ident: 10.1016/j.procs.2015.05.370_bib0090
  doi: 10.1145/347090.347160
– ident: 10.1016/j.procs.2015.05.370_bib0230
  doi: 10.1109/MILCOM.2011.6127486
– ident: 10.1016/j.procs.2015.05.370_bib0425
– ident: 10.1016/j.procs.2015.05.370_bib0050
– ident: 10.1016/j.procs.2015.05.370_bib0160
  doi: 10.1016/j.jnca.2010.07.006
– ident: 10.1016/j.procs.2015.05.370_bib0435
– ident: 10.1016/j.procs.2015.05.370_bib0085
– ident: 10.1016/j.procs.2015.05.370_bib0360
– ident: 10.1016/j.procs.2015.05.370_bib0430
  doi: 10.1117/12.2050255
– ident: 10.1016/j.procs.2015.05.370_bib0305
  doi: 10.1109/ARES.2008.171
– ident: 10.1016/j.procs.2015.05.370_bib0035
  doi: 10.1109/TSE.1987.232894
– ident: 10.1016/j.procs.2015.05.370_bib0010
– ident: 10.1016/j.procs.2015.05.370_bib0140
  doi: 10.1109/ICIF.2006.301670
– ident: 10.1016/j.procs.2015.05.370_bib0200
  doi: 10.1109/MSP.2009.87
– ident: 10.1016/j.procs.2015.05.370_bib0095
  doi: 10.1002/qre.392
– ident: 10.1016/j.procs.2015.05.370_bib0110
  doi: 10.1145/342009.335388
– ident: 10.1016/j.procs.2015.05.370_bib0310
  doi: 10.1109/ICDCSW.2012.42
– ident: 10.1016/j.procs.2015.05.370_bib0390
  doi: 10.1007/978-3-642-40543-3_71
– ident: 10.1016/j.procs.2015.05.370_bib0370
  doi: 10.1016/j.infsof.2008.02.006
– ident: 10.1016/j.procs.2015.05.370_bib0255
  doi: 10.1109/12.24266
– ident: 10.1016/j.procs.2015.05.370_bib0345
  doi: 10.1109/MAES.2014.130115
– ident: 10.1016/j.procs.2015.05.370_bib0215
  doi: 10.1109/MAES.2014.130115
– ident: 10.1016/j.procs.2015.05.370_bib0070
– ident: 10.1016/j.procs.2015.05.370_bib0410
  doi: 10.1117/12.2016326
– ident: 10.1016/j.procs.2015.05.370_bib0130
  doi: 10.1016/j.ins.2007.03.025
– ident: 10.1016/j.procs.2015.05.370_bib0150
  doi: 10.1109/PDP.2011.45
– ident: 10.1016/j.procs.2015.05.370_bib0020
  doi: 10.6028/NIST.SP.800-94
– ident: 10.1016/j.procs.2015.05.370_bib0060
  doi: 10.1109/SECPRI.1988.8098
– ident: 10.1016/j.procs.2015.05.370_bib0325
  doi: 10.1117/12.2054690
– ident: 10.1016/j.procs.2015.05.370_bib0155
– ident: 10.1016/j.procs.2015.05.370_bib0225
– ident: 10.1016/j.procs.2015.05.370_bib0250
– ident: 10.1016/j.procs.2015.05.370_bib0300
  doi: 10.1109/DSNW.2012.6264686
– ident: 10.1016/j.procs.2015.05.370_bib0330
– ident: 10.1016/j.procs.2015.05.370_bib0365
  doi: 10.1145/2480362.2480505
– ident: 10.1016/j.procs.2015.05.370_bib0100
  doi: 10.1007/978-1-4615-0953-0_4
– ident: 10.1016/j.procs.2015.05.370_bib0145
– ident: 10.1016/j.procs.2015.05.370_bib0420
– ident: 10.1016/j.procs.2015.05.370_bib0260
  doi: 10.1016/S0065-2458(08)60008-X
– ident: 10.1016/j.procs.2015.05.370_bib0315
– ident: 10.1016/j.procs.2015.05.370_bib0125
  doi: 10.1145/586110.586146
– ident: 10.1016/j.procs.2015.05.370_bib0240
– ident: 10.1016/j.procs.2015.05.370_bib0055
  doi: 10.1109/AICCSA.2011.6126606
– ident: 10.1016/j.procs.2015.05.370_bib0045
– ident: 10.1016/j.procs.2015.05.370_bib0320
– ident: 10.1016/j.procs.2015.05.370_bib0355
  doi: 10.1109/NAECON.2014.7045790
– ident: 10.1016/j.procs.2015.05.370_bib0025
  doi: 10.1109/ICAC.2008.25
– ident: 10.1016/j.procs.2015.05.370_bib0175
  doi: 10.1109/ICCIS.2013.515
– ident: 10.1016/j.procs.2015.05.370_bib0350
  doi: 10.1007/s10846-013-9964-x
– ident: 10.1016/j.procs.2015.05.370_bib0120
  doi: 10.1145/335191.335437
– ident: 10.1016/j.procs.2015.05.370_bib0270
– ident: 10.1016/j.procs.2015.05.370_bib0335
  doi: 10.1109/ICIF.2006.301581
– ident: 10.1016/j.procs.2015.05.370_bib0415
– ident: 10.1016/j.procs.2015.05.370_bib0190
  doi: 10.1109/SERVICES.2011.45
– ident: 10.1016/j.procs.2015.05.370_bib0115
– ident: 10.1016/j.procs.2015.05.370_bib0295
  doi: 10.1117/12.2050782
– ident: 10.1016/j.procs.2015.05.370_bib0375
  doi: 10.1109/ICCAC.2014.35
– ident: 10.1016/j.procs.2015.05.370_bib0075
  doi: 10.3233/JCS-2002-101-205
– ident: 10.1016/j.procs.2015.05.370_bib0170
  doi: 10.1007/s11227-012-0831-5
– ident: 10.1016/j.procs.2015.05.370_bib0280
– ident: 10.1016/j.procs.2015.05.370_bib0245
– ident: 10.1016/j.procs.2015.05.370_bib0220
– ident: 10.1016/j.procs.2015.05.370_bib0235
– ident: 10.1016/j.procs.2015.05.370_bib0275
  doi: 10.1007/978-1-4614-0977-9_2
– ident: 10.1016/j.procs.2015.05.370_bib0380
  doi: 10.1504/IJCC.2013.055266
– ident: 10.1016/j.procs.2015.05.370_bib0395
  doi: 10.1109/NAECON.2011.6183090
– ident: 10.1016/j.procs.2015.05.370_bib0040
– ident: 10.1016/j.procs.2015.05.370_bib0405
– ident: 10.1016/j.procs.2015.05.370_bib0015
  doi: 10.1016/S1389-1286(99)00112-7
– ident: 10.1016/j.procs.2015.05.370_bib0065
– ident: 10.1016/j.procs.2015.05.370_bib0205
  doi: 10.1007/978-1-4614-3296-8_4
– ident: 10.1016/j.procs.2015.05.370_bib0290
– ident: 10.1016/j.procs.2015.05.370_bib0340
– ident: 10.1016/j.procs.2015.05.370_bib0135
  doi: 10.1117/12.720090
SSID ssj0000388917
Score 2.1394713
Snippet Future crisis management systems needresilient and trustworthy infrastructures to quickly develop reliable applications and processes, andensure end-to-end...
In this paper, the multi-criteria decision making in which criteria are assumed to be dependent with each other is investigated. Choquet integral is employed...
SourceID hal
crossref
elsevier
SourceType Open Access Repository
Enrichment Source
Index Database
Publisher
StartPage 2623
SubjectTerms cloud computing
Computation and Language
Computer Science
Cryptography and Security
Data Structures and Algorithms
Mathematical Software
rDaaS
resilience
service-oriented computing
Software Engineering
trust and security
Ubiquitous Computing
Web
Title Resilient and Trustworthy Dynamic Data-driven Application Systems (DDDAS) Services for Crisis Management Environments
URI https://dx.doi.org/10.1016/j.procs.2015.05.370
https://hal.science/hal-01212583
Volume 51
WOSCitedRecordID wos000373939100268&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1877-0509
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000388917
  issn: 1877-0509
  databaseCode: M~E
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6lhQMX3ojy0gpxAIWVsnZs7x6jpqiHKEI0SL1Z612vcAmhStKoXPhZ_D5m9uEYChE9cLGSlb12Mp_npZlvCHk1LFKV1UoyJY1iw8pKJkxRM4v-OMQTtajc1JJJMZ2K01P5vtf7EXthNvNisRCXl_L8v4oa1kDY2Dp7DXG3m8ICfAahwxHEDsd_EvyHetXMm1g6PsOeClcH-K0_9tPnQdJrxcwS9Zz3Qn3aLrKXo9M5Ho9HJ5gxiLrElSMegkZoVp2Smf5Rp0-u6-e6_gOAnitZx6kR_WBqt5lT47AC2gZ82C9bRbhsfO_7CQQI7fJowqY49cmGS-BFtu1O4P_7eVag0z93sxi-gzOoXFEUDFlovEX6w1rQ04GYNija3LcpB6Od5J465opB8LmJMzRHGtnZeYZErakfVvIr_fZvZrEtVox1cGel26TETcpBVsIme-RGUkBIhiWj37e5PWTYkW7Yc_tDIuGVKy288jB_c4r2PsX0vnN3ZnfJ7RCn0JHH1z3Sqxf3yZ04A4QGk_CAXLRwowA32oEbDXCjHbjRDtxogBt97cD2hkaoUYAa9VCjW6jRLtQeko_vjmaHxyyM8mA6FcmaaZ4ra2qZ2CFEKJpnmnPwEuRAmIGpLK-kGuZWQ_iO4x2kKjII42vFpYHzuFHpI7K_-LqoHxOqMUKHuCXH2DkTQhU57KErzo22RWUPSBL_y1IHnnsctzIvdwjygLxtLzr3NC-7T8-jkMrw-ngPtATc7b7wJYi0vQVyux-PJiWuIblikol0w59c72Geklv4zecFn5H99fKifk5u6s26WS1fOGT-BL9NxDE
linkProvider ISSN International Centre
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Resilient+and+Trustworthy+Dynamic+Data-driven+Application+Systems+%28DDDAS%29+Services+for+Crisis+Management+Environments&rft.jtitle=Procedia+computer+science&rft.au=Badr%2C+Youakim&rft.au=Hariri%2C+Salim&rft.au=AL-Nashif%2C+Youssif&rft.au=Blasch%2C+Erik&rft.date=2015&rft.issn=1877-0509&rft.eissn=1877-0509&rft.volume=51&rft.spage=2623&rft.epage=2637&rft_id=info:doi/10.1016%2Fj.procs.2015.05.370&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_procs_2015_05_370
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1877-0509&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1877-0509&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1877-0509&client=summon