Quantum autoencoder implementation of high-dimensional steganographic encoding for arbitrary quantum states
While classical steganography achieves maturity in digital media, hiding arbitrary quantum states ( α | 0 ⟩ + β | 1 ⟩ ) has emerged as an intriguing frontier. To address this problem, we establish a formal model of controllable random perturbation unitaries for single/multi-stego state tasks. We pro...
Uložené v:
| Vydané v: | Journal of King Saud University. Computer and information sciences Ročník 37; číslo 8; s. 247 - 20 |
|---|---|
| Hlavní autori: | , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Cham
Springer International Publishing
01.10.2025
Springer Nature B.V Springer |
| Predmet: | |
| ISSN: | 1319-1578, 2213-1248, 1319-1578 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | While classical steganography achieves maturity in digital media, hiding arbitrary quantum states (
α
|
0
⟩
+
β
|
1
⟩
) has emerged as an intriguing frontier. To address this problem, we establish a formal model of controllable random perturbation unitaries for single/multi-stego state tasks. We progressively explore Quantum Autoencoder (QAE) structures through three stages: starting from single-state scenarios without perturbation, advancing to perturbed conditions, and finally extending to multi-state tasks. We design two perturbation-based encoding schemes using Quantum Autoencoders (QAE): the simple scheme (QAE-DD) leverages the inverse application of encoding–decoding modules, while the improved scheme (QAE-OSP) incorporates orthogonal projection routing and parallel subnetworks to restructure the hidden-layer architecture. In 3-qubit entangled-state simulations with data scales
n
≤
10
and perturbation strengths
ε
∈
[
0
,
1
]
, QAE-DD performs well under low perturbation, whereas QAE-OSP maintains higher fidelity between the carrier and secret states under high perturbation conditions (e.g.,
n
=
5
,
ε
=
0.6
), with fidelity values
F
ρ
stego
,
ρ
~
stego
=
0.91
/
F
ρ
S
,
ρ
~
S
=
0.84
providing a reference for network design. Finally, we extend the single-carrier (“
1
+
1
”) task to the multi-carrier (“
1
+
N
”) scenario by constructing a “centroid” state training set based on the principal component of carrier-state groups and validating the applicability of both models. Under the conditions
n
=
5
and
ε
=
0.6
, the QAE-OSP model successfully improves the average fidelity between multiple secret states and carrier states from 0.68 to 0.90, demonstrating its capability to aggregate multiple carriers to enhance overall concealment. Although the present study covers only small-scale data and networks, it lays the groundwork for a neural network framework that covertly embeds arbitrary quantum states into high-dimensional quantum states, providing a basis for future exploration. |
|---|---|
| AbstractList | Abstract While classical steganography achieves maturity in digital media, hiding arbitrary quantum states ( $$\alpha |0\rangle + \beta |1\rangle $$ α | 0 ⟩ + β | 1 ⟩ ) has emerged as an intriguing frontier. To address this problem, we establish a formal model of controllable random perturbation unitaries for single/multi-stego state tasks. We progressively explore Quantum Autoencoder (QAE) structures through three stages: starting from single-state scenarios without perturbation, advancing to perturbed conditions, and finally extending to multi-state tasks. We design two perturbation-based encoding schemes using Quantum Autoencoders (QAE): the simple scheme (QAE-DD) leverages the inverse application of encoding–decoding modules, while the improved scheme (QAE-OSP) incorporates orthogonal projection routing and parallel subnetworks to restructure the hidden-layer architecture. In 3-qubit entangled-state simulations with data scales $$n \le 10$$ n ≤ 10 and perturbation strengths $$\varepsilon \in [0,1]$$ ε ∈ [ 0 , 1 ] , QAE-DD performs well under low perturbation, whereas QAE-OSP maintains higher fidelity between the carrier and secret states under high perturbation conditions (e.g., $$n = 5, \varepsilon = 0.6$$ n = 5 , ε = 0.6 ), with fidelity values $$F\left( \rho _{\text {stego}}, \tilde{\rho }_{\text {stego}} \right) =0.91$$ F ρ stego , ρ ~ stego = 0.91 / $$F\left( \rho _{S}, \tilde{\rho }_{S} \right) =0.84$$ F ρ S , ρ ~ S = 0.84 providing a reference for network design. Finally, we extend the single-carrier (“ $$1+1$$ 1 + 1 ”) task to the multi-carrier (“ $$1+N$$ 1 + N ”) scenario by constructing a “centroid” state training set based on the principal component of carrier-state groups and validating the applicability of both models. Under the conditions $$n = 5$$ n = 5 and $$\varepsilon = 0.6$$ ε = 0.6 , the QAE-OSP model successfully improves the average fidelity between multiple secret states and carrier states from 0.68 to 0.90, demonstrating its capability to aggregate multiple carriers to enhance overall concealment. Although the present study covers only small-scale data and networks, it lays the groundwork for a neural network framework that covertly embeds arbitrary quantum states into high-dimensional quantum states, providing a basis for future exploration. While classical steganography achieves maturity in digital media, hiding arbitrary quantum states (α|0⟩+β|1⟩) has emerged as an intriguing frontier. To address this problem, we establish a formal model of controllable random perturbation unitaries for single/multi-stego state tasks. We progressively explore Quantum Autoencoder (QAE) structures through three stages: starting from single-state scenarios without perturbation, advancing to perturbed conditions, and finally extending to multi-state tasks. We design two perturbation-based encoding schemes using Quantum Autoencoders (QAE): the simple scheme (QAE-DD) leverages the inverse application of encoding–decoding modules, while the improved scheme (QAE-OSP) incorporates orthogonal projection routing and parallel subnetworks to restructure the hidden-layer architecture. In 3-qubit entangled-state simulations with data scales n≤10 and perturbation strengths ε∈[0,1], QAE-DD performs well under low perturbation, whereas QAE-OSP maintains higher fidelity between the carrier and secret states under high perturbation conditions (e.g., n=5,ε=0.6), with fidelity values Fρstego,ρ~stego=0.91 / FρS,ρ~S=0.84 providing a reference for network design. Finally, we extend the single-carrier (“1+1”) task to the multi-carrier (“1+N”) scenario by constructing a “centroid” state training set based on the principal component of carrier-state groups and validating the applicability of both models. Under the conditions n=5 and ε=0.6, the QAE-OSP model successfully improves the average fidelity between multiple secret states and carrier states from 0.68 to 0.90, demonstrating its capability to aggregate multiple carriers to enhance overall concealment. Although the present study covers only small-scale data and networks, it lays the groundwork for a neural network framework that covertly embeds arbitrary quantum states into high-dimensional quantum states, providing a basis for future exploration. While classical steganography achieves maturity in digital media, hiding arbitrary quantum states ( α | 0 ⟩ + β | 1 ⟩ ) has emerged as an intriguing frontier. To address this problem, we establish a formal model of controllable random perturbation unitaries for single/multi-stego state tasks. We progressively explore Quantum Autoencoder (QAE) structures through three stages: starting from single-state scenarios without perturbation, advancing to perturbed conditions, and finally extending to multi-state tasks. We design two perturbation-based encoding schemes using Quantum Autoencoders (QAE): the simple scheme (QAE-DD) leverages the inverse application of encoding–decoding modules, while the improved scheme (QAE-OSP) incorporates orthogonal projection routing and parallel subnetworks to restructure the hidden-layer architecture. In 3-qubit entangled-state simulations with data scales n ≤ 10 and perturbation strengths ε ∈ [ 0 , 1 ] , QAE-DD performs well under low perturbation, whereas QAE-OSP maintains higher fidelity between the carrier and secret states under high perturbation conditions (e.g., n = 5 , ε = 0.6 ), with fidelity values F ρ stego , ρ ~ stego = 0.91 / F ρ S , ρ ~ S = 0.84 providing a reference for network design. Finally, we extend the single-carrier (“ 1 + 1 ”) task to the multi-carrier (“ 1 + N ”) scenario by constructing a “centroid” state training set based on the principal component of carrier-state groups and validating the applicability of both models. Under the conditions n = 5 and ε = 0.6 , the QAE-OSP model successfully improves the average fidelity between multiple secret states and carrier states from 0.68 to 0.90, demonstrating its capability to aggregate multiple carriers to enhance overall concealment. Although the present study covers only small-scale data and networks, it lays the groundwork for a neural network framework that covertly embeds arbitrary quantum states into high-dimensional quantum states, providing a basis for future exploration. |
| ArticleNumber | 247 |
| Author | Chen, Yaqi Qu, Dan Ma, Quangong Zhang, Hao Hao, Chaolong |
| Author_xml | – sequence: 1 givenname: Chaolong surname: Hao fullname: Hao, Chaolong organization: School of Information Systems Engineering, Information Engineering University – sequence: 2 givenname: Quangong surname: Ma fullname: Ma, Quangong email: quangongma@163.com organization: School of Information Systems Engineering, Information Engineering University – sequence: 3 givenname: Yaqi surname: Chen fullname: Chen, Yaqi organization: School of Information Systems Engineering, Information Engineering University – sequence: 4 givenname: Hao surname: Zhang fullname: Zhang, Hao organization: School of Information Systems Engineering, Information Engineering University – sequence: 5 givenname: Dan surname: Qu fullname: Qu, Dan email: qudan_xd@163.com organization: School of Information Systems Engineering, Information Engineering University |
| BookMark | eNp9kU-LFDEQxYOs4LjuF_AU8BzNv-5OH2VRd2FBFtZzqKSrezLOJLNJ-uC3N04verMugcd7vyry3pKrmCIS8l7wj4Lz4VPRbRTjsmOcy0Ez8YrspBSKCanNFdkJJUYmusG8ITelHDjnYug7rfod-fm4QqzricJaE0afJsw0nM5HPGGsUEOKNM10H5Y9m0LTSlPgSEvFBWJaMpz3wdNLMsSFzilTyC7UDPkXfX6Bl0bC8o68nuFY8OblvSY_vn55ur1jD9-_3d9-fmBeGVmZ835WMyqh0aEzZgAnxcgHHHEWozJD3-tuQjl2owcpwGhpwHeae-klSKeuyf3GnRIc7DmHU7vFJgj2IqS8WMg1-CPawXHe9eB4Z3ptULsJtRJKa1CT7qVvrA8b65zT84ql2kNac_uBYpXsW6ydJptLbi6fUykZ579bBbd_OrJbR7Z1ZC8dWdFCaguVZo4L5n_o_6R-A81Ol6w |
| Cites_doi | 10.1109/TCSS.2023.3268950 10.1016/j.eswa.2023.121452 10.1002/qute.202400484 10.1007/s11128-022-03513-w 10.1103/PhysRevApplied.15.054012 10.22331/q-2023-03-09-942 10.1088/1572-9494/ad8125 10.1109/JIOT.2025.3540097 10.1088/2058-9565/aa8072 10.1007/s11128-024-04312-1 10.1016/j.apm.2024.06.016 10.1140/epjqt/s40507-024-00265-7 10.3389/frqst.2025.1575498 10.1103/PhysRevResearch.7.013221 10.1016/j.automatica.2022.110659 10.1017/9781316848142 10.1093/oso/9780198570004.001.0001 10.1016/j.physa.2023.128688 10.1103/PhysRevA.111.042416 10.1016/j.sigpro.2009.08.010 10.1109/5.771065 10.1109/SFCS.1994.365700 10.1103/PhysRevA.109.032623 10.3390/math9212829 10.1103/PhysRevLett.124.130502 10.1063/5.0270220 10.1103/PhysRevA.98.052343 10.1007/s11071-025-11001-w 10.1103/PhysRevLett.120.230501 10.1007/BF01007479 10.1126/science.1090790 10.1038/s41534-022-00599-z 10.1140/epjqt/s40507-024-00304-3 10.1145/3717823.3718254 10.1103/PhysRevA.105.052414 10.1103/PhysRevA.103.L040403 10.1007/s12293-024-00417-3 10.1109/TIT.2002.808134 10.62311/nesx/rb978-81-978755-9-5 10.1103/PhysRevLett.122.060501 10.1002/qute.201900070 10.1016/j.cosrev.2014.09.001 10.1103/PhysRevA.104.032601 10.1038/s41534-025-00709-0 10.1109/INDIN.2005.1560462 10.1109/TIFS.2024.3394768 10.1109/TCSVT.2025.3545868 10.1007/978-3-030-01267-0_40 10.1017/CBO9780511801334 10.1016/j.jvcir.2025.104462 10.1016/j.eswa.2024.124891 10.1109/TCSII.2023.3300330 10.1109/TCSVT.2021.3138795 10.1016/j.patcog.2024.110691 10.1007/s11227-024-06332-1 10.1103/PhysRevA.102.032412 10.1103/PhysRevA.92.042303 10.1016/j.cose.2016.11.016 10.1140/epjqt/s40507-025-00391-w 10.1016/j.neucom.2024.127356 10.1016/j.chaos.2024.114958 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2025 The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: The Author(s) 2025 – notice: The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | C6C AAYXX CITATION 8FE 8FG ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS DOA |
| DOI | 10.1007/s44443-025-00274-1 |
| DatabaseName | Springer Nature OA Free Journals CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) ProQuest Central Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central ProQuest Technology Collection ProQuest One ProQuest Central ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database ProQuest Advanced Technologies & Aerospace Collection Proquest Central Premium ProQuest One Academic (New) Publicly Available Content Database (ProQuest) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database Advanced Technologies & Aerospace Collection Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ (Directory of Open Access Journals) url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 2213-1248 1319-1578 |
| EndPage | 20 |
| ExternalDocumentID | oai_doaj_org_article_7b0056ab058648e4bde431344a3d462c 10_1007_s44443_025_00274_1 |
| GroupedDBID | --K 0R~ 4.4 457 5VS AAEDT AAEDW AAIKJ AAJSJ AALRI AASML AAXUO AAYWO ABEEZ ABMAC ACGFS ACULB ADBBV ADEZE ADVLN AEXQZ AFFHD AFGXO AFJKZ AFTJW AGHFR AITUG ALMA_UNASSIGNED_HOLDINGS AMRAJ APXCP BCNDV BGLVJ C6C CCPQU EBS FDB GROUPED_DOAJ IXB K7- KQ8 O-L O9- OK1 PHGZM PHGZT PIMPY PQGLB ROL SES SOJ SSZ XH2 AAQXK AAYXX ABWVN AFKRA AGQPQ ARAPS ASPBG AVWKF AZFZN BENPR CITATION EJD FEDTE FGOYB HCIFZ HVGLF HZ~ IPNFZ M41 R2- RIG 8FE 8FG ABUWG AZQEC DWQXO GNUQQ JQ2 P62 PKEHL PQEST PQQKQ PQUKI PRINS |
| ID | FETCH-LOGICAL-c382t-bccf3fe314ebeb887ab21907e9ef193876645de2959ca21a8428ac540c2c2a2b3 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001592897000002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1319-1578 |
| IngestDate | Mon Nov 10 19:21:33 EST 2025 Sat Nov 29 14:23:43 EST 2025 Sat Nov 29 07:02:00 EST 2025 Thu Oct 30 01:16:03 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 8 |
| Keywords | Quantum information hiding Arbitrary states High-dimensional entangled state Orthogonal projection splitting structure Quantum autoencoder |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c382t-bccf3fe314ebeb887ab21907e9ef193876645de2959ca21a8428ac540c2c2a2b3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| OpenAccessLink | https://doaj.org/article/7b0056ab058648e4bde431344a3d462c |
| PQID | 3260582192 |
| PQPubID | 7424686 |
| PageCount | 20 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_7b0056ab058648e4bde431344a3d462c proquest_journals_3260582192 crossref_primary_10_1007_s44443_025_00274_1 springer_journals_10_1007_s44443_025_00274_1 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-10-01 |
| PublicationDateYYYYMMDD | 2025-10-01 |
| PublicationDate_xml | – month: 10 year: 2025 text: 2025-10-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Cham |
| PublicationPlace_xml | – name: Cham – name: Amsterdam |
| PublicationTitle | Journal of King Saud University. Computer and information sciences |
| PublicationTitleAbbrev | J. King Saud Univ. Comput. Inf. Sci |
| PublicationYear | 2025 |
| Publisher | Springer International Publishing Springer Nature B.V Springer |
| Publisher_xml | – name: Springer International Publishing – name: Springer Nature B.V – name: Springer |
| References | A Cheddad (274_CR7) 2010; 90 274_CR16 CW Helstrom (274_CR19) 1969; 1 DF Locher (274_CR34) 2023; 7 S Gao (274_CR13) 2024; 134 Y Chen (274_CR8) 2025; 7 Q Li (274_CR30) 2024; 71 Y Lin (274_CR31) 2024; 257 274_CR66 274_CR21 274_CR65 274_CR63 274_CR62 274_CR60 274_CR9 274_CR29 274_CR26 C Cao (274_CR6) 2021; 15 274_CR25 Y Dong (274_CR10) 2024; 80 274_CR4 NM Oliveira (274_CR42) 2024; 576 274_CR3 Q Ma (274_CR37) 2025; 12 P Moulin (274_CR40) 2003; 49 A Liu (274_CR32) 2024; 57 S Gao (274_CR14) 2025; 35 S Katzenbeisser (274_CR23) 2016 MA Nielson (274_CR41) 2010 D Bondarenko (274_CR5) 2020; 124 MA Majeed (274_CR39) 2021; 9 FAP Petitcolas (274_CR46) 1999; 87 Z Wang (274_CR59) 2023; 10 274_CR71 274_CR70 C-L Hao (274_CR18) 2025; 12 J-Y Sun (274_CR58) 2023; 617 274_CR38 C-J Huang (274_CR20) 2020; 102 J Emerson (274_CR11) 2003; 302 F Shi (274_CR52) 2021; 104 C Hao (274_CR17) 2024; 23 J Romero (274_CR49) 2017; 2 A Liu (274_CR33) 2024; 57 GW Anderson (274_CR1) 2009 H Ma (274_CR35) 2023; 147 A Paszke (274_CR44) 2019 274_CR43 ML Sheng (274_CR51) 2018; 98 S Gao (274_CR15) 2025; 12 Q Li (274_CR28) 2022; 32 Y Shen (274_CR50) 2023; 612 A Pepper (274_CR45) 2019; 122 H Sun (274_CR57) 2022; 21 S Gao (274_CR12) 2024; 183 274_CR48 274_CR47 X Zeng (274_CR68) 2024; 155 MS Subhedar (274_CR56) 2014; 13 Z Xing (274_CR67) 2024; 19 D Wecker (274_CR64) 2015; 92 S Sim (274_CR54) 2019; 2 X-M Zhang (274_CR69) 2021; 103 H Kandi (274_CR22) 2017; 65 G Wang (274_CR61) 2025; 111 Q-G Ma (274_CR36) 2024; 11 274_CR53 C-M Bai (274_CR2) 2025; 77 M Kavan (274_CR24) 2018; 120 O Kocak (274_CR27) 2024; 237 Part A C Şimşek (274_CR55) 2025; 113 |
| References_xml | – volume: 10 start-page: 2985 issue: 6 year: 2023 ident: 274_CR59 publication-title: IEEE Trans Comput Soc Syst doi: 10.1109/TCSS.2023.3268950 – volume: 237 Part A start-page: 121452 year: 2024 ident: 274_CR27 publication-title: Exp Syst Appl doi: 10.1016/j.eswa.2023.121452 – ident: 274_CR66 doi: 10.1002/qute.202400484 – volume: 21 start-page: 165 issue: 5 year: 2022 ident: 274_CR57 publication-title: Quantum Inf Process doi: 10.1007/s11128-022-03513-w – volume: 15 start-page: 054012 year: 2021 ident: 274_CR6 publication-title: Phys Rev Appl doi: 10.1103/PhysRevApplied.15.054012 – volume-title: Information hiding year: 2016 ident: 274_CR23 – volume: 7 start-page: 942 year: 2023 ident: 274_CR34 publication-title: Quantum doi: 10.22331/q-2023-03-09-942 – ident: 274_CR3 – ident: 274_CR26 – volume: 77 start-page: 101 year: 2025 ident: 274_CR2 publication-title: Commun Theor Phys doi: 10.1088/1572-9494/ad8125 – volume: 12 start-page: 18115 issue: 11 year: 2025 ident: 274_CR15 publication-title: IEEE Internet Things J doi: 10.1109/JIOT.2025.3540097 – volume: 2 start-page: 045001 issue: 4 year: 2017 ident: 274_CR49 publication-title: Quant Sci Technol doi: 10.1088/2058-9565/aa8072 – volume: 23 start-page: 106 issue: 3 year: 2024 ident: 274_CR17 publication-title: Quantum Inf Process doi: 10.1007/s11128-024-04312-1 – volume: 134 start-page: 520 year: 2024 ident: 274_CR13 publication-title: Appl Math Model doi: 10.1016/j.apm.2024.06.016 – volume-title: Quantum computation and quantum information, 10th anniversary year: 2010 ident: 274_CR41 – volume: 11 start-page: 54 year: 2024 ident: 274_CR36 publication-title: EPJ Quant Technol doi: 10.1140/epjqt/s40507-024-00265-7 – volume-title: PyTorch: an imperative style, high-performance deep learning library year: 2019 ident: 274_CR44 – ident: 274_CR48 doi: 10.3389/frqst.2025.1575498 – volume: 7 start-page: 013221 issue: 1 year: 2025 ident: 274_CR8 publication-title: Phys Rev Res doi: 10.1103/PhysRevResearch.7.013221 – volume: 147 start-page: 110659 year: 2023 ident: 274_CR35 publication-title: Automatica doi: 10.1016/j.automatica.2022.110659 – ident: 274_CR63 doi: 10.1017/9781316848142 – ident: 274_CR25 doi: 10.1093/oso/9780198570004.001.0001 – volume: 617 start-page: 128688 year: 2023 ident: 274_CR58 publication-title: Physica A Stat Mech Appl doi: 10.1016/j.physa.2023.128688 – volume: 111 start-page: 042416 issue: 4 year: 2025 ident: 274_CR61 publication-title: Phys Rev A doi: 10.1103/PhysRevA.111.042416 – volume: 90 start-page: 727 issue: 3 year: 2010 ident: 274_CR7 publication-title: Signal Process doi: 10.1016/j.sigpro.2009.08.010 – volume: 87 start-page: 1062 issue: 7 year: 1999 ident: 274_CR46 publication-title: Proc IEEE doi: 10.1109/5.771065 – ident: 274_CR53 doi: 10.1109/SFCS.1994.365700 – ident: 274_CR65 doi: 10.1103/PhysRevA.109.032623 – volume: 9 start-page: 2829 issue: 21 year: 2021 ident: 274_CR39 publication-title: Mathematics doi: 10.3390/math9212829 – volume: 124 start-page: 130502 year: 2020 ident: 274_CR5 publication-title: Phys Rev Lett doi: 10.1103/PhysRevLett.124.130502 – volume: 57 start-page: 1 issue: 2 year: 2024 ident: 274_CR33 publication-title: ACM Comput Surv – volume: 35 start-page: 073105 issue: 7 year: 2025 ident: 274_CR14 publication-title: Chaos doi: 10.1063/5.0270220 – volume: 98 start-page: 062346 year: 2018 ident: 274_CR51 publication-title: Phys Rev A doi: 10.1103/PhysRevA.98.052343 – volume: 113 start-page: 17177 issue: 13 year: 2025 ident: 274_CR55 publication-title: Nonlinear Dyn doi: 10.1007/s11071-025-11001-w – ident: 274_CR62 – volume: 120 start-page: 230501 year: 2018 ident: 274_CR24 publication-title: Phys Rev Lett doi: 10.1103/PhysRevLett.120.230501 – volume: 1 start-page: 231 issue: 2 year: 1969 ident: 274_CR19 publication-title: J Stat Phys doi: 10.1007/BF01007479 – volume: 302 start-page: 2098 issue: 5653 year: 2003 ident: 274_CR11 publication-title: Science doi: 10.1126/science.1090790 – ident: 274_CR70 doi: 10.1038/s41534-022-00599-z – volume: 12 start-page: 3 year: 2025 ident: 274_CR37 publication-title: EPJ Quantum Technol doi: 10.1140/epjqt/s40507-024-00304-3 – ident: 274_CR38 doi: 10.1145/3717823.3718254 – ident: 274_CR21 doi: 10.1103/PhysRevA.105.052414 – volume: 103 start-page: 040403 year: 2021 ident: 274_CR69 publication-title: Phys Rev A doi: 10.1103/PhysRevA.103.L040403 – ident: 274_CR29 doi: 10.1007/s12293-024-00417-3 – volume: 57 start-page: 1 issue: 2 year: 2024 ident: 274_CR32 publication-title: ACM Comput Surv – volume: 612 start-page: 128503 year: 2023 ident: 274_CR50 publication-title: XXPhys A – volume: 49 start-page: 563 issue: 3 year: 2003 ident: 274_CR40 publication-title: IEEE Trans Inf Theory doi: 10.1109/TIT.2002.808134 – ident: 274_CR43 doi: 10.62311/nesx/rb978-81-978755-9-5 – volume: 122 start-page: 060501 year: 2019 ident: 274_CR45 publication-title: Phys Rev Lett doi: 10.1103/PhysRevLett.122.060501 – volume: 2 start-page: 1900070 year: 2019 ident: 274_CR54 publication-title: Adv Quantum Technol doi: 10.1002/qute.201900070 – volume: 13 start-page: 95 year: 2014 ident: 274_CR56 publication-title: Comput Sci Rev doi: 10.1016/j.cosrev.2014.09.001 – volume: 104 start-page: 032418 year: 2021 ident: 274_CR52 publication-title: Phys Rev A doi: 10.1103/PhysRevA.104.032601 – ident: 274_CR9 doi: 10.1038/s41534-025-00709-0 – ident: 274_CR47 doi: 10.1109/INDIN.2005.1560462 – volume: 19 start-page: 5181 year: 2024 ident: 274_CR67 publication-title: IEEE Trans Inf Forensics Secur doi: 10.1109/TIFS.2024.3394768 – ident: 274_CR16 doi: 10.1109/TCSVT.2025.3545868 – ident: 274_CR71 doi: 10.1007/978-3-030-01267-0_40 – volume-title: An introduction to random matrices year: 2009 ident: 274_CR1 doi: 10.1017/CBO9780511801334 – ident: 274_CR4 – ident: 274_CR60 doi: 10.1016/j.jvcir.2025.104462 – volume: 257 start-page: 124891 year: 2024 ident: 274_CR31 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2024.124891 – volume: 71 start-page: 106 issue: 1 year: 2024 ident: 274_CR30 publication-title: IEEE Trans Circuits Syst II Express Briefs doi: 10.1109/TCSII.2023.3300330 – volume: 32 start-page: 5695 issue: 8 year: 2022 ident: 274_CR28 publication-title: IEEE Trans Circuits Syst Video Technol doi: 10.1109/TCSVT.2021.3138795 – volume: 155 start-page: 110691 year: 2024 ident: 274_CR68 publication-title: Pattern Recogn doi: 10.1016/j.patcog.2024.110691 – volume: 80 start-page: 24758 issue: 16 year: 2024 ident: 274_CR10 publication-title: J Supercomput doi: 10.1007/s11227-024-06332-1 – volume: 102 start-page: 032412 year: 2020 ident: 274_CR20 publication-title: Phys Rev A doi: 10.1103/PhysRevA.102.032412 – volume: 92 start-page: 042303 year: 2015 ident: 274_CR64 publication-title: Phys Rev A doi: 10.1103/PhysRevA.92.042303 – volume: 65 start-page: 247 year: 2017 ident: 274_CR22 publication-title: Comput Sec doi: 10.1016/j.cose.2016.11.016 – volume: 12 start-page: 88 year: 2025 ident: 274_CR18 publication-title: EPJ Quant Technol doi: 10.1140/epjqt/s40507-025-00391-w – volume: 576 start-page: 127356 year: 2024 ident: 274_CR42 publication-title: Neurocomputing doi: 10.1016/j.neucom.2024.127356 – volume: 183 start-page: 114958 year: 2024 ident: 274_CR12 publication-title: Chaos Solitons Fract doi: 10.1016/j.chaos.2024.114958 |
| SSID | ssj0001765436 |
| Score | 2.3184564 |
| Snippet | While classical steganography achieves maturity in digital media, hiding arbitrary quantum states (
α
|
0
⟩
+
β
|
1
⟩
) has emerged as an intriguing frontier.... While classical steganography achieves maturity in digital media, hiding arbitrary quantum states (α|0⟩+β|1⟩) has emerged as an intriguing frontier. To address... Abstract While classical steganography achieves maturity in digital media, hiding arbitrary quantum states ( $$\alpha |0\rangle + \beta |1\rangle $$ α | 0 ⟩ +... |
| SourceID | doaj proquest crossref springer |
| SourceType | Open Website Aggregation Database Index Database Publisher |
| StartPage | 247 |
| SubjectTerms | Arbitrary states Centroids Coding Computer Imaging Computer Science Controllability Cryptography Database Management High-dimensional entangled state Logic Machine Learning Methods Multimedia Network design Neural networks Original Paper Orthogonal projection splitting structure Pattern Recognition and Graphics Perturbation Quantum autoencoder Quantum information hiding Qubits (quantum computing) Semantics Software Engineering/Programming and Operating Systems Steganography Systems and Data Security Theory of Computation Vision |
| SummonAdditionalLinks | – databaseName: Computer Science Database dbid: K7- link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB58Hbz4FldXycGbBrdJ2qYnUVEEZVFQ8RbSJJVFdqv78Pc7yaYuCnqxxz5C0m8y-fKYbwAOZS6FSzoO5yamooIzQ2XFBZX-fA7ib2WQa3q6zbtd-fxc3MUFt1E8Vtn4xOCobW38GvkJ98RbYv9ip2_v1GeN8rurMYXGPCwmjCXezm9yOltjyX3kZBZjZULEnMDLb1ymNEzIaPJtPAqy_d-45o_t0TDqXK3-t75rsBL5JjmbGsg6zLnBBqw2uRxI7Nqb8Ho_wX886RM9Gdde3NLi016_OV3u4SN1Rby6MbU-I8BUzYOgkbzowVT3umdI-BJbQpALEz0seyGqn7zHwkP40mgLHq8uHy6uaUzEQA2XbExLYypeOZ4IhLxEt6RLbFgnd4WrkACiQ81Eah0r0sJolmiJcxptkAsaZphmJd-GhUE9cDtAjCi4dYVNM-SdMktLZHSadarMFpJXkrXgqIFDvU31NtSXsnIATyF4KoCnkhace8S-3vRa2eFGPXxRseup3HuaTJcIRyakE6V1yJq4EJpbkTHTgnaDoIodeKRm8LXguLGB2ePfq7T7d2l7sMy89YXjgG1YGA8nbh-WzMe4NxoeBPP9BPD790A priority: 102 providerName: ProQuest |
| Title | Quantum autoencoder implementation of high-dimensional steganographic encoding for arbitrary quantum states |
| URI | https://link.springer.com/article/10.1007/s44443-025-00274-1 https://www.proquest.com/docview/3260582192 https://doaj.org/article/7b0056ab058648e4bde431344a3d462c |
| Volume | 37 |
| WOSCitedRecordID | wos001592897000002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ (Directory of Open Access Journals) customDbUrl: eissn: 2213-1248 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001765436 issn: 1319-1578 databaseCode: DOA dateStart: 20250101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVPQU databaseName: Computer Science Database customDbUrl: eissn: 2213-1248 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001765436 issn: 1319-1578 databaseCode: K7- dateStart: 20250301 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2213-1248 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001765436 issn: 1319-1578 databaseCode: BENPR dateStart: 20250301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2213-1248 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001765436 issn: 1319-1578 databaseCode: PIMPY dateStart: 20250301 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQYWDhjSiUygMbWDS2kzgjRa1AQFUQoDJZju2gCrWFPvj9nJ2ktEiIhQwZ4iS63J3t7-K7zwidiFhwGzQsxCY6I5xRTUTGOBEuPwfsb4Sna3q-jTsd0esl3YWtvlxOWE4PnCvuPHZ-Eqm0EYqIC8tTY2HOY5wrZnhEtRt9AfUsBFP-70rsaiZ9aZGr0gnAL4uKGV83x-Fwy5ch8WEZCZZmJU_ev4Q4fyyS-rmnvYU2CtCIL3Jht9GKHe6gzXJDBlz0z130dj8DRc0GWM2mI8dQaaC1PyhTxJ0N8CjDjqKYGEfrn1NyYLD0qxrm5NV9jf2TIAgGQIvVOO370nz8Ubzc1yBN9tBTu_V4eUWK3RSIZoJOSap1xjLLAg52S2FsUSmMVo3YJjYDFAejYsRDY2kSJlrRQAkITJQGQKeppoqmbB9VhqOhPUBY84QZm5gwAvAoojAFWKZoI4tMIlgmaBWdltqU7zlphpzTI3vdS9C99LqXQRU1ncLndzrCa38B3EAWbiD_coMqqpXmkkUvnEjmgjUBXwkSnZUm_G7-XaTD_xDpCK1T52I-86-GKtPxzB6jNf057U_GdbTabHW6D3Xvt3C-iQlc617fdV--APqd7rc |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9wwEB7BgkQvpVCqLt22PsCptdjYTuIcqqovxIpltUgUwcl1bAetEBv21ap_qr-xYydhRaX2xqE55mE59jfjz4_5BmBPplK4qOtwbmIKKjgzVBZcUOnP52D_Wxnkms776WAgLy6y4Qr8amJh_LHKxicGR21L49fID7gn3hLti72_nVCfNcrvrjYpNCpYHLufP3DKNnvX-4z9u8_Y4ZezT0e0zipADZdsTnNjCl44Hgmsf442pnMstZu6zBXIZtA7JCK2jmVxZjSLtESCrg0SG8MM0yznWO4qrAkEu2zB2rB3MrxcruqkPlYzqaNzQoyewMtvlcY0TAFpdG8EDIkC7rHbPzZkwzh3uPm_tdATeFwzavKhMoEtWHHjbdhsslWQ2nk9hevTBaJocUP0Yl56-U6LT0c3zfl5D1BSFsTrN1Prcx5UeiUEzeBKjytl75Eh4UtsOYJsn-hpPgq6BWRSFx4CtGY78PVBfvkZtMbl2D0HYkTGrctsnCCzlkmcI2fVrFskNpO8kKwNb5ruV7eVooi6044OYFEIFhXAoqI2fPQIuXvTq4GHG-X0StXORaXelyY6x-5PhHQitw55IRdCcysSZtrQaRCjahc1U0u4tOFtg7nl479Xafffpb2GjaOzk77q9wbHL-AR88gPhx870JpPF-4lrJvv89Fs-qo2HgLfHhqNvwG7Rlbd |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quantum+autoencoder+implementation+of+high-dimensional+steganographic+encoding+for+arbitrary+quantum+states&rft.jtitle=Journal+of+King+Saud+University.+Computer+and+information+sciences&rft.au=Hao%2C+Chaolong&rft.au=Ma%2C+Quangong&rft.au=Chen%2C+Yaqi&rft.au=Zhang%2C+Hao&rft.date=2025-10-01&rft.pub=Springer+International+Publishing&rft.issn=1319-1578&rft.eissn=2213-1248&rft.volume=37&rft.issue=8&rft_id=info:doi/10.1007%2Fs44443-025-00274-1&rft.externalDocID=10_1007_s44443_025_00274_1 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1319-1578&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1319-1578&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1319-1578&client=summon |