Quantum autoencoder implementation of high-dimensional steganographic encoding for arbitrary quantum states

While classical steganography achieves maturity in digital media, hiding arbitrary quantum states ( α | 0 ⟩ + β | 1 ⟩ ) has emerged as an intriguing frontier. To address this problem, we establish a formal model of controllable random perturbation unitaries for single/multi-stego state tasks. We pro...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Journal of King Saud University. Computer and information sciences Ročník 37; číslo 8; s. 247 - 20
Hlavní autori: Hao, Chaolong, Ma, Quangong, Chen, Yaqi, Zhang, Hao, Qu, Dan
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Cham Springer International Publishing 01.10.2025
Springer Nature B.V
Springer
Predmet:
ISSN:1319-1578, 2213-1248, 1319-1578
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract While classical steganography achieves maturity in digital media, hiding arbitrary quantum states ( α | 0 ⟩ + β | 1 ⟩ ) has emerged as an intriguing frontier. To address this problem, we establish a formal model of controllable random perturbation unitaries for single/multi-stego state tasks. We progressively explore Quantum Autoencoder (QAE) structures through three stages: starting from single-state scenarios without perturbation, advancing to perturbed conditions, and finally extending to multi-state tasks. We design two perturbation-based encoding schemes using Quantum Autoencoders (QAE): the simple scheme (QAE-DD) leverages the inverse application of encoding–decoding modules, while the improved scheme (QAE-OSP) incorporates orthogonal projection routing and parallel subnetworks to restructure the hidden-layer architecture. In 3-qubit entangled-state simulations with data scales n ≤ 10 and perturbation strengths ε ∈ [ 0 , 1 ] , QAE-DD performs well under low perturbation, whereas QAE-OSP maintains higher fidelity between the carrier and secret states under high perturbation conditions (e.g., n = 5 , ε = 0.6 ), with fidelity values F ρ stego , ρ ~ stego = 0.91 / F ρ S , ρ ~ S = 0.84 providing a reference for network design. Finally, we extend the single-carrier (“ 1 + 1 ”) task to the multi-carrier (“ 1 + N ”) scenario by constructing a “centroid” state training set based on the principal component of carrier-state groups and validating the applicability of both models. Under the conditions n = 5 and ε = 0.6 , the QAE-OSP model successfully improves the average fidelity between multiple secret states and carrier states from 0.68 to 0.90, demonstrating its capability to aggregate multiple carriers to enhance overall concealment. Although the present study covers only small-scale data and networks, it lays the groundwork for a neural network framework that covertly embeds arbitrary quantum states into high-dimensional quantum states, providing a basis for future exploration.
AbstractList Abstract While classical steganography achieves maturity in digital media, hiding arbitrary quantum states ( $$\alpha |0\rangle + \beta |1\rangle $$ α | 0 ⟩ + β | 1 ⟩ ) has emerged as an intriguing frontier. To address this problem, we establish a formal model of controllable random perturbation unitaries for single/multi-stego state tasks. We progressively explore Quantum Autoencoder (QAE) structures through three stages: starting from single-state scenarios without perturbation, advancing to perturbed conditions, and finally extending to multi-state tasks. We design two perturbation-based encoding schemes using Quantum Autoencoders (QAE): the simple scheme (QAE-DD) leverages the inverse application of encoding–decoding modules, while the improved scheme (QAE-OSP) incorporates orthogonal projection routing and parallel subnetworks to restructure the hidden-layer architecture. In 3-qubit entangled-state simulations with data scales $$n \le 10$$ n ≤ 10 and perturbation strengths $$\varepsilon \in [0,1]$$ ε ∈ [ 0 , 1 ] , QAE-DD performs well under low perturbation, whereas QAE-OSP maintains higher fidelity between the carrier and secret states under high perturbation conditions (e.g., $$n = 5, \varepsilon = 0.6$$ n = 5 , ε = 0.6 ), with fidelity values $$F\left( \rho _{\text {stego}}, \tilde{\rho }_{\text {stego}} \right) =0.91$$ F ρ stego , ρ ~ stego = 0.91 / $$F\left( \rho _{S}, \tilde{\rho }_{S} \right) =0.84$$ F ρ S , ρ ~ S = 0.84 providing a reference for network design. Finally, we extend the single-carrier (“ $$1+1$$ 1 + 1 ”) task to the multi-carrier (“ $$1+N$$ 1 + N ”) scenario by constructing a “centroid” state training set based on the principal component of carrier-state groups and validating the applicability of both models. Under the conditions $$n = 5$$ n = 5 and $$\varepsilon = 0.6$$ ε = 0.6 , the QAE-OSP model successfully improves the average fidelity between multiple secret states and carrier states from 0.68 to 0.90, demonstrating its capability to aggregate multiple carriers to enhance overall concealment. Although the present study covers only small-scale data and networks, it lays the groundwork for a neural network framework that covertly embeds arbitrary quantum states into high-dimensional quantum states, providing a basis for future exploration.
While classical steganography achieves maturity in digital media, hiding arbitrary quantum states (α|0⟩+β|1⟩) has emerged as an intriguing frontier. To address this problem, we establish a formal model of controllable random perturbation unitaries for single/multi-stego state tasks. We progressively explore Quantum Autoencoder (QAE) structures through three stages: starting from single-state scenarios without perturbation, advancing to perturbed conditions, and finally extending to multi-state tasks. We design two perturbation-based encoding schemes using Quantum Autoencoders (QAE): the simple scheme (QAE-DD) leverages the inverse application of encoding–decoding modules, while the improved scheme (QAE-OSP) incorporates orthogonal projection routing and parallel subnetworks to restructure the hidden-layer architecture. In 3-qubit entangled-state simulations with data scales n≤10 and perturbation strengths ε∈[0,1], QAE-DD performs well under low perturbation, whereas QAE-OSP maintains higher fidelity between the carrier and secret states under high perturbation conditions (e.g., n=5,ε=0.6), with fidelity values Fρstego,ρ~stego=0.91 / FρS,ρ~S=0.84 providing a reference for network design. Finally, we extend the single-carrier (“1+1”) task to the multi-carrier (“1+N”) scenario by constructing a “centroid” state training set based on the principal component of carrier-state groups and validating the applicability of both models. Under the conditions n=5 and ε=0.6, the QAE-OSP model successfully improves the average fidelity between multiple secret states and carrier states from 0.68 to 0.90, demonstrating its capability to aggregate multiple carriers to enhance overall concealment. Although the present study covers only small-scale data and networks, it lays the groundwork for a neural network framework that covertly embeds arbitrary quantum states into high-dimensional quantum states, providing a basis for future exploration.
While classical steganography achieves maturity in digital media, hiding arbitrary quantum states ( α | 0 ⟩ + β | 1 ⟩ ) has emerged as an intriguing frontier. To address this problem, we establish a formal model of controllable random perturbation unitaries for single/multi-stego state tasks. We progressively explore Quantum Autoencoder (QAE) structures through three stages: starting from single-state scenarios without perturbation, advancing to perturbed conditions, and finally extending to multi-state tasks. We design two perturbation-based encoding schemes using Quantum Autoencoders (QAE): the simple scheme (QAE-DD) leverages the inverse application of encoding–decoding modules, while the improved scheme (QAE-OSP) incorporates orthogonal projection routing and parallel subnetworks to restructure the hidden-layer architecture. In 3-qubit entangled-state simulations with data scales n ≤ 10 and perturbation strengths ε ∈ [ 0 , 1 ] , QAE-DD performs well under low perturbation, whereas QAE-OSP maintains higher fidelity between the carrier and secret states under high perturbation conditions (e.g., n = 5 , ε = 0.6 ), with fidelity values F ρ stego , ρ ~ stego = 0.91 / F ρ S , ρ ~ S = 0.84 providing a reference for network design. Finally, we extend the single-carrier (“ 1 + 1 ”) task to the multi-carrier (“ 1 + N ”) scenario by constructing a “centroid” state training set based on the principal component of carrier-state groups and validating the applicability of both models. Under the conditions n = 5 and ε = 0.6 , the QAE-OSP model successfully improves the average fidelity between multiple secret states and carrier states from 0.68 to 0.90, demonstrating its capability to aggregate multiple carriers to enhance overall concealment. Although the present study covers only small-scale data and networks, it lays the groundwork for a neural network framework that covertly embeds arbitrary quantum states into high-dimensional quantum states, providing a basis for future exploration.
ArticleNumber 247
Author Chen, Yaqi
Qu, Dan
Ma, Quangong
Zhang, Hao
Hao, Chaolong
Author_xml – sequence: 1
  givenname: Chaolong
  surname: Hao
  fullname: Hao, Chaolong
  organization: School of Information Systems Engineering, Information Engineering University
– sequence: 2
  givenname: Quangong
  surname: Ma
  fullname: Ma, Quangong
  email: quangongma@163.com
  organization: School of Information Systems Engineering, Information Engineering University
– sequence: 3
  givenname: Yaqi
  surname: Chen
  fullname: Chen, Yaqi
  organization: School of Information Systems Engineering, Information Engineering University
– sequence: 4
  givenname: Hao
  surname: Zhang
  fullname: Zhang, Hao
  organization: School of Information Systems Engineering, Information Engineering University
– sequence: 5
  givenname: Dan
  surname: Qu
  fullname: Qu, Dan
  email: qudan_xd@163.com
  organization: School of Information Systems Engineering, Information Engineering University
BookMark eNp9kU-LFDEQxYOs4LjuF_AU8BzNv-5OH2VRd2FBFtZzqKSrezLOJLNJ-uC3N04verMugcd7vyry3pKrmCIS8l7wj4Lz4VPRbRTjsmOcy0Ez8YrspBSKCanNFdkJJUYmusG8ITelHDjnYug7rfod-fm4QqzricJaE0afJsw0nM5HPGGsUEOKNM10H5Y9m0LTSlPgSEvFBWJaMpz3wdNLMsSFzilTyC7UDPkXfX6Bl0bC8o68nuFY8OblvSY_vn55ur1jD9-_3d9-fmBeGVmZ835WMyqh0aEzZgAnxcgHHHEWozJD3-tuQjl2owcpwGhpwHeae-klSKeuyf3GnRIc7DmHU7vFJgj2IqS8WMg1-CPawXHe9eB4Z3ptULsJtRJKa1CT7qVvrA8b65zT84ql2kNac_uBYpXsW6ydJptLbi6fUykZ579bBbd_OrJbR7Z1ZC8dWdFCaguVZo4L5n_o_6R-A81Ol6w
Cites_doi 10.1109/TCSS.2023.3268950
10.1016/j.eswa.2023.121452
10.1002/qute.202400484
10.1007/s11128-022-03513-w
10.1103/PhysRevApplied.15.054012
10.22331/q-2023-03-09-942
10.1088/1572-9494/ad8125
10.1109/JIOT.2025.3540097
10.1088/2058-9565/aa8072
10.1007/s11128-024-04312-1
10.1016/j.apm.2024.06.016
10.1140/epjqt/s40507-024-00265-7
10.3389/frqst.2025.1575498
10.1103/PhysRevResearch.7.013221
10.1016/j.automatica.2022.110659
10.1017/9781316848142
10.1093/oso/9780198570004.001.0001
10.1016/j.physa.2023.128688
10.1103/PhysRevA.111.042416
10.1016/j.sigpro.2009.08.010
10.1109/5.771065
10.1109/SFCS.1994.365700
10.1103/PhysRevA.109.032623
10.3390/math9212829
10.1103/PhysRevLett.124.130502
10.1063/5.0270220
10.1103/PhysRevA.98.052343
10.1007/s11071-025-11001-w
10.1103/PhysRevLett.120.230501
10.1007/BF01007479
10.1126/science.1090790
10.1038/s41534-022-00599-z
10.1140/epjqt/s40507-024-00304-3
10.1145/3717823.3718254
10.1103/PhysRevA.105.052414
10.1103/PhysRevA.103.L040403
10.1007/s12293-024-00417-3
10.1109/TIT.2002.808134
10.62311/nesx/rb978-81-978755-9-5
10.1103/PhysRevLett.122.060501
10.1002/qute.201900070
10.1016/j.cosrev.2014.09.001
10.1103/PhysRevA.104.032601
10.1038/s41534-025-00709-0
10.1109/INDIN.2005.1560462
10.1109/TIFS.2024.3394768
10.1109/TCSVT.2025.3545868
10.1007/978-3-030-01267-0_40
10.1017/CBO9780511801334
10.1016/j.jvcir.2025.104462
10.1016/j.eswa.2024.124891
10.1109/TCSII.2023.3300330
10.1109/TCSVT.2021.3138795
10.1016/j.patcog.2024.110691
10.1007/s11227-024-06332-1
10.1103/PhysRevA.102.032412
10.1103/PhysRevA.92.042303
10.1016/j.cose.2016.11.016
10.1140/epjqt/s40507-025-00391-w
10.1016/j.neucom.2024.127356
10.1016/j.chaos.2024.114958
ContentType Journal Article
Copyright The Author(s) 2025
The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2025
– notice: The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
8FE
8FG
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
DOA
DOI 10.1007/s44443-025-00274-1
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni)
ProQuest Central
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
ProQuest Technology Collection
ProQuest One
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Advanced Technologies & Aerospace Collection
Proquest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database (ProQuest)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Advanced Technologies & Aerospace Collection
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
Publicly Available Content Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ (Directory of Open Access Journals)
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2213-1248
1319-1578
EndPage 20
ExternalDocumentID oai_doaj_org_article_7b0056ab058648e4bde431344a3d462c
10_1007_s44443_025_00274_1
GroupedDBID --K
0R~
4.4
457
5VS
AAEDT
AAEDW
AAIKJ
AAJSJ
AALRI
AASML
AAXUO
AAYWO
ABEEZ
ABMAC
ACGFS
ACULB
ADBBV
ADEZE
ADVLN
AEXQZ
AFFHD
AFGXO
AFJKZ
AFTJW
AGHFR
AITUG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
APXCP
BCNDV
BGLVJ
C6C
CCPQU
EBS
FDB
GROUPED_DOAJ
IXB
K7-
KQ8
O-L
O9-
OK1
PHGZM
PHGZT
PIMPY
PQGLB
ROL
SES
SOJ
SSZ
XH2
AAQXK
AAYXX
ABWVN
AFKRA
AGQPQ
ARAPS
ASPBG
AVWKF
AZFZN
BENPR
CITATION
EJD
FEDTE
FGOYB
HCIFZ
HVGLF
HZ~
IPNFZ
M41
R2-
RIG
8FE
8FG
ABUWG
AZQEC
DWQXO
GNUQQ
JQ2
P62
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c382t-bccf3fe314ebeb887ab21907e9ef193876645de2959ca21a8428ac540c2c2a2b3
IEDL.DBID DOA
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001592897000002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1319-1578
IngestDate Mon Nov 10 19:21:33 EST 2025
Sat Nov 29 14:23:43 EST 2025
Sat Nov 29 07:02:00 EST 2025
Thu Oct 30 01:16:03 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords Quantum information hiding
Arbitrary states
High-dimensional entangled state
Orthogonal projection splitting structure
Quantum autoencoder
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c382t-bccf3fe314ebeb887ab21907e9ef193876645de2959ca21a8428ac540c2c2a2b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://doaj.org/article/7b0056ab058648e4bde431344a3d462c
PQID 3260582192
PQPubID 7424686
PageCount 20
ParticipantIDs doaj_primary_oai_doaj_org_article_7b0056ab058648e4bde431344a3d462c
proquest_journals_3260582192
crossref_primary_10_1007_s44443_025_00274_1
springer_journals_10_1007_s44443_025_00274_1
PublicationCentury 2000
PublicationDate 2025-10-01
PublicationDateYYYYMMDD 2025-10-01
PublicationDate_xml – month: 10
  year: 2025
  text: 2025-10-01
  day: 01
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: Amsterdam
PublicationTitle Journal of King Saud University. Computer and information sciences
PublicationTitleAbbrev J. King Saud Univ. Comput. Inf. Sci
PublicationYear 2025
Publisher Springer International Publishing
Springer Nature B.V
Springer
Publisher_xml – name: Springer International Publishing
– name: Springer Nature B.V
– name: Springer
References A Cheddad (274_CR7) 2010; 90
274_CR16
CW Helstrom (274_CR19) 1969; 1
DF Locher (274_CR34) 2023; 7
S Gao (274_CR13) 2024; 134
Y Chen (274_CR8) 2025; 7
Q Li (274_CR30) 2024; 71
Y Lin (274_CR31) 2024; 257
274_CR66
274_CR21
274_CR65
274_CR63
274_CR62
274_CR60
274_CR9
274_CR29
274_CR26
C Cao (274_CR6) 2021; 15
274_CR25
Y Dong (274_CR10) 2024; 80
274_CR4
NM Oliveira (274_CR42) 2024; 576
274_CR3
Q Ma (274_CR37) 2025; 12
P Moulin (274_CR40) 2003; 49
A Liu (274_CR32) 2024; 57
S Gao (274_CR14) 2025; 35
S Katzenbeisser (274_CR23) 2016
MA Nielson (274_CR41) 2010
D Bondarenko (274_CR5) 2020; 124
MA Majeed (274_CR39) 2021; 9
FAP Petitcolas (274_CR46) 1999; 87
Z Wang (274_CR59) 2023; 10
274_CR71
274_CR70
C-L Hao (274_CR18) 2025; 12
J-Y Sun (274_CR58) 2023; 617
274_CR38
C-J Huang (274_CR20) 2020; 102
J Emerson (274_CR11) 2003; 302
F Shi (274_CR52) 2021; 104
C Hao (274_CR17) 2024; 23
J Romero (274_CR49) 2017; 2
A Liu (274_CR33) 2024; 57
GW Anderson (274_CR1) 2009
H Ma (274_CR35) 2023; 147
A Paszke (274_CR44) 2019
274_CR43
ML Sheng (274_CR51) 2018; 98
S Gao (274_CR15) 2025; 12
Q Li (274_CR28) 2022; 32
Y Shen (274_CR50) 2023; 612
A Pepper (274_CR45) 2019; 122
H Sun (274_CR57) 2022; 21
S Gao (274_CR12) 2024; 183
274_CR48
274_CR47
X Zeng (274_CR68) 2024; 155
MS Subhedar (274_CR56) 2014; 13
Z Xing (274_CR67) 2024; 19
D Wecker (274_CR64) 2015; 92
S Sim (274_CR54) 2019; 2
X-M Zhang (274_CR69) 2021; 103
H Kandi (274_CR22) 2017; 65
G Wang (274_CR61) 2025; 111
Q-G Ma (274_CR36) 2024; 11
274_CR53
C-M Bai (274_CR2) 2025; 77
M Kavan (274_CR24) 2018; 120
O Kocak (274_CR27) 2024; 237 Part A
C Şimşek (274_CR55) 2025; 113
References_xml – volume: 10
  start-page: 2985
  issue: 6
  year: 2023
  ident: 274_CR59
  publication-title: IEEE Trans Comput Soc Syst
  doi: 10.1109/TCSS.2023.3268950
– volume: 237 Part A
  start-page: 121452
  year: 2024
  ident: 274_CR27
  publication-title: Exp Syst Appl
  doi: 10.1016/j.eswa.2023.121452
– ident: 274_CR66
  doi: 10.1002/qute.202400484
– volume: 21
  start-page: 165
  issue: 5
  year: 2022
  ident: 274_CR57
  publication-title: Quantum Inf Process
  doi: 10.1007/s11128-022-03513-w
– volume: 15
  start-page: 054012
  year: 2021
  ident: 274_CR6
  publication-title: Phys Rev Appl
  doi: 10.1103/PhysRevApplied.15.054012
– volume-title: Information hiding
  year: 2016
  ident: 274_CR23
– volume: 7
  start-page: 942
  year: 2023
  ident: 274_CR34
  publication-title: Quantum
  doi: 10.22331/q-2023-03-09-942
– ident: 274_CR3
– ident: 274_CR26
– volume: 77
  start-page: 101
  year: 2025
  ident: 274_CR2
  publication-title: Commun Theor Phys
  doi: 10.1088/1572-9494/ad8125
– volume: 12
  start-page: 18115
  issue: 11
  year: 2025
  ident: 274_CR15
  publication-title: IEEE Internet Things J
  doi: 10.1109/JIOT.2025.3540097
– volume: 2
  start-page: 045001
  issue: 4
  year: 2017
  ident: 274_CR49
  publication-title: Quant Sci Technol
  doi: 10.1088/2058-9565/aa8072
– volume: 23
  start-page: 106
  issue: 3
  year: 2024
  ident: 274_CR17
  publication-title: Quantum Inf Process
  doi: 10.1007/s11128-024-04312-1
– volume: 134
  start-page: 520
  year: 2024
  ident: 274_CR13
  publication-title: Appl Math Model
  doi: 10.1016/j.apm.2024.06.016
– volume-title: Quantum computation and quantum information, 10th anniversary
  year: 2010
  ident: 274_CR41
– volume: 11
  start-page: 54
  year: 2024
  ident: 274_CR36
  publication-title: EPJ Quant Technol
  doi: 10.1140/epjqt/s40507-024-00265-7
– volume-title: PyTorch: an imperative style, high-performance deep learning library
  year: 2019
  ident: 274_CR44
– ident: 274_CR48
  doi: 10.3389/frqst.2025.1575498
– volume: 7
  start-page: 013221
  issue: 1
  year: 2025
  ident: 274_CR8
  publication-title: Phys Rev Res
  doi: 10.1103/PhysRevResearch.7.013221
– volume: 147
  start-page: 110659
  year: 2023
  ident: 274_CR35
  publication-title: Automatica
  doi: 10.1016/j.automatica.2022.110659
– ident: 274_CR63
  doi: 10.1017/9781316848142
– ident: 274_CR25
  doi: 10.1093/oso/9780198570004.001.0001
– volume: 617
  start-page: 128688
  year: 2023
  ident: 274_CR58
  publication-title: Physica A Stat Mech Appl
  doi: 10.1016/j.physa.2023.128688
– volume: 111
  start-page: 042416
  issue: 4
  year: 2025
  ident: 274_CR61
  publication-title: Phys Rev A
  doi: 10.1103/PhysRevA.111.042416
– volume: 90
  start-page: 727
  issue: 3
  year: 2010
  ident: 274_CR7
  publication-title: Signal Process
  doi: 10.1016/j.sigpro.2009.08.010
– volume: 87
  start-page: 1062
  issue: 7
  year: 1999
  ident: 274_CR46
  publication-title: Proc IEEE
  doi: 10.1109/5.771065
– ident: 274_CR53
  doi: 10.1109/SFCS.1994.365700
– ident: 274_CR65
  doi: 10.1103/PhysRevA.109.032623
– volume: 9
  start-page: 2829
  issue: 21
  year: 2021
  ident: 274_CR39
  publication-title: Mathematics
  doi: 10.3390/math9212829
– volume: 124
  start-page: 130502
  year: 2020
  ident: 274_CR5
  publication-title: Phys Rev Lett
  doi: 10.1103/PhysRevLett.124.130502
– volume: 57
  start-page: 1
  issue: 2
  year: 2024
  ident: 274_CR33
  publication-title: ACM Comput Surv
– volume: 35
  start-page: 073105
  issue: 7
  year: 2025
  ident: 274_CR14
  publication-title: Chaos
  doi: 10.1063/5.0270220
– volume: 98
  start-page: 062346
  year: 2018
  ident: 274_CR51
  publication-title: Phys Rev A
  doi: 10.1103/PhysRevA.98.052343
– volume: 113
  start-page: 17177
  issue: 13
  year: 2025
  ident: 274_CR55
  publication-title: Nonlinear Dyn
  doi: 10.1007/s11071-025-11001-w
– ident: 274_CR62
– volume: 120
  start-page: 230501
  year: 2018
  ident: 274_CR24
  publication-title: Phys Rev Lett
  doi: 10.1103/PhysRevLett.120.230501
– volume: 1
  start-page: 231
  issue: 2
  year: 1969
  ident: 274_CR19
  publication-title: J Stat Phys
  doi: 10.1007/BF01007479
– volume: 302
  start-page: 2098
  issue: 5653
  year: 2003
  ident: 274_CR11
  publication-title: Science
  doi: 10.1126/science.1090790
– ident: 274_CR70
  doi: 10.1038/s41534-022-00599-z
– volume: 12
  start-page: 3
  year: 2025
  ident: 274_CR37
  publication-title: EPJ Quantum Technol
  doi: 10.1140/epjqt/s40507-024-00304-3
– ident: 274_CR38
  doi: 10.1145/3717823.3718254
– ident: 274_CR21
  doi: 10.1103/PhysRevA.105.052414
– volume: 103
  start-page: 040403
  year: 2021
  ident: 274_CR69
  publication-title: Phys Rev A
  doi: 10.1103/PhysRevA.103.L040403
– ident: 274_CR29
  doi: 10.1007/s12293-024-00417-3
– volume: 57
  start-page: 1
  issue: 2
  year: 2024
  ident: 274_CR32
  publication-title: ACM Comput Surv
– volume: 612
  start-page: 128503
  year: 2023
  ident: 274_CR50
  publication-title: XXPhys A
– volume: 49
  start-page: 563
  issue: 3
  year: 2003
  ident: 274_CR40
  publication-title: IEEE Trans Inf Theory
  doi: 10.1109/TIT.2002.808134
– ident: 274_CR43
  doi: 10.62311/nesx/rb978-81-978755-9-5
– volume: 122
  start-page: 060501
  year: 2019
  ident: 274_CR45
  publication-title: Phys Rev Lett
  doi: 10.1103/PhysRevLett.122.060501
– volume: 2
  start-page: 1900070
  year: 2019
  ident: 274_CR54
  publication-title: Adv Quantum Technol
  doi: 10.1002/qute.201900070
– volume: 13
  start-page: 95
  year: 2014
  ident: 274_CR56
  publication-title: Comput Sci Rev
  doi: 10.1016/j.cosrev.2014.09.001
– volume: 104
  start-page: 032418
  year: 2021
  ident: 274_CR52
  publication-title: Phys Rev A
  doi: 10.1103/PhysRevA.104.032601
– ident: 274_CR9
  doi: 10.1038/s41534-025-00709-0
– ident: 274_CR47
  doi: 10.1109/INDIN.2005.1560462
– volume: 19
  start-page: 5181
  year: 2024
  ident: 274_CR67
  publication-title: IEEE Trans Inf Forensics Secur
  doi: 10.1109/TIFS.2024.3394768
– ident: 274_CR16
  doi: 10.1109/TCSVT.2025.3545868
– ident: 274_CR71
  doi: 10.1007/978-3-030-01267-0_40
– volume-title: An introduction to random matrices
  year: 2009
  ident: 274_CR1
  doi: 10.1017/CBO9780511801334
– ident: 274_CR4
– ident: 274_CR60
  doi: 10.1016/j.jvcir.2025.104462
– volume: 257
  start-page: 124891
  year: 2024
  ident: 274_CR31
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2024.124891
– volume: 71
  start-page: 106
  issue: 1
  year: 2024
  ident: 274_CR30
  publication-title: IEEE Trans Circuits Syst II Express Briefs
  doi: 10.1109/TCSII.2023.3300330
– volume: 32
  start-page: 5695
  issue: 8
  year: 2022
  ident: 274_CR28
  publication-title: IEEE Trans Circuits Syst Video Technol
  doi: 10.1109/TCSVT.2021.3138795
– volume: 155
  start-page: 110691
  year: 2024
  ident: 274_CR68
  publication-title: Pattern Recogn
  doi: 10.1016/j.patcog.2024.110691
– volume: 80
  start-page: 24758
  issue: 16
  year: 2024
  ident: 274_CR10
  publication-title: J Supercomput
  doi: 10.1007/s11227-024-06332-1
– volume: 102
  start-page: 032412
  year: 2020
  ident: 274_CR20
  publication-title: Phys Rev A
  doi: 10.1103/PhysRevA.102.032412
– volume: 92
  start-page: 042303
  year: 2015
  ident: 274_CR64
  publication-title: Phys Rev A
  doi: 10.1103/PhysRevA.92.042303
– volume: 65
  start-page: 247
  year: 2017
  ident: 274_CR22
  publication-title: Comput Sec
  doi: 10.1016/j.cose.2016.11.016
– volume: 12
  start-page: 88
  year: 2025
  ident: 274_CR18
  publication-title: EPJ Quant Technol
  doi: 10.1140/epjqt/s40507-025-00391-w
– volume: 576
  start-page: 127356
  year: 2024
  ident: 274_CR42
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2024.127356
– volume: 183
  start-page: 114958
  year: 2024
  ident: 274_CR12
  publication-title: Chaos Solitons Fract
  doi: 10.1016/j.chaos.2024.114958
SSID ssj0001765436
Score 2.3184564
Snippet While classical steganography achieves maturity in digital media, hiding arbitrary quantum states ( α | 0 ⟩ + β | 1 ⟩ ) has emerged as an intriguing frontier....
While classical steganography achieves maturity in digital media, hiding arbitrary quantum states (α|0⟩+β|1⟩) has emerged as an intriguing frontier. To address...
Abstract While classical steganography achieves maturity in digital media, hiding arbitrary quantum states ( $$\alpha |0\rangle + \beta |1\rangle $$ α | 0 ⟩ +...
SourceID doaj
proquest
crossref
springer
SourceType Open Website
Aggregation Database
Index Database
Publisher
StartPage 247
SubjectTerms Arbitrary states
Centroids
Coding
Computer Imaging
Computer Science
Controllability
Cryptography
Database Management
High-dimensional entangled state
Logic
Machine Learning
Methods
Multimedia
Network design
Neural networks
Original Paper
Orthogonal projection splitting structure
Pattern Recognition and Graphics
Perturbation
Quantum autoencoder
Quantum information hiding
Qubits (quantum computing)
Semantics
Software Engineering/Programming and Operating Systems
Steganography
Systems and Data Security
Theory of Computation
Vision
SummonAdditionalLinks – databaseName: Computer Science Database
  dbid: K7-
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB58Hbz4FldXycGbBrdJ2qYnUVEEZVFQ8RbSJJVFdqv78Pc7yaYuCnqxxz5C0m8y-fKYbwAOZS6FSzoO5yamooIzQ2XFBZX-fA7ib2WQa3q6zbtd-fxc3MUFt1E8Vtn4xOCobW38GvkJ98RbYv9ip2_v1GeN8rurMYXGPCwmjCXezm9yOltjyX3kZBZjZULEnMDLb1ymNEzIaPJtPAqy_d-45o_t0TDqXK3-t75rsBL5JjmbGsg6zLnBBqw2uRxI7Nqb8Ho_wX886RM9Gdde3NLi016_OV3u4SN1Rby6MbU-I8BUzYOgkbzowVT3umdI-BJbQpALEz0seyGqn7zHwkP40mgLHq8uHy6uaUzEQA2XbExLYypeOZ4IhLxEt6RLbFgnd4WrkACiQ81Eah0r0sJolmiJcxptkAsaZphmJd-GhUE9cDtAjCi4dYVNM-SdMktLZHSadarMFpJXkrXgqIFDvU31NtSXsnIATyF4KoCnkhace8S-3vRa2eFGPXxRseup3HuaTJcIRyakE6V1yJq4EJpbkTHTgnaDoIodeKRm8LXguLGB2ePfq7T7d2l7sMy89YXjgG1YGA8nbh-WzMe4NxoeBPP9BPD790A
  priority: 102
  providerName: ProQuest
Title Quantum autoencoder implementation of high-dimensional steganographic encoding for arbitrary quantum states
URI https://link.springer.com/article/10.1007/s44443-025-00274-1
https://www.proquest.com/docview/3260582192
https://doaj.org/article/7b0056ab058648e4bde431344a3d462c
Volume 37
WOSCitedRecordID wos001592897000002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ (Directory of Open Access Journals)
  customDbUrl:
  eissn: 2213-1248
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001765436
  issn: 1319-1578
  databaseCode: DOA
  dateStart: 20250101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 2213-1248
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001765436
  issn: 1319-1578
  databaseCode: K7-
  dateStart: 20250301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2213-1248
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001765436
  issn: 1319-1578
  databaseCode: BENPR
  dateStart: 20250301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2213-1248
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001765436
  issn: 1319-1578
  databaseCode: PIMPY
  dateStart: 20250301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQYWDhjSiUygMbWDS2kzgjRa1AQFUQoDJZju2gCrWFPvj9nJ2ktEiIhQwZ4iS63J3t7-K7zwidiFhwGzQsxCY6I5xRTUTGOBEuPwfsb4Sna3q-jTsd0esl3YWtvlxOWE4PnCvuPHZ-Eqm0EYqIC8tTY2HOY5wrZnhEtRt9AfUsBFP-70rsaiZ9aZGr0gnAL4uKGV83x-Fwy5ch8WEZCZZmJU_ev4Q4fyyS-rmnvYU2CtCIL3Jht9GKHe6gzXJDBlz0z130dj8DRc0GWM2mI8dQaaC1PyhTxJ0N8CjDjqKYGEfrn1NyYLD0qxrm5NV9jf2TIAgGQIvVOO370nz8Ubzc1yBN9tBTu_V4eUWK3RSIZoJOSap1xjLLAg52S2FsUSmMVo3YJjYDFAejYsRDY2kSJlrRQAkITJQGQKeppoqmbB9VhqOhPUBY84QZm5gwAvAoojAFWKZoI4tMIlgmaBWdltqU7zlphpzTI3vdS9C99LqXQRU1ncLndzrCa38B3EAWbiD_coMqqpXmkkUvnEjmgjUBXwkSnZUm_G7-XaTD_xDpCK1T52I-86-GKtPxzB6jNf057U_GdbTabHW6D3Xvt3C-iQlc617fdV--APqd7rc
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9wwEB7BgkQvpVCqLt22PsCptdjYTuIcqqovxIpltUgUwcl1bAetEBv21ap_qr-xYydhRaX2xqE55mE59jfjz4_5BmBPplK4qOtwbmIKKjgzVBZcUOnP52D_Wxnkms776WAgLy6y4Qr8amJh_LHKxicGR21L49fID7gn3hLti72_nVCfNcrvrjYpNCpYHLufP3DKNnvX-4z9u8_Y4ZezT0e0zipADZdsTnNjCl44Hgmsf442pnMstZu6zBXIZtA7JCK2jmVxZjSLtESCrg0SG8MM0yznWO4qrAkEu2zB2rB3MrxcruqkPlYzqaNzQoyewMtvlcY0TAFpdG8EDIkC7rHbPzZkwzh3uPm_tdATeFwzavKhMoEtWHHjbdhsslWQ2nk9hevTBaJocUP0Yl56-U6LT0c3zfl5D1BSFsTrN1Prcx5UeiUEzeBKjytl75Eh4UtsOYJsn-hpPgq6BWRSFx4CtGY78PVBfvkZtMbl2D0HYkTGrctsnCCzlkmcI2fVrFskNpO8kKwNb5ruV7eVooi6044OYFEIFhXAoqI2fPQIuXvTq4GHG-X0StXORaXelyY6x-5PhHQitw55IRdCcysSZtrQaRCjahc1U0u4tOFtg7nl479Xafffpb2GjaOzk77q9wbHL-AR88gPhx870JpPF-4lrJvv89Fs-qo2HgLfHhqNvwG7Rlbd
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quantum+autoencoder+implementation+of+high-dimensional+steganographic+encoding+for+arbitrary+quantum+states&rft.jtitle=Journal+of+King+Saud+University.+Computer+and+information+sciences&rft.au=Hao%2C+Chaolong&rft.au=Ma%2C+Quangong&rft.au=Chen%2C+Yaqi&rft.au=Zhang%2C+Hao&rft.date=2025-10-01&rft.pub=Springer+International+Publishing&rft.issn=1319-1578&rft.eissn=2213-1248&rft.volume=37&rft.issue=8&rft_id=info:doi/10.1007%2Fs44443-025-00274-1&rft.externalDocID=10_1007_s44443_025_00274_1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1319-1578&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1319-1578&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1319-1578&client=summon