Photoelectric sensors for wireless monitoring of bridge scour - laboratory investigation and field validation

Scour, or the erosion of bed material is a major cause of bridge failure across the world. Monitoring scour levels at bridge foundations reduces the risk of failure through timely condition-based maintenance. This paper evaluates the use of photoelectric sensors for scour detection through laborator...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Structure and infrastructure engineering Ročník 21; číslo 6; s. 980 - 991
Hlavní autoři: Farooq, Mohammed, Azhari, Fae, Banthia, Nemkumar
Médium: Journal Article
Jazyk:angličtina
Vydáno: Taylor & Francis 03.06.2025
Témata:
ISSN:1573-2479, 1744-8980
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Scour, or the erosion of bed material is a major cause of bridge failure across the world. Monitoring scour levels at bridge foundations reduces the risk of failure through timely condition-based maintenance. This paper evaluates the use of photoelectric sensors for scour detection through laboratory studies and subsequent field investigation. Two types of photoelectric sensors, namely diffusive-reflective and through-beam, were independently investigated. The sensors were installed at six distinct depths on a simulated bridge pier in a laboratory flume. Scour resulting from hydrodynamic action triggered the sensors at different levels, enabling scour depth detection. An inverse response from the sensors detected scour refill. Following successful laboratory tests, a photoelectric scour-sensing prototype was installed in a small creek in August 2019 which continued to monitor scour until April 2022. The prototype response confirmed laboratory results and continues to perform well under various field conditions such as rain, debris, and snow. The very low-cost system required minimal power and bandwidth, and the sensing component was robust to flow parameters. Long-term field studies are required to evaluate their susceptibility to biofouling and develop biofouling countermeasures.
AbstractList Scour, or the erosion of bed material is a major cause of bridge failure across the world. Monitoring scour levels at bridge foundations reduces the risk of failure through timely condition-based maintenance. This paper evaluates the use of photoelectric sensors for scour detection through laboratory studies and subsequent field investigation. Two types of photoelectric sensors, namely diffusive-reflective and through-beam, were independently investigated. The sensors were installed at six distinct depths on a simulated bridge pier in a laboratory flume. Scour resulting from hydrodynamic action triggered the sensors at different levels, enabling scour depth detection. An inverse response from the sensors detected scour refill. Following successful laboratory tests, a photoelectric scour-sensing prototype was installed in a small creek in August 2019 which continued to monitor scour until April 2022. The prototype response confirmed laboratory results and continues to perform well under various field conditions such as rain, debris, and snow. The very low-cost system required minimal power and bandwidth, and the sensing component was robust to flow parameters. Long-term field studies are required to evaluate their susceptibility to biofouling and develop biofouling countermeasures.
Author Farooq, Mohammed
Azhari, Fae
Banthia, Nemkumar
Author_xml – sequence: 1
  givenname: Mohammed
  surname: Farooq
  fullname: Farooq, Mohammed
  organization: Department of Civil Engineering, University of British Columbia
– sequence: 2
  givenname: Fae
  surname: Azhari
  fullname: Azhari, Fae
  organization: Department of Civil & Mineral Engineering, University of Toronto
– sequence: 3
  givenname: Nemkumar
  surname: Banthia
  fullname: Banthia, Nemkumar
  organization: Department of Civil Engineering, University of British Columbia
BookMark eNqFkM1KAzEUhYNUsK0-gpAXmJpMMjMZ3CjFPyjoQtchM0lqJE3kJrb07Z3-uHGhq3s595zD5ZugUYjBIHRJyYwSQa5o1bCSN-2sJCWblWVNOeMnaEwbzgvRCjIa9sFT7ExnaJLSByFM8LYeo9XLe8zReNNncD1OJqQICdsIeONg0FPCqxhcjuDCEkeLO3B6aXDq4xfgAnvVRVDDeYtdWJuU3VJlFwNWQWPrjNd4rbzTe_EcnVrlk7k4zil6u797nT8Wi-eHp_ntouiZKHPRCaWEpk3HmGW2sYZUqhaciVrXnFW6s3xwGNIa01a6Fh2tFKW6sW1rhDCWTdH1obeHmBIYK3uX9x9kUM5LSuSOnPwhJ3fk5JHckK5-pT_BrRRs_83dHHIuDPxWahPBa5nV1kewoELvkmR_V3wDSHeKnw
CitedBy_id crossref_primary_10_1016_j_dwt_2024_100304
crossref_primary_10_5937_GRMK2500007K
crossref_primary_10_1016_j_measurement_2024_116030
Cites_doi 10.1177/1475921715620004
10.1177/1475921709340965
10.1002/stc.1969
10.1088/0964-1726/15/6/051
10.1177/1475921714554141
10.1061/(ASCE)0733-9429(1999)125:12(1279)
10.1007/s11368-013-0813-0
10.1680/feng.13.00014
10.1016/S0963-8695(01)00031-7
10.1016/j.measurement.2015.08.013
10.1061/(ASCE)BE.1943-5592.0000362
10.2219/rtriqr.48.153
10.1177/1475921713476332
10.1016/0025-3227(89)90065-0
10.14288/1.0417564
10.1016/j.jsv.2013.08.020
10.1061/(ASCE)0733-9429(1999)125:1(59)
10.1016/j.flowmeasinst.2013.05.001
10.1080/08927014.2019.1640214
10.1260/1369-4332.15.6.897
10.12989/smm.2015.2.2.145
10.1016/j.jrmge.2014.01.007
10.1088/0964-1726/24/12/125029
10.1061/(asce)be.1943-5592.0001366
10.1007/s11069-017-2842-2
10.1061/(ASCE)0733-9429(1998)124:6(639)
10.1061/(ASCE)SC.1943-5576.0000041
10.1061/(ASCE)CF.1943-5509.0000571
10.1177/1475921720944587
10.1109/SAS.2016.7479895
10.1061/(ASCE)0733-9429(2008)134:11(1639)
10.1007/978-3-319-15230-1
10.2749/vancouver.2017.2755
10.1061/(asce)as.1943-5525.0000654
10.2113/gseegeosci.13.1.1
10.1007/s13349-022-00649-2
10.1061/(ASCE)0733-9429(2004)130:7(622)
10.1080/24705314.2023.2165471
10.1016/S0963-8695(99)00026-2
ContentType Journal Article
Copyright 2023 Informa UK Limited, trading as Taylor & Francis Group 2023
Copyright_xml – notice: 2023 Informa UK Limited, trading as Taylor & Francis Group 2023
DBID AAYXX
CITATION
DOI 10.1080/15732479.2023.2261434
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1744-8980
EndPage 991
ExternalDocumentID 10_1080_15732479_2023_2261434
2261434
Genre Research Article
GroupedDBID .7F
.QJ
0BK
0R~
29Q
30N
4.4
AAENE
AAGDL
AAHIA
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABFIM
ABJNI
ABLIJ
ABPAQ
ABPEM
ABTAI
ABXUL
ABXYU
ACGEJ
ACGFS
ACTIO
ADCVX
ADGTB
ADXPE
AEISY
AENEX
AEOZL
AEPSL
AEYOC
AFRVT
AGDLA
AGMYJ
AHDZW
AIJEM
AIYEW
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQRUH
AQTUD
AVBZW
AWYRJ
BLEHA
CCCUG
CE4
DGEBU
DKSSO
DU5
EBS
E~A
E~B
GTTXZ
H13
HZ~
H~P
J.P
KYCEM
LJTGL
M4Z
NA5
O9-
P2P
RIG
RNANH
ROSJB
RTWRZ
S-T
SNACF
TASJS
TBQAZ
TDBHL
TEN
TFL
TFT
TFW
TTHFI
TUROJ
TWF
TWQ
UT5
UU3
ZGOLN
~S~
AAYXX
CITATION
ID FETCH-LOGICAL-c382t-b8aa8d17b33f3f7fe05a684386d6435dbf48aae09ee95d68b15a11d7f99e88ef3
IEDL.DBID TFW
ISICitedReferencesCount 4
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001069039900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1573-2479
IngestDate Sat Nov 29 08:01:40 EST 2025
Tue Nov 18 22:33:47 EST 2025
Mon Oct 20 23:46:40 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c382t-b8aa8d17b33f3f7fe05a684386d6435dbf48aae09ee95d68b15a11d7f99e88ef3
PageCount 12
ParticipantIDs informaworld_taylorfrancis_310_1080_15732479_2023_2261434
crossref_citationtrail_10_1080_15732479_2023_2261434
crossref_primary_10_1080_15732479_2023_2261434
PublicationCentury 2000
PublicationDate 2025-06-03
PublicationDateYYYYMMDD 2025-06-03
PublicationDate_xml – month: 06
  year: 2025
  text: 2025-06-03
  day: 03
PublicationDecade 2020
PublicationTitle Structure and infrastructure engineering
PublicationYear 2025
Publisher Taylor & Francis
Publisher_xml – name: Taylor & Francis
References e_1_3_3_52_1
e_1_3_3_50_1
NTSB (e_1_3_3_38_1) 1988
e_1_3_3_18_1
e_1_3_3_39_1
e_1_3_3_14_1
e_1_3_3_37_1
e_1_3_3_16_1
Arneson L. A. A. (e_1_3_3_5_1) 2012
e_1_3_3_10_1
e_1_3_3_33_1
e_1_3_3_56_1
e_1_3_3_31_1
e_1_3_3_54_1
e_1_3_3_40_1
Shaw P. D. (e_1_3_3_46_1) 1998
Church M. (e_1_3_3_12_1) 1998
e_1_3_3_7_1
e_1_3_3_9_1
Hunt B. E. (e_1_3_3_27_1) 2009
e_1_3_3_29_1
e_1_3_3_25_1
Swartz A. (e_1_3_3_47_1) 2014
e_1_3_3_48_1
e_1_3_3_3_1
e_1_3_3_21_1
e_1_3_3_44_1
e_1_3_3_23_1
Melville B. W. (e_1_3_3_35_1) 2000
e_1_3_3_42_1
e_1_3_3_30_1
e_1_3_3_51_1
e_1_3_3_17_1
e_1_3_3_19_1
e_1_3_3_13_1
e_1_3_3_15_1
e_1_3_3_36_1
e_1_3_3_57_1
e_1_3_3_34_1
e_1_3_3_55_1
e_1_3_3_11_1
e_1_3_3_32_1
e_1_3_3_53_1
e_1_3_3_41_1
e_1_3_3_6_1
e_1_3_3_8_1
e_1_3_3_28_1
e_1_3_3_24_1
e_1_3_3_49_1
e_1_3_3_26_1
e_1_3_3_2_1
e_1_3_3_20_1
e_1_3_3_45_1
e_1_3_3_4_1
e_1_3_3_22_1
e_1_3_3_43_1
References_xml – ident: e_1_3_3_2_1
– ident: e_1_3_3_33_1
– ident: e_1_3_3_3_1
  doi: 10.1177/1475921715620004
– ident: e_1_3_3_56_1
  doi: 10.1177/1475921709340965
– ident: e_1_3_3_7_1
  doi: 10.1002/stc.1969
– ident: e_1_3_3_31_1
  doi: 10.1088/0964-1726/15/6/051
– ident: e_1_3_3_10_1
– volume-title: Bio-inspired magnetostrictive whisker sensors for autonomous bridge scour sensing
  year: 2014
  ident: e_1_3_3_47_1
– ident: e_1_3_3_11_1
  doi: 10.1177/1475921714554141
– ident: e_1_3_3_32_1
– start-page: 47
  volume-title: Health of the Fraser River aquatic ecosystem
  year: 1998
  ident: e_1_3_3_46_1
– ident: e_1_3_3_54_1
  doi: 10.1061/(ASCE)0733-9429(1999)125:12(1279)
– ident: e_1_3_3_36_1
  doi: 10.1007/s11368-013-0813-0
– ident: e_1_3_3_55_1
  doi: 10.1680/feng.13.00014
– ident: e_1_3_3_49_1
– ident: e_1_3_3_15_1
  doi: 10.1016/S0963-8695(01)00031-7
– ident: e_1_3_3_42_1
  doi: 10.1016/j.measurement.2015.08.013
– volume-title: Bridge scour
  year: 2000
  ident: e_1_3_3_35_1
– ident: e_1_3_3_57_1
  doi: 10.1061/(ASCE)BE.1943-5592.0000362
– ident: e_1_3_3_14_1
– ident: e_1_3_3_45_1
  doi: 10.2219/rtriqr.48.153
– ident: e_1_3_3_23_1
  doi: 10.1177/1475921713476332
– ident: e_1_3_3_30_1
  doi: 10.1016/0025-3227(89)90065-0
– volume-title: Collapse of New York Thruway (I-90) Bridge over the Schoharie Creek, near Amsterdam, New York
  year: 1988
  ident: e_1_3_3_38_1
– ident: e_1_3_3_19_1
  doi: 10.14288/1.0417564
– ident: e_1_3_3_41_1
  doi: 10.1016/j.jsv.2013.08.020
– ident: e_1_3_3_34_1
  doi: 10.1061/(ASCE)0733-9429(1999)125:1(59)
– ident: e_1_3_3_28_1
– ident: e_1_3_3_24_1
  doi: 10.1016/j.flowmeasinst.2013.05.001
– ident: e_1_3_3_44_1
– volume-title: Evaluating Scour at Bridges (Highway Engineering Circular HEC 18)
  year: 2012
  ident: e_1_3_3_5_1
– ident: e_1_3_3_9_1
  doi: 10.1080/08927014.2019.1640214
– ident: e_1_3_3_51_1
  doi: 10.1260/1369-4332.15.6.897
– start-page: 18
  volume-title: Colin Gray and Taina Tuominen (Eds.), Health of the Fraser River Aquatic Ecosystem
  year: 1998
  ident: e_1_3_3_12_1
– ident: e_1_3_3_8_1
  doi: 10.12989/smm.2015.2.2.145
– ident: e_1_3_3_40_1
  doi: 10.1016/j.jrmge.2014.01.007
– ident: e_1_3_3_43_1
– ident: e_1_3_3_37_1
  doi: 10.1088/0964-1726/24/12/125029
– ident: e_1_3_3_48_1
  doi: 10.1061/(asce)be.1943-5592.0001366
– ident: e_1_3_3_50_1
  doi: 10.1007/s11069-017-2842-2
– ident: e_1_3_3_18_1
  doi: 10.1061/(ASCE)0733-9429(1998)124:6(639)
– ident: e_1_3_3_16_1
  doi: 10.1061/(ASCE)SC.1943-5576.0000041
– ident: e_1_3_3_13_1
  doi: 10.1061/(ASCE)CF.1943-5509.0000571
– ident: e_1_3_3_26_1
– ident: e_1_3_3_52_1
  doi: 10.1177/1475921720944587
– volume-title: NCHRP 396 monitoring scour critical bridges
  year: 2009
  ident: e_1_3_3_27_1
– ident: e_1_3_3_53_1
  doi: 10.1109/SAS.2016.7479895
– ident: e_1_3_3_39_1
  doi: 10.1061/(ASCE)0733-9429(2008)134:11(1639)
– ident: e_1_3_3_6_1
  doi: 10.1007/978-3-319-15230-1
– ident: e_1_3_3_22_1
  doi: 10.2749/vancouver.2017.2755
– ident: e_1_3_3_29_1
  doi: 10.1061/(asce)as.1943-5525.0000654
– ident: e_1_3_3_4_1
  doi: 10.2113/gseegeosci.13.1.1
– ident: e_1_3_3_20_1
  doi: 10.1007/s13349-022-00649-2
– ident: e_1_3_3_17_1
  doi: 10.1061/(ASCE)0733-9429(2004)130:7(622)
– ident: e_1_3_3_21_1
  doi: 10.1080/24705314.2023.2165471
– ident: e_1_3_3_25_1
  doi: 10.1016/S0963-8695(99)00026-2
SSID ssj0038496
Score 2.3817954
Snippet Scour, or the erosion of bed material is a major cause of bridge failure across the world. Monitoring scour levels at bridge foundations reduces the risk of...
SourceID crossref
informaworld
SourceType Enrichment Source
Index Database
Publisher
StartPage 980
SubjectTerms Arduino microcontrollers
bridge monitoring
Bridge scour
internet of things
open-source
optical sensors
sensors
smart structures
structural health monitoring
Title Photoelectric sensors for wireless monitoring of bridge scour - laboratory investigation and field validation
URI https://www.tandfonline.com/doi/abs/10.1080/15732479.2023.2261434
Volume 21
WOSCitedRecordID wos001069039900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAWR
  databaseName: Taylor and Francis Online Journals
  customDbUrl:
  eissn: 1744-8980
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0038496
  issn: 1573-2479
  databaseCode: TFW
  dateStart: 20050301
  isFulltext: true
  titleUrlDefault: https://www.tandfonline.com
  providerName: Taylor & Francis
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELYQYoCBN6K85IHVpant2BkRomKqOhTRLYpfIlKboCYg8e_xJQ60AzDAlMV3suy789m5-z6ErgU0W9rMkphpQ5hSgigGSJiJyBgfKKFk1pBNiPFYzmbJJFQTVqGsEu7QrgWKaGI1OHemqq4i7ibiwqcBAtpMhrTv8wd_5gMiqP-Aa05HT10sppI1DF0gQUCk6-H5Tsva6bSGXbpy6oz2_mG--2g3pJz4trWRA7Rhi0O0swJEeIQWk-eyLltKnFzjyt9ty2WF_bwwYBnPfTjEi8b7YTwuHW4bvXClvXZMcLClcvmO8y_kjrLAftK4qZLD3qTzlsDpGD2O7qd3DyQQMRBN5bAmfr8yaSKhKHXUCWcHPIslozI2PqHhRjnmR9hBYm3CTSxVxLMoMsIliZXSOnqCNouysKcIO2W0pJobrv3NXGivGjDsIIuDn7Ssh1i3AakOKOVAljFPowBm2q1mCquZhtXsof6n2EsL0_GbQLK6u2ndvI-4lswkpT_Knv1B9hxtD4FBGN5x6AXarJev9hJt6bc6r5ZXjfF-ANee69k
linkProvider Taylor & Francis
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT8MwDI5gIAEH3ojxzIFrx7okTXpEiGmIMXEYYreqSRMxaWtRW5D498R9QHcADnCPIyt2bceNvw-hCw7DljrUjkdV5FApuSMpIGH6PKSsK7kUYUE2wUcjMZn4zVkYeFYJd2hTAkUUsRo-bmhG10_iLl3GbR3AYc6kRzq2gLBJny6jFWZzLeDnj_tPdTQmghYcXSDigEw9xfPdNgv5aQG9tJF3-lv_ofE22qyqTnxVuskOWtLxLtpoYBHuofnDc5InJSvOVOHMXm-TNMNWMQxwxjMbEfG8CACwHicGl7NeOFN2d-zgyp2S9B1Pv8A7khhbrXHxUA5br56WHE776LF_M74eOBUXg6OI6OWONVkoIpdLQgwx3OguCz1BifAiW9OwSBpqV-iur7XPIk9Il4WuG3Hj-1oIbcgBasVJrA8RNjJSgigWMWUv51zZrQHGDgo5-E9L24jWFghUBVQOfBmzwK3wTOvTDOA0g-o026jzKfZSInX8JuA3zRvkRYvElHwmAflR9ugPsudobTC-HwbD29HdMVrvAaEwtHXICWrl6as-RavqLZ9m6VnhyR_Q8_AD
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELagIAQDb0R5emBNaWondkYEVCBQ1aGIblH8EpHapEoCEv8eXx7QDsAAu886nc_2nX33fQhdMGi21JF2fCqVQ4VgjqCAhBmwiHpdwQSPSrIJNhjw8TgY1tWEeV1WCTm0qYAiyrMaNvdMmaYi7tL1mA0DGLSZ9EjHxg_2zqfLaMWGzj44-aj_3BzGhNOSogtEHJBpmni-m2bheloAL527dvpb_6DwNtqsY058VTnJDlrSyS7amEMi3EPT4UtapBUnTixxbpPbNMux1QsDmPHEnod4Wm5_GI9Tg6tOL5xLOzt2cO1MafaO4y_ojjTBVmlclslh69NxxeC0j576t6PrO6dmYnAk4b3CsQsWceUyQYghhhnd9SKfU8J9ZSMaTwlD7QjdDbQOPOVz4XqR6ypmgkBzrg05QK0kTfQhwkYoyYn0lCdtas6knRpA7CCMg19a2ka0WYBQ1jDlwJYxCd0azbSxZgjWDGtrtlHnU2xW4XT8JhDMr25YlA8kpmIzCcmPskd_kD1Ha8Obfvh4P3g4Rus9YBOGNx1yglpF9qpP0ap8K-I8Oyv9-AMFxu61
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Photoelectric+sensors+for+wireless+monitoring+of+bridge+scour+-+laboratory+investigation+and+field+validation&rft.jtitle=Structure+and+infrastructure+engineering&rft.au=Farooq%2C+Mohammed&rft.au=Azhari%2C+Fae&rft.au=Banthia%2C+Nemkumar&rft.date=2025-06-03&rft.pub=Taylor+%26+Francis&rft.issn=1573-2479&rft.eissn=1744-8980&rft.volume=21&rft.issue=6&rft.spage=980&rft.epage=991&rft_id=info:doi/10.1080%2F15732479.2023.2261434&rft.externalDocID=2261434
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1573-2479&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1573-2479&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1573-2479&client=summon