Varying coefficient partially functional linear regression models
By relaxing the linearity assumption in partial functional linear regression models, we propose a varying coefficient partially functional linear regression model (VCPFLM), which includes varying coefficient regression models and functional linear regression models as its special cases. We study the...
Uloženo v:
| Vydáno v: | Statistical papers (Berlin, Germany) Ročník 57; číslo 3; s. 827 - 841 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.09.2016
Springer Nature B.V |
| Témata: | |
| ISSN: | 0932-5026, 1613-9798 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | By relaxing the linearity assumption in partial functional linear regression models, we propose a varying coefficient partially functional linear regression model (VCPFLM), which includes varying coefficient regression models and functional linear regression models as its special cases. We study the problem of functional parameter estimation in a VCPFLM. The functional parameter is approximated by a polynomial spline, and the spline coefficients are estimated by the ordinary least squares method. Under some regular conditions, we obtain asymptotic properties of functional parameter estimators, including the global convergence rates and uniform convergence rates. Simulation studies are conducted to investigate the performance of the proposed methodologies. |
|---|---|
| Bibliografie: | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
| ISSN: | 0932-5026 1613-9798 |
| DOI: | 10.1007/s00362-015-0681-3 |