Reduced-Order Models for Ranking Damage Initiation in Dual-Phase Composites Using Bayesian Neural Networks
The design and development of materials with increased damage resilience is often impeded by the difficulty in establishing the precise linkages, with quantified uncertainty, between the complex details of the internal structure of materials and their potential for damage initiation. We present here...
Gespeichert in:
| Veröffentlicht in: | JOM (1989) Jg. 72; H. 12; S. 4359 - 4369 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
New York
Springer US
01.12.2020
Springer Nature B.V |
| Schlagworte: | |
| ISSN: | 1047-4838, 1543-1851 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | The design and development of materials with increased damage resilience is often impeded by the difficulty in establishing the precise linkages, with quantified uncertainty, between the complex details of the internal structure of materials and their potential for damage initiation. We present herein a novel machine-learning-based approach for establishing reduced-order models (ROMs) that relate the microstructure of a material to its susceptibility to damage initiation. This is accomplished by combining the recently established materials knowledge system framework with toolsets such as feedforward neural networks and variational Bayesian inference. The overall approach is found to be versatile for training scalable and accurate ROMs with quantified prediction uncertainty for the propensity to damage initiation for a variety of microstructures. The approach is applicable to a large class of challenges encountered in multiscale materials design efforts. |
|---|---|
| AbstractList | The design and development of materials with increased damage resilience is often impeded by the difficulty in establishing the precise linkages, with quantified uncertainty, between the complex details of the internal structure of materials and their potential for damage initiation. We present herein a novel machine-learning-based approach for establishing reduced-order models (ROMs) that relate the microstructure of a material to its susceptibility to damage initiation. This is accomplished by combining the recently established materials knowledge system framework with toolsets such as feedforward neural networks and variational Bayesian inference. The overall approach is found to be versatile for training scalable and accurate ROMs with quantified prediction uncertainty for the propensity to damage initiation for a variety of microstructures. The approach is applicable to a large class of challenges encountered in multiscale materials design efforts. |
| Author | Venkatraman, Aditya Kalidindi, Surya R. Montes de Oca Zapiain, David |
| Author_xml | – sequence: 1 givenname: Aditya surname: Venkatraman fullname: Venkatraman, Aditya organization: George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology – sequence: 2 givenname: David surname: Montes de Oca Zapiain fullname: Montes de Oca Zapiain, David organization: George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology – sequence: 3 givenname: Surya R. surname: Kalidindi fullname: Kalidindi, Surya R. email: surya.kalidindi@me.gatech.edu organization: George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology |
| BookMark | eNp9kE1PGzEQhi1EJT7aP9CTJc4u_tq1cyyhBSQ-KlTO1mQ9mzps7GDvqsq_xxAkJA6cZkaaZ-bVc0T2Y4pIyHfBfwjOzWkRwirDuOSMa2UN2-6RQ9FoxYRtxH7tuTZMW2UPyFEpK14hPROHZHWPfurQs7vsMdOb5HEotE-Z3kN8DHFJz2ENS6RXMYwBxpAiDZGeTzCwP_-gIJ2n9SaVMGKhD-UFOIMtlgCR3uKUYahl_J_yY_lKvvQwFPz2Vo_Jw-9ff-eX7Pru4mr-85p1ysqRLdpmBqixreOi9yBVzWo9gpgZ03ojWuRojBJdo_SiAel7kKbziiup206oY3Kyu7vJ6WnCMrpVmnKsL53UMy5tY3lbt-Ruq8uplIy92-Swhrx1grsXp27n1FWn7tWp21bIfoC6ML5KGTOE4XNU7dBS_8Ql5vdUn1DPtVqOlQ |
| CitedBy_id | crossref_primary_10_1016_j_msea_2021_142472 crossref_primary_10_1007_s40192_022_00282_3 crossref_primary_10_1103_8zzt_4b7z crossref_primary_10_1016_j_actamat_2024_120537 crossref_primary_10_1016_j_ijplas_2025_104319 crossref_primary_10_1016_j_mechmat_2023_104679 crossref_primary_10_1016_j_commatsci_2023_112074 |
| Cites_doi | 10.1016/j.ijsolstr.2015.04.035 10.1186/2193-9772-3-5 10.1201/9781420058215 10.1016/j.msea.2003.09.035 10.1016/0001-6160(84)90213-X 10.1016/j.engfracmech.2015.04.010 10.1038/s41592-019-0686-2 10.1016/j.msea.2016.06.082 10.1016/j.actamat.2019.07.048 10.1016/j.actamat.2014.08.022 10.1016/j.engfracmech.2006.08.002 10.1016/j.ijmecsci.2004.02.006 10.1007/s40192-018-0112-0 10.1007/s00466-019-01741-z 10.1007/BF00188939 10.1007/978-981-10-6855-3_70-1 10.1016/j.matdes.2018.05.009 10.1016/0013-7944(77)90062-5 10.1016/S0921-5093(98)01011-9 10.1109/78.80892 10.1007/s40192-017-0089-0 10.1214/aoms/1177729694 10.1007/s11837-011-0057-7 10.1557/mrc.2019.56 10.1007/s00466-020-01845-x 10.1016/j.actamat.2010.01.007 10.1016/0956-716X(93)90535-Z 10.1016/j.engfracmech.2016.08.009 10.1016/j.actamat.2017.11.053 10.1016/0956-7151(91)90146-R 10.1016/j.commatsci.2011.12.031 10.1007/s00466-019-01716-0 10.1016/B978-0-12-410394-8.00006-0 10.1016/j.ijsolstr.2016.03.029 10.1016/j.mechmat.2005.06.026 10.1016/j.pmatsci.2009.08.002 10.1016/j.mechmat.2016.07.014 10.1016/j.actamat.2015.04.049 10.1016/j.mechmat.2016.02.006 10.1016/S1359-6454(03)00043-0 10.1016/j.ijfatigue.2017.07.015 10.2481/dsj.1.19 10.1007/s11837-011-0045-y 10.1007/s00466-018-1643-0 10.1016/j.ijplas.2014.06.004 10.1016/S0921-5093(97)00059-2 10.1016/j.ijfatigue.2018.09.011 10.1007/s11012-020-01154-w |
| ContentType | Journal Article |
| Copyright | The Minerals, Metals & Materials Society 2020 Copyright Springer Nature B.V. Dec 2020 |
| Copyright_xml | – notice: The Minerals, Metals & Materials Society 2020 – notice: Copyright Springer Nature B.V. Dec 2020 |
| DBID | AAYXX CITATION 3V. 4T- 4U- 7SR 7TA 7WY 7XB 883 88I 8BQ 8FD 8FE 8FG 8FK 8FL ABJCF ABUWG AFKRA AZQEC BENPR BEZIV BGLVJ CCPQU D1I DWQXO FRNLG GNUQQ HCIFZ JG9 K60 K6~ KB. L.- M0F M2P PDBOC PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI Q9U S0X |
| DOI | 10.1007/s11837-020-04387-y |
| DatabaseName | CrossRef ProQuest Central (Corporate) Docstoc University Readers Engineered Materials Abstracts Materials Business File ABI/INFORM Collection ProQuest Central (purchase pre-March 2016) ABI/INFORM Trade & Industry (Alumni) Science Database (Alumni Edition) METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Business Premium Collection ProQuest Technology Collection ProQuest One ProQuest Materials Science Collection ProQuest Central Business Premium Collection (Alumni) ProQuest Central Student SciTech Collection (ProQuest) Materials Research Database ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Materials Science Database ABI/INFORM Professional Advanced ABI/INFORM Trade & Industry Science Database (ProQuest) Materials Science Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central Basic SIRS Editorial |
| DatabaseTitle | CrossRef Materials Research Database ProQuest Business Collection (Alumni Edition) ProQuest One Business University Readers ProQuest Central Student Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials SIRS Editorial Materials Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ABI/INFORM Complete Materials Business File ProQuest Central ABI/INFORM Professional Advanced ProQuest One Applied & Life Sciences Engineered Materials Abstracts ProQuest Central Korea Materials Science Database ProQuest Central (New) ABI/INFORM Complete (Alumni Edition) ProQuest Materials Science Collection Business Premium Collection ProQuest Science Journals (Alumni Edition) ABI/INFORM Trade & Industry (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest Business Collection METADEX ProQuest One Academic UKI Edition Docstoc Materials Science & Engineering Collection ProQuest One Business (Alumni) ABI/INFORM Trade & Industry ProQuest One Academic ProQuest Central (Alumni) Business Premium Collection (Alumni) ProQuest One Academic (New) |
| DatabaseTitleList | Materials Research Database |
| Database_xml | – sequence: 1 dbid: KB. name: Materials Science Database url: http://search.proquest.com/materialsscijournals sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Physics |
| EISSN | 1543-1851 |
| EndPage | 4369 |
| ExternalDocumentID | 10_1007_s11837_020_04387_y |
| GrantInformation_xml | – fundername: Office of Naval Research Global grantid: N00014-18-1-2879 funderid: http://dx.doi.org/10.13039/100007297 |
| GroupedDBID | -58 -5G -BR -DZ -EM -Y2 -~C -~X .4S .86 .DC 06C 06D 0R~ 0VY 199 1N0 203 29J 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2~H 30V 3V. 4.4 406 408 40D 40E 5GY 5VS 67Z 6NX 6TJ 78A 7WY 883 88I 8FE 8FG 8FL 8FW 8R4 8R5 8UJ 95- 95. 95~ 96X AABHQ AACDK AAEWM AAGAY AAHNG AAIAL AAJBT AAJKR AANZL AARHV AASML AATNV AATVU AAUYE AAYIU AAYQN AAYTO AAYZH ABAKF ABDZT ABECU ABEFU ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABMNI ABMQK ABNWP ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBEA ACBXY ACDTI ACGFO ACGFS ACGOD ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADMXK ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AI. AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARCEE ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BDATZ BENPR BEZIV BGLVJ BGNMA BKOMP BPHCQ CAG CCPQU COF CS3 CSCUP D1I DDRTE DNIVK DPUIP DU5 DWQXO EBLON EBS EDO EIOEI EJD ESBYG F5P FAC FAL FERAY FFXSO FIGPU FINBP FJD FJW FNLPD FRNLG FRRFC FSGXE FWDCC G-Y G-Z GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GROUPED_ABI_INFORM_COMPLETE H13 HCIFZ HF~ HG5 HG6 HMJXF HRMNR HZ~ H~9 I-F IJ- IKXTQ ITM IWAJR IXC IZQ I~X I~Z J-C J0Z JBSCW JZLTJ K60 K6~ KB. KDC KOV LLZTM M0F M2P M4Y MA- MK~ MQGED N9A NB0 NPVJJ NQJWS NU0 O9- O93 O9J P2P P9N PDBOC PF0 PQBIZ PQBZA PQQKQ PROAC PT4 Q2X QF4 QM1 QN7 QO4 QOK QOS R89 R9I RHV RNS ROL RPX RSV RXW S0X S16 S1Z S27 S3B SAP SCG SCLPG SCM SCV SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TAE TSG TSK TSV TUC TUS U2A UAO UG4 UOJIU UTJUX UZXMN VC2 VFIZW VH1 W48 WH7 WK8 YLTOR Z45 Z5O Z7R Z7S Z7V Z7W Z7X Z7Y Z7Z Z81 Z83 Z85 Z86 Z88 Z8M Z8N Z8P Z8Q Z8R Z8S Z8T Z8W Z8Z Z92 ZMTXR ~02 ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC AEZWR AFDZB AFFHD AFHIU AFKWF AHPBZ AHWEU AIXLP AYFIA CITATION PHGZM PHGZT PQGLB 4T- 4U- 7SR 7TA 7XB 8BQ 8FD 8FK JG9 L.- PKEHL PQEST PQUKI Q9U |
| ID | FETCH-LOGICAL-c382t-b659ae4e6c38bfda230078dea19776d716e0e7731c534b5a2dfa27cd303246c13 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 10 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000578249900004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1047-4838 |
| IngestDate | Wed Nov 05 01:08:10 EST 2025 Sat Nov 29 01:51:07 EST 2025 Tue Nov 18 20:31:54 EST 2025 Fri Feb 21 02:31:34 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 12 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c382t-b659ae4e6c38bfda230078dea19776d716e0e7731c534b5a2dfa27cd303246c13 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 2490285806 |
| PQPubID | 42295 |
| PageCount | 11 |
| ParticipantIDs | proquest_journals_2490285806 crossref_primary_10_1007_s11837_020_04387_y crossref_citationtrail_10_1007_s11837_020_04387_y springer_journals_10_1007_s11837_020_04387_y |
| PublicationCentury | 2000 |
| PublicationDate | 2020-12-01 |
| PublicationDateYYYYMMDD | 2020-12-01 |
| PublicationDate_xml | – month: 12 year: 2020 text: 2020-12-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationSubtitle | The Journal of The Minerals, Metals & Materials Society (TMS) |
| PublicationTitle | JOM (1989) |
| PublicationTitleAbbrev | JOM |
| PublicationYear | 2020 |
| Publisher | Springer US Springer Nature B.V |
| Publisher_xml | – name: Springer US – name: Springer Nature B.V |
| References | D. McDowell, S. Ghosh, and S. Kalidindi, JOM, 63, 45 (2011). de GeusTPeerlingsRGeersMEng. Fract. Mech.2017169354 De GeusTMarescaFPeerlingsRGeersMMech. Mater.2016101147 SeguradoJGonzalezCLlorcaJActa Mater.20035182355 WilkinsonDMaireEEmburyJMater. Sci. Eng. A19972331–2145 FullwoodDTNiezgodaSRAdamsBLKalidindiSRProg. Mater Sci.2010556477 C. Blundell, J. Cornebise, K. Kavukcuoglu and D. Wierstra, Weight Uncertainty in Neural Network, in Proceedings of the 32nd International Conference on Machine Learning, B. Francis and B. David, Editors. 2015 (Proceedings of Machine Learning Research: PMLR), pp. 1613–1622. TasanCCHoefnagelsJPMDiehlMYanDRotersFRaabeDInt. J. Plast201463198 GoodfellowIBengioYCourvilleADeep Learning2016CambridgeThe MIT Press1373.68009 HaddadRAAkansuANTrans. Sig. Proc.1991393723 KalidindiSRHierarchical Materials Informatics: Novel Analytics for Materials Data2015AmsterdamElsevier LiuWKKarniadakisGTangSYvonnetJComput. Mech.20196422753977152 CastilloAKalidindiSRFront. Mater.20196136169 PaulSKComput. Mater. Sci.20125634 BrechetYEmburyJTaoSLuoLActa Metall. Mater.19913981781 LiHKafkaOLGaoJYuCNieYZhangLTajdariMTangSGuoXLiGTangSChengGLiuWKComput. Mech.20196422813977154 AndersonTLAndersonTLFracture Mechanics: Fundamentals and Applications20053OxfordshireTaylor & Francis351083.74001 JolliffeIScience2002303487 P. Virtanen, R. Gommers, T.E. Oliphant, M. Haberland, T. Reddy, D. Cournapeau, E. Burovski, P. Peterson, W. Weckesser, J. Bright, S.J. van der Walt, M. Brett, J. Wilson, K.J. Millman, N. Mayorov, A.R.J. Nelson, E. Jones, R. Kern, E. Larson, C.J. Carey, İ. Polat, Y. Feng, E.W. Moore, J. VanderPlas, D. Laxalde, J. Perktold, R. Cimrman, I. Henriksen, E.A. Quintero, C.R. Harris, A.M. Archibald, A.H. Ribeiro, F. Pedregosa, P. van Mulbregt, A. Vijaykumar, A.P. Bardelli, A. Rothberg, A. Hilboll, A. Kloeckner, A. Scopatz, A. Lee, A. Rokem, C.N. Woods, C. Fulton, C. Masson, C. Häggström, C. Fitzgerald, D.A. Nicholson, D.R. Hagen, D.V. Pasechnik, E. Olivetti, E. Martin, E. Wieser, F. Silva, F. Lenders, F. Wilhelm, G. Young, G.A. Price, G.-L. Ingold, G.E. Allen, G.R. Lee, H. Audren, I. Probst, J.P. Dietrich, J. Silterra, J.T. Webber, J. Slavič, J. Nothman, J. Buchner, J. Kulick, J.L. Schönberger, J.V. de Miranda Cardoso, J. Reimer, J. Harrington, J.L.C. Rodríguez, J. Nunez-Iglesias, J. Kuczynski, K. Tritz, M. Thoma, M. Newville, M. Kümmerer, M. Bolingbroke, M. Tartre, M. Pak, N.J. Smith, N. Nowaczyk, N. Shebanov, O. Pavlyk, P.A. Brodtkorb, P. Lee, R.T. McGibbon, R. Feldbauer, S. Lewis, S. Tygier, S. Sievert, S. Vigna, S. Peterson, S. More, T. Pudlik, T. Oshima, T.J. Pingel, T.P. Robitaille, T. Spura, T.R. Jones, T. Cera, T. Leslie, T. Zito, T. Krauss, U. Upadhyay, Y.O. Halchenko, Y. Vázquez-Baeza and C. SciPy, Nat. Methods 17(3), 261 (2020). LandiGNiezgodaSRKalidindiSRActa Mater.20105872716 MacKayDJCInformation Theory, Inference & Learning Algorithms2002CambridgeCambridge University Press422424 A.R. Castillo and S.R. Kalidindi, Meccanica (2020). https://doi.org/10.1007/s11012-020-01154-w. de GeusTvan DuurenJPeerlingsRGeersMMater. Sci. Eng. A2016673551 PapanikolaouSComput. Mech.20206611414105031 TvergaardVNeedlemanAActa Metall.1984321157 Y.C. Yabansu, A. Iskakov, A. Kapustina, S. Rajagopalan, and S.R. Kalidindi, Acta Mater. 178, 45 (2019). PaulsonNHPriddyMWMcDowellDLKalidindiSRMater. Des.2018154170 PaulsonNHPriddyMWMcDowellDLKalidindiSRInt. J. Fatigue20191191 YabansuYCPatelDKKalidindiSRActa Mater.201481151 CecenADaiHYabansuYCKalidindiSRSongLActa Mater.201814676 de GeusTWJCotturaMAppolaireBPeerlingsRHJGeersMGDMech. Mater.201697199 BrechetYNewellJTaoSEmburyJScr. Metall. Mater.199328147 de GeusTWJPeerlingsRHJGeersMGDEng. Fract. Mech.2015147318 de GeusTWJPeerlingsRHJGeersMGDInt. J. Solids Struct.201697–98687 PriddyMWPaulsonNHKalidindiSRMcDowellDLInt. J. Fatigue2017104231 B. Anbarlooie, J. Kadkhodapour, H. Hosseini Toudeshky and S. Schmauder, Micromechanics of Dual-Phase Steels: Deformation, Damage, and Fatigue, in Handbook of Mechanics of Materials, S. Schmauder, C.-S. Chen, K.K. Chawla, N. Chawla, W. Chen and Y. Kagawa. (Singapore: Springer Singapore, 2018), pp. 1–30. LuXGiovanisDGYvonnetJPapadopoulosVDetrezFBaiJComput. Mech.20196423073977155 KalidindiSRNiezgodaSRSalemAAJOM201163434 A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Köpf, E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, and S. Chintala, PyTorch: An Imperative Style, High-Performance Deep Learning Library (2019), pp. 8024–8035. TorquatoSRandom Heterogeneous Materials2013BerlinSpringer0988.74001 de GeusTWJPeerlingsRHJGeersMGDInt. J. Solids Struct.201567–68326 HibbittKABAQUS/Standard User’s Manual2001HibbittKarlsson & Sorensen BroughDBWheelerDKalidindiSRIntegr. Mater. Manuf. Innov.20176136 KalidindiSRNiezgodaSRLandiGVachhaniSFastTComput. Mater. Contin.2010172103 KalidindiSRMRS Commun.201992518 C.M. Bishop, Pattern Recognition and Machine Learning (Information Science and Statistics) (Berlin: Springer, 2006), pp. 225–246, 561–570, 21–23. T. Hastie, R. Tibshirani and J. Friedman, The Elements of Statistical Learning: Data Mining, Inference, and Prediction (Berlin: Springer, 2009), pp. 392–397, 534–538, 397–401. MackenzieAHancockJBrownDEng. Fract. Mech.197791167 Montes de Oca ZapiainDPopovaEAbdeljawadFFoulkJWKalidindiSRLimHIntegr. Mater. Manuf. Innov.20187397 WilkinsonDMaireEFougeresRMater. Sci. Eng. A19992621–2264 KullbackSLeiblerRAAnn. Math. Stat.195122179 BaoYWierzbickiTInt. J. Mech. Sci.200446181 MironeGEng. Fract. Mech.20077481203 SuhCRajagopalanALiXRajanKData Sci. J.2002119 LlorcaJSeguradoJMater. Sci. Eng. A20043651267 MitchellTMMachine Learning1997New YorkMcGrawHill96970913.68167 SeguradoJLlorcaJMech. Mater.2006388873 GroeberMAJacksonMAIntegrat. Mater. Manuf. Innov.20143156 KalidindiSRKalidindiSRStructure-Property linkagesHierarchical Materials Informatics2015BostonButterworth-Heinemann145189 McClintockFAInt. J. Fract. Mech.196842101 D. Wheeler, D.B. Brough, T. Fast, S.R. Kalidindi and A. Reid, PyMKS: Materials Knowledge System in Python (2014). KrajcinovicDDamage Mechanics1996AmsterdamElsevier35 YabansuYCKalidindiSRActa Mater.20159426 A. Gelman, J.B. Carlin, H.S. Stern and D.B. Rubin, Bayesian Data Analysis. 2nd edn (Boca Raton: Chapman and Hall, 2004), pp. 6–8, 331. TWJ de Geus (4387_CR19) 2015; 67–68 4387_CR27 A Mackenzie (4387_CR51) 1977; 9 4387_CR28 4387_CR29 MW Priddy (4387_CR25) 2017; 104 WK Liu (4387_CR33) 2019; 64 I Jolliffe (4387_CR49) 2002; 30 NH Paulson (4387_CR26) 2018; 154 T De Geus (4387_CR4) 2016; 101 TWJ de Geus (4387_CR10) 2016; 97 RA Haddad (4387_CR43) 1991; 39 4387_CR63 4387_CR64 NH Paulson (4387_CR21) 2019; 119 J Segurado (4387_CR17) 2003; 51 DB Brough (4387_CR23) 2017; 6 T de Geus (4387_CR5) 2017; 169 Y Brechet (4387_CR13) 1993; 28 DJC MacKay (4387_CR35) 2002 4387_CR36 TWJ de Geus (4387_CR11) 2016; 97–98 TM Mitchell (4387_CR58) 1997 YC Yabansu (4387_CR40) 2015; 94 D Wilkinson (4387_CR15) 1999; 262 H Li (4387_CR32) 2019; 64 TWJ de Geus (4387_CR6) 2015; 147 D Montes de Oca Zapiain (4387_CR20) 2018; 7 SR Kalidindi (4387_CR45) 2011; 63 C Suh (4387_CR50) 2002; 1 A Castillo (4387_CR62) 2019; 6 D Wilkinson (4387_CR14) 1997; 233 I Goodfellow (4387_CR57) 2016 YC Yabansu (4387_CR39) 2014; 81 Y Bao (4387_CR55) 2004; 46 4387_CR48 Y Brechet (4387_CR12) 1991; 39 SR Kalidindi (4387_CR24) 2015 MA Groeber (4387_CR41) 2014; 3 S Papanikolaou (4387_CR31) 2020; 66 4387_CR46 X Lu (4387_CR34) 2019; 64 SR Kalidindi (4387_CR44) 2015 K Hibbitt (4387_CR61) 2001 D Krajcinovic (4387_CR2) 1996 SR Kalidindi (4387_CR37) 2010; 17 G Landi (4387_CR38) 2010; 58 S Kullback (4387_CR60) 1951; 22 S Torquato (4387_CR47) 2013 T de Geus (4387_CR9) 2016; 673 FA McClintock (4387_CR52) 1968; 4 J Llorca (4387_CR16) 2004; 365 4387_CR59 4387_CR56 SK Paul (4387_CR7) 2012; 56 J Segurado (4387_CR18) 2006; 38 SR Kalidindi (4387_CR30) 2019; 9 DT Fullwood (4387_CR22) 2010; 55 V Tvergaard (4387_CR54) 1984; 32 G Mirone (4387_CR53) 2007; 74 TL Anderson (4387_CR1) 2005 A Cecen (4387_CR42) 2018; 146 CC Tasan (4387_CR8) 2014; 63 4387_CR3 |
| References_xml | – reference: de GeusTWJPeerlingsRHJGeersMGDInt. J. Solids Struct.201697–98687 – reference: TvergaardVNeedlemanAActa Metall.1984321157 – reference: SeguradoJGonzalezCLlorcaJActa Mater.20035182355 – reference: B. Anbarlooie, J. Kadkhodapour, H. Hosseini Toudeshky and S. Schmauder, Micromechanics of Dual-Phase Steels: Deformation, Damage, and Fatigue, in Handbook of Mechanics of Materials, S. Schmauder, C.-S. Chen, K.K. Chawla, N. Chawla, W. Chen and Y. Kagawa. (Singapore: Springer Singapore, 2018), pp. 1–30. – reference: BrechetYNewellJTaoSEmburyJScr. Metall. Mater.199328147 – reference: GroeberMAJacksonMAIntegrat. Mater. Manuf. Innov.20143156 – reference: BrechetYEmburyJTaoSLuoLActa Metall. Mater.19913981781 – reference: MacKayDJCInformation Theory, Inference & Learning Algorithms2002CambridgeCambridge University Press422424 – reference: YabansuYCPatelDKKalidindiSRActa Mater.201481151 – reference: SeguradoJLlorcaJMech. Mater.2006388873 – reference: AndersonTLAndersonTLFracture Mechanics: Fundamentals and Applications20053OxfordshireTaylor & Francis351083.74001 – reference: de GeusTvan DuurenJPeerlingsRGeersMMater. Sci. Eng. A2016673551 – reference: PapanikolaouSComput. Mech.20206611414105031 – reference: De GeusTMarescaFPeerlingsRGeersMMech. Mater.2016101147 – reference: BaoYWierzbickiTInt. J. Mech. Sci.200446181 – reference: A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Köpf, E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, and S. Chintala, PyTorch: An Imperative Style, High-Performance Deep Learning Library (2019), pp. 8024–8035. – reference: WilkinsonDMaireEEmburyJMater. Sci. Eng. A19972331–2145 – reference: KalidindiSRHierarchical Materials Informatics: Novel Analytics for Materials Data2015AmsterdamElsevier – reference: de GeusTWJPeerlingsRHJGeersMGDInt. J. Solids Struct.201567–68326 – reference: HibbittKABAQUS/Standard User’s Manual2001HibbittKarlsson & Sorensen – reference: T. Hastie, R. Tibshirani and J. Friedman, The Elements of Statistical Learning: Data Mining, Inference, and Prediction (Berlin: Springer, 2009), pp. 392–397, 534–538, 397–401. – reference: KrajcinovicDDamage Mechanics1996AmsterdamElsevier35 – reference: LuXGiovanisDGYvonnetJPapadopoulosVDetrezFBaiJComput. Mech.20196423073977155 – reference: HaddadRAAkansuANTrans. Sig. Proc.1991393723 – reference: SuhCRajagopalanALiXRajanKData Sci. J.2002119 – reference: McClintockFAInt. J. Fract. Mech.196842101 – reference: MackenzieAHancockJBrownDEng. Fract. Mech.197791167 – reference: PaulSKComput. Mater. Sci.20125634 – reference: P. Virtanen, R. Gommers, T.E. Oliphant, M. Haberland, T. Reddy, D. Cournapeau, E. Burovski, P. Peterson, W. Weckesser, J. Bright, S.J. van der Walt, M. Brett, J. Wilson, K.J. Millman, N. Mayorov, A.R.J. Nelson, E. Jones, R. Kern, E. Larson, C.J. Carey, İ. Polat, Y. Feng, E.W. Moore, J. VanderPlas, D. Laxalde, J. Perktold, R. Cimrman, I. Henriksen, E.A. Quintero, C.R. Harris, A.M. Archibald, A.H. Ribeiro, F. Pedregosa, P. van Mulbregt, A. Vijaykumar, A.P. Bardelli, A. Rothberg, A. Hilboll, A. Kloeckner, A. Scopatz, A. Lee, A. Rokem, C.N. Woods, C. Fulton, C. Masson, C. Häggström, C. Fitzgerald, D.A. Nicholson, D.R. Hagen, D.V. Pasechnik, E. Olivetti, E. Martin, E. Wieser, F. Silva, F. Lenders, F. Wilhelm, G. Young, G.A. Price, G.-L. Ingold, G.E. Allen, G.R. Lee, H. Audren, I. Probst, J.P. Dietrich, J. Silterra, J.T. Webber, J. Slavič, J. Nothman, J. Buchner, J. Kulick, J.L. Schönberger, J.V. de Miranda Cardoso, J. Reimer, J. Harrington, J.L.C. Rodríguez, J. Nunez-Iglesias, J. Kuczynski, K. Tritz, M. Thoma, M. Newville, M. Kümmerer, M. Bolingbroke, M. Tartre, M. Pak, N.J. Smith, N. Nowaczyk, N. Shebanov, O. Pavlyk, P.A. Brodtkorb, P. Lee, R.T. McGibbon, R. Feldbauer, S. Lewis, S. Tygier, S. Sievert, S. Vigna, S. Peterson, S. More, T. Pudlik, T. Oshima, T.J. Pingel, T.P. Robitaille, T. Spura, T.R. Jones, T. Cera, T. Leslie, T. Zito, T. Krauss, U. Upadhyay, Y.O. Halchenko, Y. Vázquez-Baeza and C. SciPy, Nat. Methods 17(3), 261 (2020). – reference: de GeusTWJCotturaMAppolaireBPeerlingsRHJGeersMGDMech. Mater.201697199 – reference: Montes de Oca ZapiainDPopovaEAbdeljawadFFoulkJWKalidindiSRLimHIntegr. Mater. Manuf. Innov.20187397 – reference: LiuWKKarniadakisGTangSYvonnetJComput. Mech.20196422753977152 – reference: D. Wheeler, D.B. Brough, T. Fast, S.R. Kalidindi and A. Reid, PyMKS: Materials Knowledge System in Python (2014). – reference: TorquatoSRandom Heterogeneous Materials2013BerlinSpringer0988.74001 – reference: JolliffeIScience2002303487 – reference: KullbackSLeiblerRAAnn. Math. Stat.195122179 – reference: TasanCCHoefnagelsJPMDiehlMYanDRotersFRaabeDInt. J. Plast201463198 – reference: C. Blundell, J. Cornebise, K. Kavukcuoglu and D. Wierstra, Weight Uncertainty in Neural Network, in Proceedings of the 32nd International Conference on Machine Learning, B. Francis and B. David, Editors. 2015 (Proceedings of Machine Learning Research: PMLR), pp. 1613–1622. – reference: KalidindiSRMRS Commun.201992518 – reference: A.R. Castillo and S.R. Kalidindi, Meccanica (2020). https://doi.org/10.1007/s11012-020-01154-w. – reference: KalidindiSRKalidindiSRStructure-Property linkagesHierarchical Materials Informatics2015BostonButterworth-Heinemann145189 – reference: LiHKafkaOLGaoJYuCNieYZhangLTajdariMTangSGuoXLiGTangSChengGLiuWKComput. Mech.20196422813977154 – reference: KalidindiSRNiezgodaSRSalemAAJOM201163434 – reference: PaulsonNHPriddyMWMcDowellDLKalidindiSRInt. J. Fatigue20191191 – reference: BroughDBWheelerDKalidindiSRIntegr. Mater. Manuf. Innov.20176136 – reference: MironeGEng. Fract. Mech.20077481203 – reference: C.M. Bishop, Pattern Recognition and Machine Learning (Information Science and Statistics) (Berlin: Springer, 2006), pp. 225–246, 561–570, 21–23. – reference: LandiGNiezgodaSRKalidindiSRActa Mater.20105872716 – reference: MitchellTMMachine Learning1997New YorkMcGrawHill96970913.68167 – reference: KalidindiSRNiezgodaSRLandiGVachhaniSFastTComput. Mater. Contin.2010172103 – reference: GoodfellowIBengioYCourvilleADeep Learning2016CambridgeThe MIT Press1373.68009 – reference: CastilloAKalidindiSRFront. Mater.20196136169 – reference: de GeusTWJPeerlingsRHJGeersMGDEng. Fract. Mech.2015147318 – reference: WilkinsonDMaireEFougeresRMater. Sci. Eng. A19992621–2264 – reference: CecenADaiHYabansuYCKalidindiSRSongLActa Mater.201814676 – reference: D. McDowell, S. Ghosh, and S. Kalidindi, JOM, 63, 45 (2011). – reference: de GeusTPeerlingsRGeersMEng. Fract. Mech.2017169354 – reference: FullwoodDTNiezgodaSRAdamsBLKalidindiSRProg. Mater Sci.2010556477 – reference: PriddyMWPaulsonNHKalidindiSRMcDowellDLInt. J. Fatigue2017104231 – reference: YabansuYCKalidindiSRActa Mater.20159426 – reference: LlorcaJSeguradoJMater. Sci. Eng. A20043651267 – reference: Y.C. Yabansu, A. Iskakov, A. Kapustina, S. Rajagopalan, and S.R. Kalidindi, Acta Mater. 178, 45 (2019). – reference: PaulsonNHPriddyMWMcDowellDLKalidindiSRMater. Des.2018154170 – reference: A. Gelman, J.B. Carlin, H.S. Stern and D.B. Rubin, Bayesian Data Analysis. 2nd edn (Boca Raton: Chapman and Hall, 2004), pp. 6–8, 331. – volume: 67–68 start-page: 326 year: 2015 ident: 4387_CR19 publication-title: Int. J. Solids Struct. doi: 10.1016/j.ijsolstr.2015.04.035 – volume: 3 start-page: 56 issue: 1 year: 2014 ident: 4387_CR41 publication-title: Integrat. Mater. Manuf. Innov. doi: 10.1186/2193-9772-3-5 – ident: 4387_CR27 – start-page: 3 volume-title: Fracture Mechanics: Fundamentals and Applications year: 2005 ident: 4387_CR1 doi: 10.1201/9781420058215 – volume: 365 start-page: 267 issue: 1 year: 2004 ident: 4387_CR16 publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2003.09.035 – volume: 32 start-page: 157 issue: 1 year: 1984 ident: 4387_CR54 publication-title: Acta Metall. doi: 10.1016/0001-6160(84)90213-X – volume: 147 start-page: 318 year: 2015 ident: 4387_CR6 publication-title: Eng. Fract. Mech. doi: 10.1016/j.engfracmech.2015.04.010 – ident: 4387_CR56 doi: 10.1038/s41592-019-0686-2 – volume: 673 start-page: 551 year: 2016 ident: 4387_CR9 publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2016.06.082 – start-page: 96 volume-title: Machine Learning year: 1997 ident: 4387_CR58 – ident: 4387_CR64 doi: 10.1016/j.actamat.2019.07.048 – start-page: 422 volume-title: Information Theory, Inference & Learning Algorithms year: 2002 ident: 4387_CR35 – volume: 81 start-page: 151 year: 2014 ident: 4387_CR39 publication-title: Acta Mater. doi: 10.1016/j.actamat.2014.08.022 – volume: 74 start-page: 1203 issue: 8 year: 2007 ident: 4387_CR53 publication-title: Eng. Fract. Mech. doi: 10.1016/j.engfracmech.2006.08.002 – volume: 46 start-page: 81 issue: 1 year: 2004 ident: 4387_CR55 publication-title: Int. J. Mech. Sci. doi: 10.1016/j.ijmecsci.2004.02.006 – volume-title: Random Heterogeneous Materials year: 2013 ident: 4387_CR47 – volume: 7 start-page: 97 issue: 3 year: 2018 ident: 4387_CR20 publication-title: Integr. Mater. Manuf. Innov. doi: 10.1007/s40192-018-0112-0 – volume: 64 start-page: 275 issue: 2 year: 2019 ident: 4387_CR33 publication-title: Comput. Mech. doi: 10.1007/s00466-019-01741-z – volume: 4 start-page: 101 issue: 2 year: 1968 ident: 4387_CR52 publication-title: Int. J. Fract. Mech. doi: 10.1007/BF00188939 – ident: 4387_CR3 doi: 10.1007/978-981-10-6855-3_70-1 – volume: 154 start-page: 170 year: 2018 ident: 4387_CR26 publication-title: Mater. Des. doi: 10.1016/j.matdes.2018.05.009 – volume: 30 start-page: 487 issue: 3 year: 2002 ident: 4387_CR49 publication-title: Science – volume: 9 start-page: 167 issue: 1 year: 1977 ident: 4387_CR51 publication-title: Eng. Fract. Mech. doi: 10.1016/0013-7944(77)90062-5 – volume: 262 start-page: 264 issue: 1–2 year: 1999 ident: 4387_CR15 publication-title: Mater. Sci. Eng. A doi: 10.1016/S0921-5093(98)01011-9 – volume-title: Deep Learning year: 2016 ident: 4387_CR57 – volume: 39 start-page: 723 issue: 3 year: 1991 ident: 4387_CR43 publication-title: Trans. Sig. Proc. doi: 10.1109/78.80892 – volume: 6 start-page: 36 issue: 1 year: 2017 ident: 4387_CR23 publication-title: Integr. Mater. Manuf. Innov. doi: 10.1007/s40192-017-0089-0 – volume: 22 start-page: 79 issue: 1 year: 1951 ident: 4387_CR60 publication-title: Ann. Math. Stat. doi: 10.1214/aoms/1177729694 – ident: 4387_CR29 – ident: 4387_CR36 – volume: 63 start-page: 34 issue: 4 year: 2011 ident: 4387_CR45 publication-title: JOM doi: 10.1007/s11837-011-0057-7 – volume: 9 start-page: 518 issue: 2 year: 2019 ident: 4387_CR30 publication-title: MRS Commun. doi: 10.1557/mrc.2019.56 – start-page: 3 volume-title: Damage Mechanics year: 1996 ident: 4387_CR2 – volume: 66 start-page: 141 issue: 1 year: 2020 ident: 4387_CR31 publication-title: Comput. Mech. doi: 10.1007/s00466-020-01845-x – volume: 58 start-page: 2716 issue: 7 year: 2010 ident: 4387_CR38 publication-title: Acta Mater. doi: 10.1016/j.actamat.2010.01.007 – volume: 28 start-page: 47 issue: 1 year: 1993 ident: 4387_CR13 publication-title: Scr. Metall. Mater. doi: 10.1016/0956-716X(93)90535-Z – ident: 4387_CR48 – volume-title: ABAQUS/Standard User’s Manual year: 2001 ident: 4387_CR61 – volume: 169 start-page: 354 year: 2017 ident: 4387_CR5 publication-title: Eng. Fract. Mech. doi: 10.1016/j.engfracmech.2016.08.009 – volume: 146 start-page: 76 year: 2018 ident: 4387_CR42 publication-title: Acta Mater. doi: 10.1016/j.actamat.2017.11.053 – volume: 39 start-page: 1781 issue: 8 year: 1991 ident: 4387_CR12 publication-title: Acta Metall. Mater. doi: 10.1016/0956-7151(91)90146-R – volume: 56 start-page: 34 year: 2012 ident: 4387_CR7 publication-title: Comput. Mater. Sci. doi: 10.1016/j.commatsci.2011.12.031 – volume: 6 start-page: 169 issue: 136 year: 2019 ident: 4387_CR62 publication-title: Front. Mater. – volume: 64 start-page: 281 issue: 2 year: 2019 ident: 4387_CR32 publication-title: Comput. Mech. doi: 10.1007/s00466-019-01716-0 – ident: 4387_CR28 – start-page: 145 volume-title: Hierarchical Materials Informatics year: 2015 ident: 4387_CR24 doi: 10.1016/B978-0-12-410394-8.00006-0 – volume: 97–98 start-page: 687 year: 2016 ident: 4387_CR11 publication-title: Int. J. Solids Struct. doi: 10.1016/j.ijsolstr.2016.03.029 – volume: 38 start-page: 873 issue: 8 year: 2006 ident: 4387_CR18 publication-title: Mech. Mater. doi: 10.1016/j.mechmat.2005.06.026 – volume: 55 start-page: 477 issue: 6 year: 2010 ident: 4387_CR22 publication-title: Prog. Mater Sci. doi: 10.1016/j.pmatsci.2009.08.002 – volume: 101 start-page: 147 year: 2016 ident: 4387_CR4 publication-title: Mech. Mater. doi: 10.1016/j.mechmat.2016.07.014 – volume: 94 start-page: 26 year: 2015 ident: 4387_CR40 publication-title: Acta Mater. doi: 10.1016/j.actamat.2015.04.049 – volume: 97 start-page: 199 year: 2016 ident: 4387_CR10 publication-title: Mech. Mater. doi: 10.1016/j.mechmat.2016.02.006 – volume: 51 start-page: 2355 issue: 8 year: 2003 ident: 4387_CR17 publication-title: Acta Mater. doi: 10.1016/S1359-6454(03)00043-0 – volume: 104 start-page: 231 year: 2017 ident: 4387_CR25 publication-title: Int. J. Fatigue doi: 10.1016/j.ijfatigue.2017.07.015 – volume: 17 start-page: 103 issue: 2 year: 2010 ident: 4387_CR37 publication-title: Comput. Mater. Contin. – volume: 1 start-page: 19 year: 2002 ident: 4387_CR50 publication-title: Data Sci. J. doi: 10.2481/dsj.1.19 – ident: 4387_CR59 – ident: 4387_CR46 doi: 10.1007/s11837-011-0045-y – volume: 64 start-page: 307 issue: 2 year: 2019 ident: 4387_CR34 publication-title: Comput. Mech. doi: 10.1007/s00466-018-1643-0 – volume-title: Hierarchical Materials Informatics: Novel Analytics for Materials Data year: 2015 ident: 4387_CR44 – volume: 63 start-page: 198 year: 2014 ident: 4387_CR8 publication-title: Int. J. Plast doi: 10.1016/j.ijplas.2014.06.004 – volume: 233 start-page: 145 issue: 1–2 year: 1997 ident: 4387_CR14 publication-title: Mater. Sci. Eng. A doi: 10.1016/S0921-5093(97)00059-2 – volume: 119 start-page: 1 year: 2019 ident: 4387_CR21 publication-title: Int. J. Fatigue doi: 10.1016/j.ijfatigue.2018.09.011 – ident: 4387_CR63 doi: 10.1007/s11012-020-01154-w |
| SSID | ssj0007491 |
| Score | 2.3430114 |
| Snippet | The design and development of materials with increased damage resilience is often impeded by the difficulty in establishing the precise linkages, with... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 4359 |
| SubjectTerms | Artificial neural networks Augmenting Physics-based Models in ICME with Machine Learning and Uncertainty Quantification Bayesian analysis Chemistry/Food Science Crack initiation Damage Datasets Design optimization Earth Sciences Engineering Environment Fracture mechanics Machine learning Microstructure Neural networks Open source software Physics Principal components analysis Reduced order models Statistical inference Uncertainty |
| SummonAdditionalLinks | – databaseName: ABI/INFORM Collection dbid: 7WY link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwELWgcIADO6Js8oEbWCRxYqcnxCqQUEEIRDlFjhdRVNrSFKT-PTNuSgGJXjhGiZ1IbzKLPX6PkD0XGpGHSjOTBo7FXAVMhY4zEefC5BAUjPGqJdeyXk8bjdptueBWlG2VI5_oHbXpaFwjP4QyAUJhkgbiqPvGUDUKd1dLCY1pMgOBOkEFA_n49OWJZewV8zwbQZzytDw0Mzw6B7YsGRZPuBcm2eBnYBpnm782SH3cuVj87xcvkYUy46THQxNZJlO2vULmv_EQrpKXOyRwtYbdIBEnRX20VkEhnaV3yksr0DP1Co6HXmGrkceSNtv07F212O0zxEGKbgXbv2xBfRMCPVEDi-czKbJ_wOvrw3bzYo08XJzfn16yUoSBaZ5GfZaLpKZsbAVc5s4oKFkgqzBWhZA5CgPllg2slDzUCY_zREXGqUhqA6ExioUO-TqptDttu0Goi6xLZaR5LQliq0WuuISZbSqc4-A4qiQcIZDpkqEchTJa2ZhbGVHLALXMo5YNqmT_a0x3yM8x8entEVRZ-a8W2RinKjkYgT2-_fdsm5Nn2yJzEdqX733ZJpV-793ukFn90W8WvV1vqZ_Pl-8q priority: 102 providerName: ProQuest |
| Title | Reduced-Order Models for Ranking Damage Initiation in Dual-Phase Composites Using Bayesian Neural Networks |
| URI | https://link.springer.com/article/10.1007/s11837-020-04387-y https://www.proquest.com/docview/2490285806 |
| Volume | 72 |
| WOSCitedRecordID | wos000578249900004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: ABI/INFORM Collection customDbUrl: eissn: 1543-1851 dateEnd: 20241214 omitProxy: false ssIdentifier: ssj0007491 issn: 1047-4838 databaseCode: 7WY dateStart: 19960701 isFulltext: true titleUrlDefault: https://www.proquest.com/abicomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ABI/INFORM Trade & Industry customDbUrl: eissn: 1543-1851 dateEnd: 20241214 omitProxy: false ssIdentifier: ssj0007491 issn: 1047-4838 databaseCode: M0F dateStart: 19960701 isFulltext: true titleUrlDefault: https://search.proquest.com/abitrade providerName: ProQuest – providerCode: PRVPQU databaseName: Materials Science Database customDbUrl: eissn: 1543-1851 dateEnd: 20241214 omitProxy: false ssIdentifier: ssj0007491 issn: 1047-4838 databaseCode: KB. dateStart: 19960701 isFulltext: true titleUrlDefault: http://search.proquest.com/materialsscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1543-1851 dateEnd: 20241214 omitProxy: false ssIdentifier: ssj0007491 issn: 1047-4838 databaseCode: BENPR dateStart: 19960701 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Science Database customDbUrl: eissn: 1543-1851 dateEnd: 20241214 omitProxy: false ssIdentifier: ssj0007491 issn: 1047-4838 databaseCode: M2P dateStart: 19960701 isFulltext: true titleUrlDefault: https://search.proquest.com/sciencejournals providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1543-1851 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0007491 issn: 1047-4838 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bT9swFD4aN2l7YFxFgVV-2BsYJXFip4-UUg0BXVUGg6fI8UV0KgWRdlL_PcduQreJIcFLJCuOZfmcnIv8ne8AfLWh5nkoFdVpYGnMZEBlaBnlcc51jk5Ba9-15Ex0Oun1daNbFoUVFdq9upL0lnpW7IbaJ6hLd9ztlaCTOVhIHNuMy9Evrp7tr4h9nzzPQRCnLC1LZV5e4293NIsx_7kW9d6m_fl9-1yB5TK6JIdTdViFD2a4Bp_-4BxcgyWP-VTFOvzqOdpWo-l3R79JXFe0QUEwiCU96RsqkJa8Q3NDThzAyEuQ9IekNZYD2r1F70ecMXGgL1MQDz0gTTkxriqTOM4P3EhnCjIvNuCyffzj6BstWy9QxdJoRHOeNKSJDcdhbrXERAVjCW1kiPEi15hkmcAIwUKVsDhPZKStjITS6BCjmKuQbcL88H5otoDYyNhURIo1kiA2iueSCVzZpNxahuaiBmElgUyVvOSuPcYgmzEquxPN8EQzf6LZpAZ7z988TFk5Xp29Wwk2K__QIsO0E0OrJA14DfYrQc5e_3-17bdN34GPkdMFj4DZhfnR49h8gUX1e9QvHuswJ37e1GGhedzp9nB02jzA53nQds-oW_ea_QQhH-4h |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VggQ98EaEFtgDnGCFvbteO4cKASFq1DRUVZF6c9f7EEUhfTgF5U_xG5lZ2w0g0VsPHC3bY9n7zcs78w3Ai5A6XaXGclckgStpEm7SILlWlXYVOgXn4tSScT6ZFAcH_d0V-Nn1wlBZZWcTo6F2x5b-kb_BNAFdYVYk-u3JKaepUbS72o3QaGCx7Rc_MGWrN0cDXN-XQgw_7n_Y4u1UAW5lIea80lnfeOU1HlbBGYzB0U06b1IMhbTD_MEnPs9lajOpqswIF4zIrUNbL5S2qUS51-C6wsSLNGonGV5Y_lzFCX2R_UAVsmibdJpWPdSdnFOyRntvOV_86QiX0e1fG7LRzw3v_G9f6C7cbiNq9q5RgXuw4mf3Ye03nsUH8HWPCGq945-IaJTR_LdpzTBcZ3smjo5gA_MNDSsbUSlVxCo7mrHBuZny3S_o5xmZTSpv8zWLRRbsvVl46j9lxG6Cj5805fT1Q_h8JS_7CFZnxzP_GFgQPhS5sLKfJcpbXRmZo2Rf6BAkGsYepN2Kl7ZlYKdBINNyyR1NKCkRJWVESbnowauLe04a_pFLr97ooFG2tqgul7jowesOXMvT_5b25HJpz-Hm1v7OuByPJtvrcEsQtmOdzwaszs_O_VO4Yb_Pj-qzZ1FLGBxeNeh-Aa6nS20 |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3PT9RAFH7BxRg9ICrEFdA54EkntDPtTPdACLBs3EDqZqMJtzqdHwGzLkgXzf5r_nW8mbasmsiNg8em7TTtfPN-dN77PoBtFxtRxkpTk0WOJlxFVMWOU5GUwpToFIwJqiUnMs-z09PeaAl-tb0wvqyytYnBUJsL7f-R72CagK4wzSKx45qyiFF_sHf5nXoFKb_T2spp1BA5tvOfmL5Vu8M-zvVbxgZHnw4_0EZhgGqesRktRdpTNrECD0tnFMbj6DKNVTGGRcJgLmEjKyWPdcqTMlXMOMWkNmj3WSJ0zHHcB7AsOSY9HVg-OMpH41s_IJOg1xe4EJKMZ03LTt24hytJUp-6-Z04Sed_usVFrPvX9mzweoOn__P3WoWVJtYm-_XieAZLdvocnvzGwPgCvo49da019KOnICVeGW5SEQzkyVgFUQnSV9_Q5JKhL7IKKCbnU9K_VhM6OsMIgHiD6gvfbEVC-QU5UHPrO1OJ5z3Bx-d1oX21Bp_v5WXXoTO9mNqXQByzLpNM814aJVaLUnGJI9tMOMfRZHYhbme_0A03u5cImRQLVmmPmAIRUwTEFPMuvLu957JmJrnz6s0WJkVjpapigZEuvG-Btjj979Fe3T3aG3iEWCtOhvnxBjxmHuahAGgTOrOra7sFD_WP2Xl19bpZMgS-3DfqbgBHlFWi |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Reduced-Order+Models+for+Ranking+Damage+Initiation+in+Dual-Phase+Composites+Using+Bayesian+Neural+Networks&rft.jtitle=JOM+%281989%29&rft.au=Venkatraman%2C+Aditya&rft.au=Montes+de+Oca+Zapiain%2C+David&rft.au=Kalidindi%2C+Surya+R.&rft.date=2020-12-01&rft.pub=Springer+US&rft.issn=1047-4838&rft.eissn=1543-1851&rft.volume=72&rft.issue=12&rft.spage=4359&rft.epage=4369&rft_id=info:doi/10.1007%2Fs11837-020-04387-y&rft.externalDocID=10_1007_s11837_020_04387_y |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1047-4838&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1047-4838&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1047-4838&client=summon |