Reduced-Order Models for Ranking Damage Initiation in Dual-Phase Composites Using Bayesian Neural Networks

The design and development of materials with increased damage resilience is often impeded by the difficulty in establishing the precise linkages, with quantified uncertainty, between the complex details of the internal structure of materials and their potential for damage initiation. We present here...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:JOM (1989) Jg. 72; H. 12; S. 4359 - 4369
Hauptverfasser: Venkatraman, Aditya, Montes de Oca Zapiain, David, Kalidindi, Surya R.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York Springer US 01.12.2020
Springer Nature B.V
Schlagworte:
ISSN:1047-4838, 1543-1851
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract The design and development of materials with increased damage resilience is often impeded by the difficulty in establishing the precise linkages, with quantified uncertainty, between the complex details of the internal structure of materials and their potential for damage initiation. We present herein a novel machine-learning-based approach for establishing reduced-order models (ROMs) that relate the microstructure of a material to its susceptibility to damage initiation. This is accomplished by combining the recently established materials knowledge system framework with toolsets such as feedforward neural networks and variational Bayesian inference. The overall approach is found to be versatile for training scalable and accurate ROMs with quantified prediction uncertainty for the propensity to damage initiation for a variety of microstructures. The approach is applicable to a large class of challenges encountered in multiscale materials design efforts.
AbstractList The design and development of materials with increased damage resilience is often impeded by the difficulty in establishing the precise linkages, with quantified uncertainty, between the complex details of the internal structure of materials and their potential for damage initiation. We present herein a novel machine-learning-based approach for establishing reduced-order models (ROMs) that relate the microstructure of a material to its susceptibility to damage initiation. This is accomplished by combining the recently established materials knowledge system framework with toolsets such as feedforward neural networks and variational Bayesian inference. The overall approach is found to be versatile for training scalable and accurate ROMs with quantified prediction uncertainty for the propensity to damage initiation for a variety of microstructures. The approach is applicable to a large class of challenges encountered in multiscale materials design efforts.
Author Venkatraman, Aditya
Kalidindi, Surya R.
Montes de Oca Zapiain, David
Author_xml – sequence: 1
  givenname: Aditya
  surname: Venkatraman
  fullname: Venkatraman, Aditya
  organization: George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology
– sequence: 2
  givenname: David
  surname: Montes de Oca Zapiain
  fullname: Montes de Oca Zapiain, David
  organization: George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology
– sequence: 3
  givenname: Surya R.
  surname: Kalidindi
  fullname: Kalidindi, Surya R.
  email: surya.kalidindi@me.gatech.edu
  organization: George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology
BookMark eNp9kE1PGzEQhi1EJT7aP9CTJc4u_tq1cyyhBSQ-KlTO1mQ9mzps7GDvqsq_xxAkJA6cZkaaZ-bVc0T2Y4pIyHfBfwjOzWkRwirDuOSMa2UN2-6RQ9FoxYRtxH7tuTZMW2UPyFEpK14hPROHZHWPfurQs7vsMdOb5HEotE-Z3kN8DHFJz2ENS6RXMYwBxpAiDZGeTzCwP_-gIJ2n9SaVMGKhD-UFOIMtlgCR3uKUYahl_J_yY_lKvvQwFPz2Vo_Jw-9ff-eX7Pru4mr-85p1ysqRLdpmBqixreOi9yBVzWo9gpgZ03ojWuRojBJdo_SiAel7kKbziiup206oY3Kyu7vJ6WnCMrpVmnKsL53UMy5tY3lbt-Ruq8uplIy92-Swhrx1grsXp27n1FWn7tWp21bIfoC6ML5KGTOE4XNU7dBS_8Ql5vdUn1DPtVqOlQ
CitedBy_id crossref_primary_10_1016_j_msea_2021_142472
crossref_primary_10_1007_s40192_022_00282_3
crossref_primary_10_1103_8zzt_4b7z
crossref_primary_10_1016_j_actamat_2024_120537
crossref_primary_10_1016_j_ijplas_2025_104319
crossref_primary_10_1016_j_mechmat_2023_104679
crossref_primary_10_1016_j_commatsci_2023_112074
Cites_doi 10.1016/j.ijsolstr.2015.04.035
10.1186/2193-9772-3-5
10.1201/9781420058215
10.1016/j.msea.2003.09.035
10.1016/0001-6160(84)90213-X
10.1016/j.engfracmech.2015.04.010
10.1038/s41592-019-0686-2
10.1016/j.msea.2016.06.082
10.1016/j.actamat.2019.07.048
10.1016/j.actamat.2014.08.022
10.1016/j.engfracmech.2006.08.002
10.1016/j.ijmecsci.2004.02.006
10.1007/s40192-018-0112-0
10.1007/s00466-019-01741-z
10.1007/BF00188939
10.1007/978-981-10-6855-3_70-1
10.1016/j.matdes.2018.05.009
10.1016/0013-7944(77)90062-5
10.1016/S0921-5093(98)01011-9
10.1109/78.80892
10.1007/s40192-017-0089-0
10.1214/aoms/1177729694
10.1007/s11837-011-0057-7
10.1557/mrc.2019.56
10.1007/s00466-020-01845-x
10.1016/j.actamat.2010.01.007
10.1016/0956-716X(93)90535-Z
10.1016/j.engfracmech.2016.08.009
10.1016/j.actamat.2017.11.053
10.1016/0956-7151(91)90146-R
10.1016/j.commatsci.2011.12.031
10.1007/s00466-019-01716-0
10.1016/B978-0-12-410394-8.00006-0
10.1016/j.ijsolstr.2016.03.029
10.1016/j.mechmat.2005.06.026
10.1016/j.pmatsci.2009.08.002
10.1016/j.mechmat.2016.07.014
10.1016/j.actamat.2015.04.049
10.1016/j.mechmat.2016.02.006
10.1016/S1359-6454(03)00043-0
10.1016/j.ijfatigue.2017.07.015
10.2481/dsj.1.19
10.1007/s11837-011-0045-y
10.1007/s00466-018-1643-0
10.1016/j.ijplas.2014.06.004
10.1016/S0921-5093(97)00059-2
10.1016/j.ijfatigue.2018.09.011
10.1007/s11012-020-01154-w
ContentType Journal Article
Copyright The Minerals, Metals & Materials Society 2020
Copyright Springer Nature B.V. Dec 2020
Copyright_xml – notice: The Minerals, Metals & Materials Society 2020
– notice: Copyright Springer Nature B.V. Dec 2020
DBID AAYXX
CITATION
3V.
4T-
4U-
7SR
7TA
7WY
7XB
883
88I
8BQ
8FD
8FE
8FG
8FK
8FL
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
D1I
DWQXO
FRNLG
GNUQQ
HCIFZ
JG9
K60
K6~
KB.
L.-
M0F
M2P
PDBOC
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
Q9U
S0X
DOI 10.1007/s11837-020-04387-y
DatabaseName CrossRef
ProQuest Central (Corporate)
Docstoc
University Readers
Engineered Materials Abstracts
Materials Business File
ABI/INFORM Collection
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Trade & Industry (Alumni)
Science Database (Alumni Edition)
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
ProQuest Technology Collection
ProQuest One
ProQuest Materials Science Collection
ProQuest Central
Business Premium Collection (Alumni)
ProQuest Central Student
SciTech Collection (ProQuest)
Materials Research Database
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Materials Science Database
ABI/INFORM Professional Advanced
ABI/INFORM Trade & Industry
Science Database (ProQuest)
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central Basic
SIRS Editorial
DatabaseTitle CrossRef
Materials Research Database
ProQuest Business Collection (Alumni Edition)
ProQuest One Business
University Readers
ProQuest Central Student
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
SIRS Editorial
Materials Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ABI/INFORM Complete
Materials Business File
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest One Applied & Life Sciences
Engineered Materials Abstracts
ProQuest Central Korea
Materials Science Database
ProQuest Central (New)
ABI/INFORM Complete (Alumni Edition)
ProQuest Materials Science Collection
Business Premium Collection
ProQuest Science Journals (Alumni Edition)
ABI/INFORM Trade & Industry (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Business Collection
METADEX
ProQuest One Academic UKI Edition
Docstoc
Materials Science & Engineering Collection
ProQuest One Business (Alumni)
ABI/INFORM Trade & Industry
ProQuest One Academic
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
ProQuest One Academic (New)
DatabaseTitleList
Materials Research Database
Database_xml – sequence: 1
  dbid: KB.
  name: Materials Science Database
  url: http://search.proquest.com/materialsscijournals
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1543-1851
EndPage 4369
ExternalDocumentID 10_1007_s11837_020_04387_y
GrantInformation_xml – fundername: Office of Naval Research Global
  grantid: N00014-18-1-2879
  funderid: http://dx.doi.org/10.13039/100007297
GroupedDBID -58
-5G
-BR
-DZ
-EM
-Y2
-~C
-~X
.4S
.86
.DC
06C
06D
0R~
0VY
199
1N0
203
29J
29~
2J2
2JN
2JY
2KG
2KM
2LR
2~H
30V
3V.
4.4
406
408
40D
40E
5GY
5VS
67Z
6NX
6TJ
78A
7WY
883
88I
8FE
8FG
8FL
8FW
8R4
8R5
8UJ
95-
95.
95~
96X
AABHQ
AACDK
AAEWM
AAGAY
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AASML
AATNV
AATVU
AAUYE
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABDZT
ABECU
ABEFU
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABMNI
ABMQK
ABNWP
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBEA
ACBXY
ACDTI
ACGFO
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADMXK
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AI.
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARCEE
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BKOMP
BPHCQ
CAG
CCPQU
COF
CS3
CSCUP
D1I
DDRTE
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EDO
EIOEI
EJD
ESBYG
F5P
FAC
FAL
FERAY
FFXSO
FIGPU
FINBP
FJD
FJW
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GROUPED_ABI_INFORM_COMPLETE
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HRMNR
HZ~
H~9
I-F
IJ-
IKXTQ
ITM
IWAJR
IXC
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JZLTJ
K60
K6~
KB.
KDC
KOV
LLZTM
M0F
M2P
M4Y
MA-
MK~
MQGED
N9A
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9J
P2P
P9N
PDBOC
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
Q2X
QF4
QM1
QN7
QO4
QOK
QOS
R89
R9I
RHV
RNS
ROL
RPX
RSV
RXW
S0X
S16
S1Z
S27
S3B
SAP
SCG
SCLPG
SCM
SCV
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TAE
TSG
TSK
TSV
TUC
TUS
U2A
UAO
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VH1
W48
WH7
WK8
YLTOR
Z45
Z5O
Z7R
Z7S
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z85
Z86
Z88
Z8M
Z8N
Z8P
Z8Q
Z8R
Z8S
Z8T
Z8W
Z8Z
Z92
ZMTXR
~02
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
AEZWR
AFDZB
AFFHD
AFHIU
AFKWF
AHPBZ
AHWEU
AIXLP
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
4T-
4U-
7SR
7TA
7XB
8BQ
8FD
8FK
JG9
L.-
PKEHL
PQEST
PQUKI
Q9U
ID FETCH-LOGICAL-c382t-b659ae4e6c38bfda230078dea19776d716e0e7731c534b5a2dfa27cd303246c13
IEDL.DBID RSV
ISICitedReferencesCount 10
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000578249900004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1047-4838
IngestDate Wed Nov 05 01:08:10 EST 2025
Sat Nov 29 01:51:07 EST 2025
Tue Nov 18 20:31:54 EST 2025
Fri Feb 21 02:31:34 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c382t-b659ae4e6c38bfda230078dea19776d716e0e7731c534b5a2dfa27cd303246c13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2490285806
PQPubID 42295
PageCount 11
ParticipantIDs proquest_journals_2490285806
crossref_primary_10_1007_s11837_020_04387_y
crossref_citationtrail_10_1007_s11837_020_04387_y
springer_journals_10_1007_s11837_020_04387_y
PublicationCentury 2000
PublicationDate 2020-12-01
PublicationDateYYYYMMDD 2020-12-01
PublicationDate_xml – month: 12
  year: 2020
  text: 2020-12-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationSubtitle The Journal of The Minerals, Metals & Materials Society (TMS)
PublicationTitle JOM (1989)
PublicationTitleAbbrev JOM
PublicationYear 2020
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References D. McDowell, S. Ghosh, and S. Kalidindi, JOM, 63, 45 (2011).
de GeusTPeerlingsRGeersMEng. Fract. Mech.2017169354
De GeusTMarescaFPeerlingsRGeersMMech. Mater.2016101147
SeguradoJGonzalezCLlorcaJActa Mater.20035182355
WilkinsonDMaireEEmburyJMater. Sci. Eng. A19972331–2145
FullwoodDTNiezgodaSRAdamsBLKalidindiSRProg. Mater Sci.2010556477
C. Blundell, J. Cornebise, K. Kavukcuoglu and D. Wierstra, Weight Uncertainty in Neural Network, in Proceedings of the 32nd International Conference on Machine Learning, B. Francis and B. David, Editors. 2015 (Proceedings of Machine Learning Research: PMLR), pp. 1613–1622.
TasanCCHoefnagelsJPMDiehlMYanDRotersFRaabeDInt. J. Plast201463198
GoodfellowIBengioYCourvilleADeep Learning2016CambridgeThe MIT Press1373.68009
HaddadRAAkansuANTrans. Sig. Proc.1991393723
KalidindiSRHierarchical Materials Informatics: Novel Analytics for Materials Data2015AmsterdamElsevier
LiuWKKarniadakisGTangSYvonnetJComput. Mech.20196422753977152
CastilloAKalidindiSRFront. Mater.20196136169
PaulSKComput. Mater. Sci.20125634
BrechetYEmburyJTaoSLuoLActa Metall. Mater.19913981781
LiHKafkaOLGaoJYuCNieYZhangLTajdariMTangSGuoXLiGTangSChengGLiuWKComput. Mech.20196422813977154
AndersonTLAndersonTLFracture Mechanics: Fundamentals and Applications20053OxfordshireTaylor & Francis351083.74001
JolliffeIScience2002303487
P. Virtanen, R. Gommers, T.E. Oliphant, M. Haberland, T. Reddy, D. Cournapeau, E. Burovski, P. Peterson, W. Weckesser, J. Bright, S.J. van der Walt, M. Brett, J. Wilson, K.J. Millman, N. Mayorov, A.R.J. Nelson, E. Jones, R. Kern, E. Larson, C.J. Carey, İ. Polat, Y. Feng, E.W. Moore, J. VanderPlas, D. Laxalde, J. Perktold, R. Cimrman, I. Henriksen, E.A. Quintero, C.R. Harris, A.M. Archibald, A.H. Ribeiro, F. Pedregosa, P. van Mulbregt, A. Vijaykumar, A.P. Bardelli, A. Rothberg, A. Hilboll, A. Kloeckner, A. Scopatz, A. Lee, A. Rokem, C.N. Woods, C. Fulton, C. Masson, C. Häggström, C. Fitzgerald, D.A. Nicholson, D.R. Hagen, D.V. Pasechnik, E. Olivetti, E. Martin, E. Wieser, F. Silva, F. Lenders, F. Wilhelm, G. Young, G.A. Price, G.-L. Ingold, G.E. Allen, G.R. Lee, H. Audren, I. Probst, J.P. Dietrich, J. Silterra, J.T. Webber, J. Slavič, J. Nothman, J. Buchner, J. Kulick, J.L. Schönberger, J.V. de Miranda Cardoso, J. Reimer, J. Harrington, J.L.C. Rodríguez, J. Nunez-Iglesias, J. Kuczynski, K. Tritz, M. Thoma, M. Newville, M. Kümmerer, M. Bolingbroke, M. Tartre, M. Pak, N.J. Smith, N. Nowaczyk, N. Shebanov, O. Pavlyk, P.A. Brodtkorb, P. Lee, R.T. McGibbon, R. Feldbauer, S. Lewis, S. Tygier, S. Sievert, S. Vigna, S. Peterson, S. More, T. Pudlik, T. Oshima, T.J. Pingel, T.P. Robitaille, T. Spura, T.R. Jones, T. Cera, T. Leslie, T. Zito, T. Krauss, U. Upadhyay, Y.O. Halchenko, Y. Vázquez-Baeza and C. SciPy, Nat. Methods 17(3), 261 (2020).
LandiGNiezgodaSRKalidindiSRActa Mater.20105872716
MacKayDJCInformation Theory, Inference & Learning Algorithms2002CambridgeCambridge University Press422424
A.R. Castillo and S.R. Kalidindi, Meccanica (2020). https://doi.org/10.1007/s11012-020-01154-w.
de GeusTvan DuurenJPeerlingsRGeersMMater. Sci. Eng. A2016673551
PapanikolaouSComput. Mech.20206611414105031
TvergaardVNeedlemanAActa Metall.1984321157
Y.C. Yabansu, A. Iskakov, A. Kapustina, S. Rajagopalan, and S.R. Kalidindi, Acta Mater. 178, 45 (2019).
PaulsonNHPriddyMWMcDowellDLKalidindiSRMater. Des.2018154170
PaulsonNHPriddyMWMcDowellDLKalidindiSRInt. J. Fatigue20191191
YabansuYCPatelDKKalidindiSRActa Mater.201481151
CecenADaiHYabansuYCKalidindiSRSongLActa Mater.201814676
de GeusTWJCotturaMAppolaireBPeerlingsRHJGeersMGDMech. Mater.201697199
BrechetYNewellJTaoSEmburyJScr. Metall. Mater.199328147
de GeusTWJPeerlingsRHJGeersMGDEng. Fract. Mech.2015147318
de GeusTWJPeerlingsRHJGeersMGDInt. J. Solids Struct.201697–98687
PriddyMWPaulsonNHKalidindiSRMcDowellDLInt. J. Fatigue2017104231
B. Anbarlooie, J. Kadkhodapour, H. Hosseini Toudeshky and S. Schmauder, Micromechanics of Dual-Phase Steels: Deformation, Damage, and Fatigue, in Handbook of Mechanics of Materials, S. Schmauder, C.-S. Chen, K.K. Chawla, N. Chawla, W. Chen and Y. Kagawa. (Singapore: Springer Singapore, 2018), pp. 1–30.
LuXGiovanisDGYvonnetJPapadopoulosVDetrezFBaiJComput. Mech.20196423073977155
KalidindiSRNiezgodaSRSalemAAJOM201163434
A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Köpf, E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, and S. Chintala, PyTorch: An Imperative Style, High-Performance Deep Learning Library (2019), pp. 8024–8035.
TorquatoSRandom Heterogeneous Materials2013BerlinSpringer0988.74001
de GeusTWJPeerlingsRHJGeersMGDInt. J. Solids Struct.201567–68326
HibbittKABAQUS/Standard User’s Manual2001HibbittKarlsson & Sorensen
BroughDBWheelerDKalidindiSRIntegr. Mater. Manuf. Innov.20176136
KalidindiSRNiezgodaSRLandiGVachhaniSFastTComput. Mater. Contin.2010172103
KalidindiSRMRS Commun.201992518
C.M. Bishop, Pattern Recognition and Machine Learning (Information Science and Statistics) (Berlin: Springer, 2006), pp. 225–246, 561–570, 21–23.
T. Hastie, R. Tibshirani and J. Friedman, The Elements of Statistical Learning: Data Mining, Inference, and Prediction (Berlin: Springer, 2009), pp. 392–397, 534–538, 397–401.
MackenzieAHancockJBrownDEng. Fract. Mech.197791167
Montes de Oca ZapiainDPopovaEAbdeljawadFFoulkJWKalidindiSRLimHIntegr. Mater. Manuf. Innov.20187397
WilkinsonDMaireEFougeresRMater. Sci. Eng. A19992621–2264
KullbackSLeiblerRAAnn. Math. Stat.195122179
BaoYWierzbickiTInt. J. Mech. Sci.200446181
MironeGEng. Fract. Mech.20077481203
SuhCRajagopalanALiXRajanKData Sci. J.2002119
LlorcaJSeguradoJMater. Sci. Eng. A20043651267
MitchellTMMachine Learning1997New YorkMcGrawHill96970913.68167
SeguradoJLlorcaJMech. Mater.2006388873
GroeberMAJacksonMAIntegrat. Mater. Manuf. Innov.20143156
KalidindiSRKalidindiSRStructure-Property linkagesHierarchical Materials Informatics2015BostonButterworth-Heinemann145189
McClintockFAInt. J. Fract. Mech.196842101
D. Wheeler, D.B. Brough, T. Fast, S.R. Kalidindi and A. Reid, PyMKS: Materials Knowledge System in Python (2014).
KrajcinovicDDamage Mechanics1996AmsterdamElsevier35
YabansuYCKalidindiSRActa Mater.20159426
A. Gelman, J.B. Carlin, H.S. Stern and D.B. Rubin, Bayesian Data Analysis. 2nd edn (Boca Raton: Chapman and Hall, 2004), pp. 6–8, 331.
TWJ de Geus (4387_CR19) 2015; 67–68
4387_CR27
A Mackenzie (4387_CR51) 1977; 9
4387_CR28
4387_CR29
MW Priddy (4387_CR25) 2017; 104
WK Liu (4387_CR33) 2019; 64
I Jolliffe (4387_CR49) 2002; 30
NH Paulson (4387_CR26) 2018; 154
T De Geus (4387_CR4) 2016; 101
TWJ de Geus (4387_CR10) 2016; 97
RA Haddad (4387_CR43) 1991; 39
4387_CR63
4387_CR64
NH Paulson (4387_CR21) 2019; 119
J Segurado (4387_CR17) 2003; 51
DB Brough (4387_CR23) 2017; 6
T de Geus (4387_CR5) 2017; 169
Y Brechet (4387_CR13) 1993; 28
DJC MacKay (4387_CR35) 2002
4387_CR36
TWJ de Geus (4387_CR11) 2016; 97–98
TM Mitchell (4387_CR58) 1997
YC Yabansu (4387_CR40) 2015; 94
D Wilkinson (4387_CR15) 1999; 262
H Li (4387_CR32) 2019; 64
TWJ de Geus (4387_CR6) 2015; 147
D Montes de Oca Zapiain (4387_CR20) 2018; 7
SR Kalidindi (4387_CR45) 2011; 63
C Suh (4387_CR50) 2002; 1
A Castillo (4387_CR62) 2019; 6
D Wilkinson (4387_CR14) 1997; 233
I Goodfellow (4387_CR57) 2016
YC Yabansu (4387_CR39) 2014; 81
Y Bao (4387_CR55) 2004; 46
4387_CR48
Y Brechet (4387_CR12) 1991; 39
SR Kalidindi (4387_CR24) 2015
MA Groeber (4387_CR41) 2014; 3
S Papanikolaou (4387_CR31) 2020; 66
4387_CR46
X Lu (4387_CR34) 2019; 64
SR Kalidindi (4387_CR44) 2015
K Hibbitt (4387_CR61) 2001
D Krajcinovic (4387_CR2) 1996
SR Kalidindi (4387_CR37) 2010; 17
G Landi (4387_CR38) 2010; 58
S Kullback (4387_CR60) 1951; 22
S Torquato (4387_CR47) 2013
T de Geus (4387_CR9) 2016; 673
FA McClintock (4387_CR52) 1968; 4
J Llorca (4387_CR16) 2004; 365
4387_CR59
4387_CR56
SK Paul (4387_CR7) 2012; 56
J Segurado (4387_CR18) 2006; 38
SR Kalidindi (4387_CR30) 2019; 9
DT Fullwood (4387_CR22) 2010; 55
V Tvergaard (4387_CR54) 1984; 32
G Mirone (4387_CR53) 2007; 74
TL Anderson (4387_CR1) 2005
A Cecen (4387_CR42) 2018; 146
CC Tasan (4387_CR8) 2014; 63
4387_CR3
References_xml – reference: de GeusTWJPeerlingsRHJGeersMGDInt. J. Solids Struct.201697–98687
– reference: TvergaardVNeedlemanAActa Metall.1984321157
– reference: SeguradoJGonzalezCLlorcaJActa Mater.20035182355
– reference: B. Anbarlooie, J. Kadkhodapour, H. Hosseini Toudeshky and S. Schmauder, Micromechanics of Dual-Phase Steels: Deformation, Damage, and Fatigue, in Handbook of Mechanics of Materials, S. Schmauder, C.-S. Chen, K.K. Chawla, N. Chawla, W. Chen and Y. Kagawa. (Singapore: Springer Singapore, 2018), pp. 1–30.
– reference: BrechetYNewellJTaoSEmburyJScr. Metall. Mater.199328147
– reference: GroeberMAJacksonMAIntegrat. Mater. Manuf. Innov.20143156
– reference: BrechetYEmburyJTaoSLuoLActa Metall. Mater.19913981781
– reference: MacKayDJCInformation Theory, Inference & Learning Algorithms2002CambridgeCambridge University Press422424
– reference: YabansuYCPatelDKKalidindiSRActa Mater.201481151
– reference: SeguradoJLlorcaJMech. Mater.2006388873
– reference: AndersonTLAndersonTLFracture Mechanics: Fundamentals and Applications20053OxfordshireTaylor & Francis351083.74001
– reference: de GeusTvan DuurenJPeerlingsRGeersMMater. Sci. Eng. A2016673551
– reference: PapanikolaouSComput. Mech.20206611414105031
– reference: De GeusTMarescaFPeerlingsRGeersMMech. Mater.2016101147
– reference: BaoYWierzbickiTInt. J. Mech. Sci.200446181
– reference: A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Köpf, E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, and S. Chintala, PyTorch: An Imperative Style, High-Performance Deep Learning Library (2019), pp. 8024–8035.
– reference: WilkinsonDMaireEEmburyJMater. Sci. Eng. A19972331–2145
– reference: KalidindiSRHierarchical Materials Informatics: Novel Analytics for Materials Data2015AmsterdamElsevier
– reference: de GeusTWJPeerlingsRHJGeersMGDInt. J. Solids Struct.201567–68326
– reference: HibbittKABAQUS/Standard User’s Manual2001HibbittKarlsson & Sorensen
– reference: T. Hastie, R. Tibshirani and J. Friedman, The Elements of Statistical Learning: Data Mining, Inference, and Prediction (Berlin: Springer, 2009), pp. 392–397, 534–538, 397–401.
– reference: KrajcinovicDDamage Mechanics1996AmsterdamElsevier35
– reference: LuXGiovanisDGYvonnetJPapadopoulosVDetrezFBaiJComput. Mech.20196423073977155
– reference: HaddadRAAkansuANTrans. Sig. Proc.1991393723
– reference: SuhCRajagopalanALiXRajanKData Sci. J.2002119
– reference: McClintockFAInt. J. Fract. Mech.196842101
– reference: MackenzieAHancockJBrownDEng. Fract. Mech.197791167
– reference: PaulSKComput. Mater. Sci.20125634
– reference: P. Virtanen, R. Gommers, T.E. Oliphant, M. Haberland, T. Reddy, D. Cournapeau, E. Burovski, P. Peterson, W. Weckesser, J. Bright, S.J. van der Walt, M. Brett, J. Wilson, K.J. Millman, N. Mayorov, A.R.J. Nelson, E. Jones, R. Kern, E. Larson, C.J. Carey, İ. Polat, Y. Feng, E.W. Moore, J. VanderPlas, D. Laxalde, J. Perktold, R. Cimrman, I. Henriksen, E.A. Quintero, C.R. Harris, A.M. Archibald, A.H. Ribeiro, F. Pedregosa, P. van Mulbregt, A. Vijaykumar, A.P. Bardelli, A. Rothberg, A. Hilboll, A. Kloeckner, A. Scopatz, A. Lee, A. Rokem, C.N. Woods, C. Fulton, C. Masson, C. Häggström, C. Fitzgerald, D.A. Nicholson, D.R. Hagen, D.V. Pasechnik, E. Olivetti, E. Martin, E. Wieser, F. Silva, F. Lenders, F. Wilhelm, G. Young, G.A. Price, G.-L. Ingold, G.E. Allen, G.R. Lee, H. Audren, I. Probst, J.P. Dietrich, J. Silterra, J.T. Webber, J. Slavič, J. Nothman, J. Buchner, J. Kulick, J.L. Schönberger, J.V. de Miranda Cardoso, J. Reimer, J. Harrington, J.L.C. Rodríguez, J. Nunez-Iglesias, J. Kuczynski, K. Tritz, M. Thoma, M. Newville, M. Kümmerer, M. Bolingbroke, M. Tartre, M. Pak, N.J. Smith, N. Nowaczyk, N. Shebanov, O. Pavlyk, P.A. Brodtkorb, P. Lee, R.T. McGibbon, R. Feldbauer, S. Lewis, S. Tygier, S. Sievert, S. Vigna, S. Peterson, S. More, T. Pudlik, T. Oshima, T.J. Pingel, T.P. Robitaille, T. Spura, T.R. Jones, T. Cera, T. Leslie, T. Zito, T. Krauss, U. Upadhyay, Y.O. Halchenko, Y. Vázquez-Baeza and C. SciPy, Nat. Methods 17(3), 261 (2020).
– reference: de GeusTWJCotturaMAppolaireBPeerlingsRHJGeersMGDMech. Mater.201697199
– reference: Montes de Oca ZapiainDPopovaEAbdeljawadFFoulkJWKalidindiSRLimHIntegr. Mater. Manuf. Innov.20187397
– reference: LiuWKKarniadakisGTangSYvonnetJComput. Mech.20196422753977152
– reference: D. Wheeler, D.B. Brough, T. Fast, S.R. Kalidindi and A. Reid, PyMKS: Materials Knowledge System in Python (2014).
– reference: TorquatoSRandom Heterogeneous Materials2013BerlinSpringer0988.74001
– reference: JolliffeIScience2002303487
– reference: KullbackSLeiblerRAAnn. Math. Stat.195122179
– reference: TasanCCHoefnagelsJPMDiehlMYanDRotersFRaabeDInt. J. Plast201463198
– reference: C. Blundell, J. Cornebise, K. Kavukcuoglu and D. Wierstra, Weight Uncertainty in Neural Network, in Proceedings of the 32nd International Conference on Machine Learning, B. Francis and B. David, Editors. 2015 (Proceedings of Machine Learning Research: PMLR), pp. 1613–1622.
– reference: KalidindiSRMRS Commun.201992518
– reference: A.R. Castillo and S.R. Kalidindi, Meccanica (2020). https://doi.org/10.1007/s11012-020-01154-w.
– reference: KalidindiSRKalidindiSRStructure-Property linkagesHierarchical Materials Informatics2015BostonButterworth-Heinemann145189
– reference: LiHKafkaOLGaoJYuCNieYZhangLTajdariMTangSGuoXLiGTangSChengGLiuWKComput. Mech.20196422813977154
– reference: KalidindiSRNiezgodaSRSalemAAJOM201163434
– reference: PaulsonNHPriddyMWMcDowellDLKalidindiSRInt. J. Fatigue20191191
– reference: BroughDBWheelerDKalidindiSRIntegr. Mater. Manuf. Innov.20176136
– reference: MironeGEng. Fract. Mech.20077481203
– reference: C.M. Bishop, Pattern Recognition and Machine Learning (Information Science and Statistics) (Berlin: Springer, 2006), pp. 225–246, 561–570, 21–23.
– reference: LandiGNiezgodaSRKalidindiSRActa Mater.20105872716
– reference: MitchellTMMachine Learning1997New YorkMcGrawHill96970913.68167
– reference: KalidindiSRNiezgodaSRLandiGVachhaniSFastTComput. Mater. Contin.2010172103
– reference: GoodfellowIBengioYCourvilleADeep Learning2016CambridgeThe MIT Press1373.68009
– reference: CastilloAKalidindiSRFront. Mater.20196136169
– reference: de GeusTWJPeerlingsRHJGeersMGDEng. Fract. Mech.2015147318
– reference: WilkinsonDMaireEFougeresRMater. Sci. Eng. A19992621–2264
– reference: CecenADaiHYabansuYCKalidindiSRSongLActa Mater.201814676
– reference: D. McDowell, S. Ghosh, and S. Kalidindi, JOM, 63, 45 (2011).
– reference: de GeusTPeerlingsRGeersMEng. Fract. Mech.2017169354
– reference: FullwoodDTNiezgodaSRAdamsBLKalidindiSRProg. Mater Sci.2010556477
– reference: PriddyMWPaulsonNHKalidindiSRMcDowellDLInt. J. Fatigue2017104231
– reference: YabansuYCKalidindiSRActa Mater.20159426
– reference: LlorcaJSeguradoJMater. Sci. Eng. A20043651267
– reference: Y.C. Yabansu, A. Iskakov, A. Kapustina, S. Rajagopalan, and S.R. Kalidindi, Acta Mater. 178, 45 (2019).
– reference: PaulsonNHPriddyMWMcDowellDLKalidindiSRMater. Des.2018154170
– reference: A. Gelman, J.B. Carlin, H.S. Stern and D.B. Rubin, Bayesian Data Analysis. 2nd edn (Boca Raton: Chapman and Hall, 2004), pp. 6–8, 331.
– volume: 67–68
  start-page: 326
  year: 2015
  ident: 4387_CR19
  publication-title: Int. J. Solids Struct.
  doi: 10.1016/j.ijsolstr.2015.04.035
– volume: 3
  start-page: 56
  issue: 1
  year: 2014
  ident: 4387_CR41
  publication-title: Integrat. Mater. Manuf. Innov.
  doi: 10.1186/2193-9772-3-5
– ident: 4387_CR27
– start-page: 3
  volume-title: Fracture Mechanics: Fundamentals and Applications
  year: 2005
  ident: 4387_CR1
  doi: 10.1201/9781420058215
– volume: 365
  start-page: 267
  issue: 1
  year: 2004
  ident: 4387_CR16
  publication-title: Mater. Sci. Eng. A
  doi: 10.1016/j.msea.2003.09.035
– volume: 32
  start-page: 157
  issue: 1
  year: 1984
  ident: 4387_CR54
  publication-title: Acta Metall.
  doi: 10.1016/0001-6160(84)90213-X
– volume: 147
  start-page: 318
  year: 2015
  ident: 4387_CR6
  publication-title: Eng. Fract. Mech.
  doi: 10.1016/j.engfracmech.2015.04.010
– ident: 4387_CR56
  doi: 10.1038/s41592-019-0686-2
– volume: 673
  start-page: 551
  year: 2016
  ident: 4387_CR9
  publication-title: Mater. Sci. Eng. A
  doi: 10.1016/j.msea.2016.06.082
– start-page: 96
  volume-title: Machine Learning
  year: 1997
  ident: 4387_CR58
– ident: 4387_CR64
  doi: 10.1016/j.actamat.2019.07.048
– start-page: 422
  volume-title: Information Theory, Inference & Learning Algorithms
  year: 2002
  ident: 4387_CR35
– volume: 81
  start-page: 151
  year: 2014
  ident: 4387_CR39
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2014.08.022
– volume: 74
  start-page: 1203
  issue: 8
  year: 2007
  ident: 4387_CR53
  publication-title: Eng. Fract. Mech.
  doi: 10.1016/j.engfracmech.2006.08.002
– volume: 46
  start-page: 81
  issue: 1
  year: 2004
  ident: 4387_CR55
  publication-title: Int. J. Mech. Sci.
  doi: 10.1016/j.ijmecsci.2004.02.006
– volume-title: Random Heterogeneous Materials
  year: 2013
  ident: 4387_CR47
– volume: 7
  start-page: 97
  issue: 3
  year: 2018
  ident: 4387_CR20
  publication-title: Integr. Mater. Manuf. Innov.
  doi: 10.1007/s40192-018-0112-0
– volume: 64
  start-page: 275
  issue: 2
  year: 2019
  ident: 4387_CR33
  publication-title: Comput. Mech.
  doi: 10.1007/s00466-019-01741-z
– volume: 4
  start-page: 101
  issue: 2
  year: 1968
  ident: 4387_CR52
  publication-title: Int. J. Fract. Mech.
  doi: 10.1007/BF00188939
– ident: 4387_CR3
  doi: 10.1007/978-981-10-6855-3_70-1
– volume: 154
  start-page: 170
  year: 2018
  ident: 4387_CR26
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2018.05.009
– volume: 30
  start-page: 487
  issue: 3
  year: 2002
  ident: 4387_CR49
  publication-title: Science
– volume: 9
  start-page: 167
  issue: 1
  year: 1977
  ident: 4387_CR51
  publication-title: Eng. Fract. Mech.
  doi: 10.1016/0013-7944(77)90062-5
– volume: 262
  start-page: 264
  issue: 1–2
  year: 1999
  ident: 4387_CR15
  publication-title: Mater. Sci. Eng. A
  doi: 10.1016/S0921-5093(98)01011-9
– volume-title: Deep Learning
  year: 2016
  ident: 4387_CR57
– volume: 39
  start-page: 723
  issue: 3
  year: 1991
  ident: 4387_CR43
  publication-title: Trans. Sig. Proc.
  doi: 10.1109/78.80892
– volume: 6
  start-page: 36
  issue: 1
  year: 2017
  ident: 4387_CR23
  publication-title: Integr. Mater. Manuf. Innov.
  doi: 10.1007/s40192-017-0089-0
– volume: 22
  start-page: 79
  issue: 1
  year: 1951
  ident: 4387_CR60
  publication-title: Ann. Math. Stat.
  doi: 10.1214/aoms/1177729694
– ident: 4387_CR29
– ident: 4387_CR36
– volume: 63
  start-page: 34
  issue: 4
  year: 2011
  ident: 4387_CR45
  publication-title: JOM
  doi: 10.1007/s11837-011-0057-7
– volume: 9
  start-page: 518
  issue: 2
  year: 2019
  ident: 4387_CR30
  publication-title: MRS Commun.
  doi: 10.1557/mrc.2019.56
– start-page: 3
  volume-title: Damage Mechanics
  year: 1996
  ident: 4387_CR2
– volume: 66
  start-page: 141
  issue: 1
  year: 2020
  ident: 4387_CR31
  publication-title: Comput. Mech.
  doi: 10.1007/s00466-020-01845-x
– volume: 58
  start-page: 2716
  issue: 7
  year: 2010
  ident: 4387_CR38
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2010.01.007
– volume: 28
  start-page: 47
  issue: 1
  year: 1993
  ident: 4387_CR13
  publication-title: Scr. Metall. Mater.
  doi: 10.1016/0956-716X(93)90535-Z
– ident: 4387_CR48
– volume-title: ABAQUS/Standard User’s Manual
  year: 2001
  ident: 4387_CR61
– volume: 169
  start-page: 354
  year: 2017
  ident: 4387_CR5
  publication-title: Eng. Fract. Mech.
  doi: 10.1016/j.engfracmech.2016.08.009
– volume: 146
  start-page: 76
  year: 2018
  ident: 4387_CR42
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2017.11.053
– volume: 39
  start-page: 1781
  issue: 8
  year: 1991
  ident: 4387_CR12
  publication-title: Acta Metall. Mater.
  doi: 10.1016/0956-7151(91)90146-R
– volume: 56
  start-page: 34
  year: 2012
  ident: 4387_CR7
  publication-title: Comput. Mater. Sci.
  doi: 10.1016/j.commatsci.2011.12.031
– volume: 6
  start-page: 169
  issue: 136
  year: 2019
  ident: 4387_CR62
  publication-title: Front. Mater.
– volume: 64
  start-page: 281
  issue: 2
  year: 2019
  ident: 4387_CR32
  publication-title: Comput. Mech.
  doi: 10.1007/s00466-019-01716-0
– ident: 4387_CR28
– start-page: 145
  volume-title: Hierarchical Materials Informatics
  year: 2015
  ident: 4387_CR24
  doi: 10.1016/B978-0-12-410394-8.00006-0
– volume: 97–98
  start-page: 687
  year: 2016
  ident: 4387_CR11
  publication-title: Int. J. Solids Struct.
  doi: 10.1016/j.ijsolstr.2016.03.029
– volume: 38
  start-page: 873
  issue: 8
  year: 2006
  ident: 4387_CR18
  publication-title: Mech. Mater.
  doi: 10.1016/j.mechmat.2005.06.026
– volume: 55
  start-page: 477
  issue: 6
  year: 2010
  ident: 4387_CR22
  publication-title: Prog. Mater Sci.
  doi: 10.1016/j.pmatsci.2009.08.002
– volume: 101
  start-page: 147
  year: 2016
  ident: 4387_CR4
  publication-title: Mech. Mater.
  doi: 10.1016/j.mechmat.2016.07.014
– volume: 94
  start-page: 26
  year: 2015
  ident: 4387_CR40
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2015.04.049
– volume: 97
  start-page: 199
  year: 2016
  ident: 4387_CR10
  publication-title: Mech. Mater.
  doi: 10.1016/j.mechmat.2016.02.006
– volume: 51
  start-page: 2355
  issue: 8
  year: 2003
  ident: 4387_CR17
  publication-title: Acta Mater.
  doi: 10.1016/S1359-6454(03)00043-0
– volume: 104
  start-page: 231
  year: 2017
  ident: 4387_CR25
  publication-title: Int. J. Fatigue
  doi: 10.1016/j.ijfatigue.2017.07.015
– volume: 17
  start-page: 103
  issue: 2
  year: 2010
  ident: 4387_CR37
  publication-title: Comput. Mater. Contin.
– volume: 1
  start-page: 19
  year: 2002
  ident: 4387_CR50
  publication-title: Data Sci. J.
  doi: 10.2481/dsj.1.19
– ident: 4387_CR59
– ident: 4387_CR46
  doi: 10.1007/s11837-011-0045-y
– volume: 64
  start-page: 307
  issue: 2
  year: 2019
  ident: 4387_CR34
  publication-title: Comput. Mech.
  doi: 10.1007/s00466-018-1643-0
– volume-title: Hierarchical Materials Informatics: Novel Analytics for Materials Data
  year: 2015
  ident: 4387_CR44
– volume: 63
  start-page: 198
  year: 2014
  ident: 4387_CR8
  publication-title: Int. J. Plast
  doi: 10.1016/j.ijplas.2014.06.004
– volume: 233
  start-page: 145
  issue: 1–2
  year: 1997
  ident: 4387_CR14
  publication-title: Mater. Sci. Eng. A
  doi: 10.1016/S0921-5093(97)00059-2
– volume: 119
  start-page: 1
  year: 2019
  ident: 4387_CR21
  publication-title: Int. J. Fatigue
  doi: 10.1016/j.ijfatigue.2018.09.011
– ident: 4387_CR63
  doi: 10.1007/s11012-020-01154-w
SSID ssj0007491
Score 2.3430114
Snippet The design and development of materials with increased damage resilience is often impeded by the difficulty in establishing the precise linkages, with...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 4359
SubjectTerms Artificial neural networks
Augmenting Physics-based Models in ICME with Machine Learning and Uncertainty Quantification
Bayesian analysis
Chemistry/Food Science
Crack initiation
Damage
Datasets
Design optimization
Earth Sciences
Engineering
Environment
Fracture mechanics
Machine learning
Microstructure
Neural networks
Open source software
Physics
Principal components analysis
Reduced order models
Statistical inference
Uncertainty
SummonAdditionalLinks – databaseName: ABI/INFORM Collection
  dbid: 7WY
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwELWgcIADO6Js8oEbWCRxYqcnxCqQUEEIRDlFjhdRVNrSFKT-PTNuSgGJXjhGiZ1IbzKLPX6PkD0XGpGHSjOTBo7FXAVMhY4zEefC5BAUjPGqJdeyXk8bjdptueBWlG2VI5_oHbXpaFwjP4QyAUJhkgbiqPvGUDUKd1dLCY1pMgOBOkEFA_n49OWJZewV8zwbQZzytDw0Mzw6B7YsGRZPuBcm2eBnYBpnm782SH3cuVj87xcvkYUy46THQxNZJlO2vULmv_EQrpKXOyRwtYbdIBEnRX20VkEhnaV3yksr0DP1Co6HXmGrkceSNtv07F212O0zxEGKbgXbv2xBfRMCPVEDi-czKbJ_wOvrw3bzYo08XJzfn16yUoSBaZ5GfZaLpKZsbAVc5s4oKFkgqzBWhZA5CgPllg2slDzUCY_zREXGqUhqA6ExioUO-TqptDttu0Goi6xLZaR5LQliq0WuuISZbSqc4-A4qiQcIZDpkqEchTJa2ZhbGVHLALXMo5YNqmT_a0x3yM8x8entEVRZ-a8W2RinKjkYgT2-_fdsm5Nn2yJzEdqX733ZJpV-793ukFn90W8WvV1vqZ_Pl-8q
  priority: 102
  providerName: ProQuest
Title Reduced-Order Models for Ranking Damage Initiation in Dual-Phase Composites Using Bayesian Neural Networks
URI https://link.springer.com/article/10.1007/s11837-020-04387-y
https://www.proquest.com/docview/2490285806
Volume 72
WOSCitedRecordID wos000578249900004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: ABI/INFORM Collection
  customDbUrl:
  eissn: 1543-1851
  dateEnd: 20241214
  omitProxy: false
  ssIdentifier: ssj0007491
  issn: 1047-4838
  databaseCode: 7WY
  dateStart: 19960701
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/abicomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ABI/INFORM Trade & Industry
  customDbUrl:
  eissn: 1543-1851
  dateEnd: 20241214
  omitProxy: false
  ssIdentifier: ssj0007491
  issn: 1047-4838
  databaseCode: M0F
  dateStart: 19960701
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/abitrade
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Materials Science Database
  customDbUrl:
  eissn: 1543-1851
  dateEnd: 20241214
  omitProxy: false
  ssIdentifier: ssj0007491
  issn: 1047-4838
  databaseCode: KB.
  dateStart: 19960701
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/materialsscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1543-1851
  dateEnd: 20241214
  omitProxy: false
  ssIdentifier: ssj0007491
  issn: 1047-4838
  databaseCode: BENPR
  dateStart: 19960701
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database
  customDbUrl:
  eissn: 1543-1851
  dateEnd: 20241214
  omitProxy: false
  ssIdentifier: ssj0007491
  issn: 1047-4838
  databaseCode: M2P
  dateStart: 19960701
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1543-1851
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0007491
  issn: 1047-4838
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bT9swFD4aN2l7YFxFgVV-2BsYJXFip4-UUg0BXVUGg6fI8UV0KgWRdlL_PcduQreJIcFLJCuOZfmcnIv8ne8AfLWh5nkoFdVpYGnMZEBlaBnlcc51jk5Ba9-15Ex0Oun1daNbFoUVFdq9upL0lnpW7IbaJ6hLd9ztlaCTOVhIHNuMy9Evrp7tr4h9nzzPQRCnLC1LZV5e4293NIsx_7kW9d6m_fl9-1yB5TK6JIdTdViFD2a4Bp_-4BxcgyWP-VTFOvzqOdpWo-l3R79JXFe0QUEwiCU96RsqkJa8Q3NDThzAyEuQ9IekNZYD2r1F70ecMXGgL1MQDz0gTTkxriqTOM4P3EhnCjIvNuCyffzj6BstWy9QxdJoRHOeNKSJDcdhbrXERAVjCW1kiPEi15hkmcAIwUKVsDhPZKStjITS6BCjmKuQbcL88H5otoDYyNhURIo1kiA2iueSCVzZpNxahuaiBmElgUyVvOSuPcYgmzEquxPN8EQzf6LZpAZ7z988TFk5Xp29Wwk2K__QIsO0E0OrJA14DfYrQc5e_3-17bdN34GPkdMFj4DZhfnR49h8gUX1e9QvHuswJ37e1GGhedzp9nB02jzA53nQds-oW_ea_QQhH-4h
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VggQ98EaEFtgDnGCFvbteO4cKASFq1DRUVZF6c9f7EEUhfTgF5U_xG5lZ2w0g0VsPHC3bY9n7zcs78w3Ai5A6XaXGclckgStpEm7SILlWlXYVOgXn4tSScT6ZFAcH_d0V-Nn1wlBZZWcTo6F2x5b-kb_BNAFdYVYk-u3JKaepUbS72o3QaGCx7Rc_MGWrN0cDXN-XQgw_7n_Y4u1UAW5lIea80lnfeOU1HlbBGYzB0U06b1IMhbTD_MEnPs9lajOpqswIF4zIrUNbL5S2qUS51-C6wsSLNGonGV5Y_lzFCX2R_UAVsmibdJpWPdSdnFOyRntvOV_86QiX0e1fG7LRzw3v_G9f6C7cbiNq9q5RgXuw4mf3Ye03nsUH8HWPCGq945-IaJTR_LdpzTBcZ3smjo5gA_MNDSsbUSlVxCo7mrHBuZny3S_o5xmZTSpv8zWLRRbsvVl46j9lxG6Cj5805fT1Q_h8JS_7CFZnxzP_GFgQPhS5sLKfJcpbXRmZo2Rf6BAkGsYepN2Kl7ZlYKdBINNyyR1NKCkRJWVESbnowauLe04a_pFLr97ooFG2tqgul7jowesOXMvT_5b25HJpz-Hm1v7OuByPJtvrcEsQtmOdzwaszs_O_VO4Yb_Pj-qzZ1FLGBxeNeh-Aa6nS20
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3PT9RAFH7BxRg9ICrEFdA54EkntDPtTPdACLBs3EDqZqMJtzqdHwGzLkgXzf5r_nW8mbasmsiNg8em7TTtfPN-dN77PoBtFxtRxkpTk0WOJlxFVMWOU5GUwpToFIwJqiUnMs-z09PeaAl-tb0wvqyytYnBUJsL7f-R72CagK4wzSKx45qyiFF_sHf5nXoFKb_T2spp1BA5tvOfmL5Vu8M-zvVbxgZHnw4_0EZhgGqesRktRdpTNrECD0tnFMbj6DKNVTGGRcJgLmEjKyWPdcqTMlXMOMWkNmj3WSJ0zHHcB7AsOSY9HVg-OMpH41s_IJOg1xe4EJKMZ03LTt24hytJUp-6-Z04Sed_usVFrPvX9mzweoOn__P3WoWVJtYm-_XieAZLdvocnvzGwPgCvo49da019KOnICVeGW5SEQzkyVgFUQnSV9_Q5JKhL7IKKCbnU9K_VhM6OsMIgHiD6gvfbEVC-QU5UHPrO1OJ5z3Bx-d1oX21Bp_v5WXXoTO9mNqXQByzLpNM814aJVaLUnGJI9tMOMfRZHYhbme_0A03u5cImRQLVmmPmAIRUwTEFPMuvLu957JmJrnz6s0WJkVjpapigZEuvG-Btjj979Fe3T3aG3iEWCtOhvnxBjxmHuahAGgTOrOra7sFD_WP2Xl19bpZMgS-3DfqbgBHlFWi
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Reduced-Order+Models+for+Ranking+Damage+Initiation+in+Dual-Phase+Composites+Using+Bayesian+Neural+Networks&rft.jtitle=JOM+%281989%29&rft.au=Venkatraman%2C+Aditya&rft.au=Montes+de+Oca+Zapiain%2C+David&rft.au=Kalidindi%2C+Surya+R.&rft.date=2020-12-01&rft.pub=Springer+US&rft.issn=1047-4838&rft.eissn=1543-1851&rft.volume=72&rft.issue=12&rft.spage=4359&rft.epage=4369&rft_id=info:doi/10.1007%2Fs11837-020-04387-y&rft.externalDocID=10_1007_s11837_020_04387_y
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1047-4838&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1047-4838&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1047-4838&client=summon