Exact exponential algorithms for 3-machine flowshop scheduling problems

In this paper, we focus on the design of an exact exponential time algorithm with a proved worst-case running time for 3-machine flowshop scheduling problems considering worst-case scenarios. For the minimization of the makespan criterion, a Dynamic Programming algorithm running in O ∗ ( 3 n ) is pr...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of scheduling Ročník 21; číslo 2; s. 227 - 233
Hlavní autoři: Shang, Lei, Lenté, Christophe, Liedloff, Mathieu, T’Kindt, Vincent
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York Springer US 01.04.2018
Springer Nature B.V
Springer Verlag
Témata:
ISSN:1094-6136, 1099-1425
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In this paper, we focus on the design of an exact exponential time algorithm with a proved worst-case running time for 3-machine flowshop scheduling problems considering worst-case scenarios. For the minimization of the makespan criterion, a Dynamic Programming algorithm running in O ∗ ( 3 n ) is proposed, which improves the current best-known time complexity 2 O ( n ) × ‖ I ‖ O ( 1 ) in the literature. The idea is based on a dominance condition and the consideration of the Pareto Front in the criteria space. The algorithm can be easily generalized to other problems that have similar structures. The generalization on two problems, namely the F 3 ‖ f max and F 3 ‖ ∑ f i problems, is discussed.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1094-6136
1099-1425
DOI:10.1007/s10951-017-0524-2