Groupoids and Faà di Bruno formulae for Green functions in bialgebras of trees

We prove a Faà di Bruno formula for the Green function in the bialgebra of P-trees, for any polynomial endofunctor P. The formula appears as relative homotopy cardinality of an equivalence of groupoids.

Uloženo v:
Podrobná bibliografie
Vydáno v:Advances in mathematics (New York. 1965) Ročník 254; s. 79 - 117
Hlavní autoři: Gálvez-Carrillo, Imma, Kock, Joachim, Tonks, Andrew
Médium: Journal Article Publikace
Jazyk:angličtina
Vydáno: Elsevier Inc 20.03.2014
Témata:
ISSN:0001-8708, 1090-2082
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract We prove a Faà di Bruno formula for the Green function in the bialgebra of P-trees, for any polynomial endofunctor P. The formula appears as relative homotopy cardinality of an equivalence of groupoids.
AbstractList We prove a Faà di Bruno formula for the Green function in the bialgebra of P-trees, for any polynomial endofunctor P. The formula appears as relative homotopy cardinality of an equivalence of groupoids. Peer Reviewed
We prove a Faà di Bruno formula for the Green function in the bialgebra of P-trees, for any polynomial endofunctor P. The formula appears as relative homotopy cardinality of an equivalence of groupoids.
Author Tonks, Andrew
Gálvez-Carrillo, Imma
Kock, Joachim
Author_xml – sequence: 1
  givenname: Imma
  surname: Gálvez-Carrillo
  fullname: Gálvez-Carrillo, Imma
  email: m.immaculada.galvez@upc.edu
  organization: Departament de Matemàtica Aplicada III, Universitat Politècnica de Catalunya, Escola dʼEnginyeria de Terrassa, Carrer Colom 1, 08222 Terrassa (Barcelona), Spain
– sequence: 2
  givenname: Joachim
  surname: Kock
  fullname: Kock, Joachim
  email: kock@mat.uab.cat
  organization: Departament de Matemàtiques, Universitat Autònoma de Barcelona, 08193 Bellaterra (Barcelona), Spain
– sequence: 3
  givenname: Andrew
  surname: Tonks
  fullname: Tonks, Andrew
  email: a.tonks@londonmet.ac.uk
  organization: STORM, London Metropolitan University, 166-220 Holloway Road, London N7 8DB, UK
BookMark eNp9kM9KAzEQh4NUsFYfwFteYNf82e5m8aTFVqHQi57DbDIrKW1Skl3Bt_FdfDF3qaB46GGY-cF8w_BdkokPHgm54SznjJe32xzcPheMy5yLnPH5GZlyVrNMMCUmZMoY45mqmLoglylth1gXvJ6SzSqG_hCcTRS8pUv4-qTW0YfY-0DbEPf9DnAc6Coietr23nQu-ESdp42D3Rs2ERINLe2GhXRFzlvYJbz-6TPyunx8WTxl683qeXG_zoxUostAzVtghVGsqUurLG-sLKq2FoWQULOmFKKqJZaobCmLEkq0wjZVDRxNW0mQM8KPd03qjY5oMBrodAD3G8YSrBJaiLkU8g8TQ0oRW32Ibg_xQ3OmR4t6qweLerSoudCDxYGp_jHGdTAa6CK43Uny7kjioOHdYdTJOPQGrRs-7LQN7gT9Dc_Ljt8
CitedBy_id crossref_primary_10_1007_s11467_015_0544_3
crossref_primary_10_1007_s13348_015_0160_0
crossref_primary_10_1016_j_aim_2021_107693
crossref_primary_10_1093_imrn_rny089
crossref_primary_10_1007_s11005_015_0785_7
crossref_primary_10_1016_j_aim_2018_03_017
crossref_primary_10_1007_s00009_021_01778_6
crossref_primary_10_1016_j_aim_2018_03_016
crossref_primary_10_1007_s13348_022_00386_1
crossref_primary_10_1112_jlms_12201
Cites_doi 10.1007/s00220-007-0353-9
10.1017/S0305004112000394
10.1007/PL00005547
10.1007/978-3-642-59101-3
10.1007/s00023-010-0050-7
10.1215/S0012-7094-94-07608-4
10.4310/ATMP.1998.v2.n2.a4
10.1016/0001-8708(81)90052-9
10.1007/s00023-002-8622-9
10.1016/0021-8693(74)90027-1
10.1016/j.nuclphysbps.2006.09.036
10.1023/B:MATH.0000027749.09118.a5
10.1016/j.aim.2007.12.003
10.1090/S0025-5718-1972-0305608-0
10.1007/s00220-009-0829-x
10.1016/j.nuclphysb.2008.02.005
10.1016/S0550-3213(01)00071-2
10.1119/1.1624112
10.1016/j.aim.2010.02.012
10.1142/S0129055X05002467
ContentType Journal Article
Publication
Contributor Universitat Politècnica de Catalunya. EGSA - Equacions Diferencials, Geometria, Sistemes Dinàmics i de Control, i Aplicacions
Universitat Politècnica de Catalunya. Departament de Matemàtica Aplicada III
Contributor_xml – sequence: 1
  fullname: Universitat Politècnica de Catalunya. Departament de Matemàtica Aplicada III
– sequence: 2
  fullname: Universitat Politècnica de Catalunya. EGSA - Equacions Diferencials, Geometria, Sistemes Dinàmics i de Control, i Aplicacions
Copyright 2013 Elsevier Inc.
info:eu-repo/semantics/openAccess
Copyright_xml – notice: 2013 Elsevier Inc.
– notice: info:eu-repo/semantics/openAccess
DBID 6I.
AAFTH
AAYXX
CITATION
XX2
DOI 10.1016/j.aim.2013.12.015
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Recercat
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1090-2082
EndPage 117
ExternalDocumentID oai_recercat_cat_2072_225323
10_1016_j_aim_2013_12_015
S0001870813004623
GrantInformation_xml – fundername: Spanish Government
  grantid: MTM2010-15831; MTM2010-20692; MTM2012-38122-C03-01; MTM2009-10359; MTM2010-20692; MTM2010-15831
– fundername: Generalitat de Catalunya
  grantid: SGR1092-2009; SGR1092-2009; SGR119-2009
GroupedDBID --K
--M
--Z
-~X
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
6I.
6TJ
7-5
71M
8P~
9JN
AACTN
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AASFE
AAXUO
ABAOU
ABCQX
ABJNI
ABLJU
ABMAC
ABVKL
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACNCT
ACRLP
ADBBV
ADEZE
ADIYS
AEBSH
AEKER
AENEX
AEXQZ
AFKWA
AFTJW
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ARUGR
AXJTR
BKOJK
BLXMC
CS3
D0L
DM4
EBS
EFBJH
EFLBG
EO8
EO9
EP2
EP3
FDB
FEDTE
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
IHE
IXB
J1W
KOM
LG5
M25
M41
MCRUF
MHUIS
MO0
N9A
NCXOZ
O-L
O9-
OAUVE
OK1
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSW
SSZ
T5K
UPT
WH7
ZMT
~G-
1RT
9DU
AAEDT
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABEFU
ABFNM
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADFGL
ADMUD
ADNMO
ADVLN
ADXHL
AEIPS
AETEA
AEUPX
AFJKZ
AFPUW
AGHFR
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CAG
CITATION
COF
EFKBS
EJD
FGOYB
G-2
HX~
HZ~
MVM
OHT
R2-
SEW
XOL
XPP
ZCG
ZKB
~HD
XX2
ID FETCH-LOGICAL-c382t-a85fa04c80b96d8d1bd347f92423a90b622793e6e8d6346a6ed2db79a1ecf73a3
ISICitedReferencesCount 14
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000331499900007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0001-8708
IngestDate Fri Nov 07 13:53:17 EST 2025
Sat Nov 29 06:33:38 EST 2025
Tue Nov 18 22:07:04 EST 2025
Fri Feb 23 02:34:46 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Trees
Polynomial functors
Groupoids
Homotopy cardinality
Bialgebras
Perturbative methods of renormalisation
Language English
License http://www.elsevier.com/open-access/userlicense/1.0
https://www.elsevier.com/tdm/userlicense/1.0
https://www.elsevier.com/open-access/userlicense/1.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c382t-a85fa04c80b96d8d1bd347f92423a90b622793e6e8d6346a6ed2db79a1ecf73a3
OpenAccessLink https://recercat.cat/handle/2072/225323
PageCount 39
ParticipantIDs csuc_recercat_oai_recercat_cat_2072_225323
crossref_primary_10_1016_j_aim_2013_12_015
crossref_citationtrail_10_1016_j_aim_2013_12_015
elsevier_sciencedirect_doi_10_1016_j_aim_2013_12_015
PublicationCentury 2000
PublicationDate 2014-03-20
PublicationDateYYYYMMDD 2014-03-20
PublicationDate_xml – month: 03
  year: 2014
  text: 2014-03-20
  day: 20
PublicationDecade 2010
PublicationTitle Advances in mathematics (New York. 1965)
PublicationYear 2014
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Brown (br0070) 2006
Butcher (br0090) 1972; 26
Baez, Dolan (br0020) 2001
Bellon, Schaposnik (br0040) 2008; 800
Doubilet (br0140) 1974; 28
Itzykson, Zuber (br0230) 1980
van Suijlekom (br0370) 2009
Figueroa, Gracia-Bondía (br0160) 2005; 17
Kock, Joyal, Batanin, Mascari (br0300) 2010; 224
van Suijlekom (br0380) 2009; 290
Connes (br0100) 1994
Kaku (br0250) 1993
Kreimer, Yeats (br0320) 2006; 160
Lawvere, Menni (br0330) 2010; 24
Broadhurst, Kreimer (br0060) 2001; 600
Grothendieck (br0210) 1971; vol. 224
Leroux (br0340) 1975; 16
Delamotte (br0130) 2004; 72
Kock (br0280) 2013; 11
Gambino, Kock (br0190) 2013; 154
Aigner (br0010) 1997
Connes, Kreimer (br0110) 2001; 216
Brown, Heath, Kamps (br0080) 1984; vol. 5
Connes, Kreimer (br0120) 2002; 3
Kreimer (br0310) 1998; 2
Kock (br0270) 2012; vol. 286
Ginzburg, Kapranov (br0200) 1994; 76
Foissy (br0170) 2008; 218
Hakim (br0220) 1972; vol. 64
Joyal (br0240) 1981; 42
J. Kock, Categorical formalisms for graphs and trees in quantum field theory, in preparation.
Mencattini, Kreimer (br0350) 2004; 67
van Suijlekom (br0360) 2007; 276
I. Gálvez-Carrillo, J. Kock, A. Tonks, Decomposition spaces, incidence algebras and Möbius inversion, in preparation.
Kock (br0260) 2011; 2011
Baez, Hoffnung, Walker (br0030) 2010; 24
Bergbauer, Kreimer (br0050) 2006; vol. 10
Ebrahimi-Fard, Patras (br0150) 2010; 11
Grothendieck (10.1016/j.aim.2013.12.015_br0210) 1971; vol. 224
Kock (10.1016/j.aim.2013.12.015_br0260) 2011; 2011
Mencattini (10.1016/j.aim.2013.12.015_br0350) 2004; 67
Brown (10.1016/j.aim.2013.12.015_br0070) 2006
Kock (10.1016/j.aim.2013.12.015_br0300) 2010; 224
Foissy (10.1016/j.aim.2013.12.015_br0170) 2008; 218
Aigner (10.1016/j.aim.2013.12.015_br0010) 1997
Bellon (10.1016/j.aim.2013.12.015_br0040) 2008; 800
10.1016/j.aim.2013.12.015_br0180
Gambino (10.1016/j.aim.2013.12.015_br0190) 2013; 154
Ebrahimi-Fard (10.1016/j.aim.2013.12.015_br0150) 2010; 11
Hakim (10.1016/j.aim.2013.12.015_br0220) 1972; vol. 64
Joyal (10.1016/j.aim.2013.12.015_br0240) 1981; 42
Lawvere (10.1016/j.aim.2013.12.015_br0330) 2010; 24
Doubilet (10.1016/j.aim.2013.12.015_br0140) 1974; 28
Itzykson (10.1016/j.aim.2013.12.015_br0230) 1980
van Suijlekom (10.1016/j.aim.2013.12.015_br0360) 2007; 276
Ginzburg (10.1016/j.aim.2013.12.015_br0200) 1994; 76
Kock (10.1016/j.aim.2013.12.015_br0270) 2012; vol. 286
Kreimer (10.1016/j.aim.2013.12.015_br0310) 1998; 2
van Suijlekom (10.1016/j.aim.2013.12.015_br0370) 2009
Kaku (10.1016/j.aim.2013.12.015_br0250) 1993
Leroux (10.1016/j.aim.2013.12.015_br0340) 1975; 16
Connes (10.1016/j.aim.2013.12.015_br0120) 2002; 3
Baez (10.1016/j.aim.2013.12.015_br0030) 2010; 24
van Suijlekom (10.1016/j.aim.2013.12.015_br0380) 2009; 290
Figueroa (10.1016/j.aim.2013.12.015_br0160) 2005; 17
Broadhurst (10.1016/j.aim.2013.12.015_br0060) 2001; 600
10.1016/j.aim.2013.12.015_br0290
Brown (10.1016/j.aim.2013.12.015_br0080) 1984; vol. 5
Baez (10.1016/j.aim.2013.12.015_br0020) 2001
Kreimer (10.1016/j.aim.2013.12.015_br0320) 2006; 160
Connes (10.1016/j.aim.2013.12.015_br0100) 1994
Bergbauer (10.1016/j.aim.2013.12.015_br0050) 2006; vol. 10
Delamotte (10.1016/j.aim.2013.12.015_br0130) 2004; 72
Butcher (10.1016/j.aim.2013.12.015_br0090) 1972; 26
Connes (10.1016/j.aim.2013.12.015_br0110) 2001; 216
Kock (10.1016/j.aim.2013.12.015_br0280) 2013; 11
References_xml – volume: 17
  start-page: 881
  year: 2005
  end-page: 976
  ident: br0160
  article-title: Combinatorial Hopf algebras in quantum field theory. I
  publication-title: Rev. Math. Phys.
– volume: 154
  start-page: 153
  year: 2013
  end-page: 192
  ident: br0190
  article-title: Polynomial functors and polynomial monads
  publication-title: Math. Proc. Cambridge Philos. Soc.
– year: 1997
  ident: br0010
  article-title: Combinatorial Theory
  publication-title: Classics Math.
– volume: 290
  start-page: 291
  year: 2009
  end-page: 319
  ident: br0380
  article-title: The structure of renormalization Hopf algebras for gauge theories. I. Representing Feynman graphs on BV-algebras
  publication-title: Comm. Math. Phys.
– volume: vol. 286
  start-page: 351
  year: 2012
  end-page: 365
  ident: br0270
  article-title: Data types with symmetries and polynomial functors over groupoids
  publication-title: Proceedings of the 28th Conference on the Mathematical Foundations of Programming Semantics
– volume: 800
  start-page: 517
  year: 2008
  end-page: 526
  ident: br0040
  article-title: Renormalization group functions for the Wess–Zumino model: up to 200 loops through Hopf algebras
  publication-title: Nuclear Phys. B
– volume: 11
  start-page: 943
  year: 2010
  end-page: 971
  ident: br0150
  article-title: Exponential renormalization
  publication-title: Ann. Henri Poincaré
– volume: 26
  start-page: 79
  year: 1972
  end-page: 106
  ident: br0090
  article-title: An algebraic theory of integration methods
  publication-title: Math. Comp.
– start-page: 29
  year: 2001
  end-page: 50
  ident: br0020
  article-title: From finite sets to Feynman diagrams
  publication-title: Mathematics Unlimited—2001 and Beyond
– volume: 218
  start-page: 136
  year: 2008
  end-page: 162
  ident: br0170
  article-title: Faà di Bruno subalgebras of the Hopf algebra of planar trees from combinatorial Dyson–Schwinger equations
  publication-title: Adv. Math.
– volume: vol. 64
  year: 1972
  ident: br0220
  article-title: Topos annelés et schémas relatifs
  publication-title: Ergeb. Math. Grenzgeb. (3)
– volume: 67
  start-page: 61
  year: 2004
  end-page: 74
  ident: br0350
  article-title: Insertion and elimination Lie algebra: the ladder case
  publication-title: Lett. Math. Phys.
– volume: 2011
  start-page: 609
  year: 2011
  end-page: 673
  ident: br0260
  article-title: Polynomial functors and trees
  publication-title: Int. Math. Res. Not. IMRN
– volume: 3
  start-page: 411
  year: 2002
  end-page: 433
  ident: br0120
  article-title: Insertion and elimination: the doubly infinite Lie algebra of Feynman graphs
  publication-title: Ann. Henri Poincaré
– volume: 16
  start-page: 280
  year: 1975
  end-page: 282
  ident: br0340
  article-title: Les catégories de Möbius
  publication-title: Cah. Topol. Géom. Différ. Categ.
– volume: 600
  start-page: 403
  year: 2001
  ident: br0060
  article-title: Exact solutions of Dyson–Schwinger equations for iterated one-loop integrals and propagator-coupling duality
  publication-title: Nuclear Phys. B
– volume: 24
  start-page: 221
  year: 2010
  end-page: 265
  ident: br0330
  article-title: The Hopf algebra of Möbius intervals
  publication-title: Theory Appl. Categ.
– volume: 11
  start-page: 401
  year: 2013
  end-page: 422
  ident: br0280
  article-title: Categorification of Hopf algebras of rooted trees
  publication-title: Cent. Eur. J. Math.
– volume: 160
  start-page: 116
  year: 2006
  end-page: 121
  ident: br0320
  article-title: An étude in non-linear Dyson–Schwinger equations
  publication-title: Nuclear Phys. B Proc. Suppl.
– volume: 2
  start-page: 303
  year: 1998
  end-page: 334
  ident: br0310
  article-title: On the Hopf algebra structure of perturbative quantum field theories
  publication-title: Adv. Theor. Math. Phys.
– volume: vol. 10
  start-page: 133
  year: 2006
  end-page: 164
  ident: br0050
  article-title: Hopf algebras in renormalization theory: locality and Dyson–Schwinger equations from Hochschild cohomology
  publication-title: Physics and Number Theory
– volume: 42
  start-page: 1
  year: 1981
  end-page: 82
  ident: br0240
  article-title: Une théorie combinatoire des séries formelles
  publication-title: Adv. Math.
– volume: 28
  start-page: 127
  year: 1974
  end-page: 132
  ident: br0140
  article-title: A Hopf algebra arising from the lattice of partitions of a set
  publication-title: J. Algebra
– volume: vol. 224
  year: 1971
  ident: br0210
  article-title: SGA 1: Revêtements Étales et Groupe Fondamental
  publication-title: Lecture Notes in Math.
– volume: 276
  start-page: 773
  year: 2007
  end-page: 798
  ident: br0360
  article-title: Renormalization of gauge fields: a Hopf algebra approach
  publication-title: Comm. Math. Phys.
– volume: 24
  start-page: 489
  year: 2010
  end-page: 553
  ident: br0030
  article-title: Higher dimensional algebra VII: groupoidification
  publication-title: Theory Appl. Categ.
– volume: 72
  start-page: 170
  year: 2004
  end-page: 184
  ident: br0130
  article-title: A hint of renomalization
  publication-title: Amer. J. Phys.
– reference: J. Kock, Categorical formalisms for graphs and trees in quantum field theory, in preparation.
– start-page: 137
  year: 2009
  end-page: 154
  ident: br0370
  article-title: Renormalization of gauge fields using Hopf algebras
  publication-title: Quantum Field Theory
– reference: I. Gálvez-Carrillo, J. Kock, A. Tonks, Decomposition spaces, incidence algebras and Möbius inversion, in preparation.
– year: 2006
  ident: br0070
  article-title: Topology and Groupoids
– volume: 224
  start-page: 2690
  year: 2010
  end-page: 2737
  ident: br0300
  article-title: Polynomial functors and opetopes
  publication-title: Adv. Math.
– year: 1980
  ident: br0230
  article-title: Quantum Field Theory
  publication-title: Int. Ser. Pure Appl. Phys.
– volume: 216
  start-page: 215
  year: 2001
  end-page: 241
  ident: br0110
  article-title: Renormalization in quantum field theory and the Riemann–Hilbert problem. II. The
  publication-title: Comm. Math. Phys.
– year: 1994
  ident: br0100
  article-title: Noncommutative Geometry
– volume: 76
  start-page: 203
  year: 1994
  end-page: 272
  ident: br0200
  article-title: Koszul duality for operads
  publication-title: Duke Math. J.
– volume: vol. 5
  start-page: 147
  year: 1984
  end-page: 162
  ident: br0080
  article-title: Coverings of groupoids and Mayer–Vietoris type sequences
  publication-title: Categorical Topology
– year: 1993
  ident: br0250
  article-title: Quantum Field Theory. A Modern Introduction
– volume: 276
  start-page: 773
  issue: 3
  year: 2007
  ident: 10.1016/j.aim.2013.12.015_br0360
  article-title: Renormalization of gauge fields: a Hopf algebra approach
  publication-title: Comm. Math. Phys.
  doi: 10.1007/s00220-007-0353-9
– start-page: 137
  year: 2009
  ident: 10.1016/j.aim.2013.12.015_br0370
  article-title: Renormalization of gauge fields using Hopf algebras
– volume: 154
  start-page: 153
  year: 2013
  ident: 10.1016/j.aim.2013.12.015_br0190
  article-title: Polynomial functors and polynomial monads
  publication-title: Math. Proc. Cambridge Philos. Soc.
  doi: 10.1017/S0305004112000394
– volume: 216
  start-page: 215
  issue: 1
  year: 2001
  ident: 10.1016/j.aim.2013.12.015_br0110
  article-title: Renormalization in quantum field theory and the Riemann–Hilbert problem. II. The β-function, diffeomorphisms and the renormalization group
  publication-title: Comm. Math. Phys.
  doi: 10.1007/PL00005547
– year: 2006
  ident: 10.1016/j.aim.2013.12.015_br0070
– year: 1997
  ident: 10.1016/j.aim.2013.12.015_br0010
  article-title: Combinatorial Theory
  doi: 10.1007/978-3-642-59101-3
– volume: 16
  start-page: 280
  issue: 3
  year: 1975
  ident: 10.1016/j.aim.2013.12.015_br0340
  article-title: Les catégories de Möbius
  publication-title: Cah. Topol. Géom. Différ. Categ.
– year: 1980
  ident: 10.1016/j.aim.2013.12.015_br0230
  article-title: Quantum Field Theory
– ident: 10.1016/j.aim.2013.12.015_br0290
– year: 1993
  ident: 10.1016/j.aim.2013.12.015_br0250
– volume: vol. 5
  start-page: 147
  year: 1984
  ident: 10.1016/j.aim.2013.12.015_br0080
  article-title: Coverings of groupoids and Mayer–Vietoris type sequences
– volume: 24
  start-page: 489
  issue: 18
  year: 2010
  ident: 10.1016/j.aim.2013.12.015_br0030
  article-title: Higher dimensional algebra VII: groupoidification
  publication-title: Theory Appl. Categ.
– volume: 11
  start-page: 943
  issue: 5
  year: 2010
  ident: 10.1016/j.aim.2013.12.015_br0150
  article-title: Exponential renormalization
  publication-title: Ann. Henri Poincaré
  doi: 10.1007/s00023-010-0050-7
– volume: 2011
  start-page: 609
  year: 2011
  ident: 10.1016/j.aim.2013.12.015_br0260
  article-title: Polynomial functors and trees
  publication-title: Int. Math. Res. Not. IMRN
– volume: 76
  start-page: 203
  issue: 1
  year: 1994
  ident: 10.1016/j.aim.2013.12.015_br0200
  article-title: Koszul duality for operads
  publication-title: Duke Math. J.
  doi: 10.1215/S0012-7094-94-07608-4
– volume: vol. 286
  start-page: 351
  year: 2012
  ident: 10.1016/j.aim.2013.12.015_br0270
  article-title: Data types with symmetries and polynomial functors over groupoids
– volume: 2
  start-page: 303
  issue: 2
  year: 1998
  ident: 10.1016/j.aim.2013.12.015_br0310
  article-title: On the Hopf algebra structure of perturbative quantum field theories
  publication-title: Adv. Theor. Math. Phys.
  doi: 10.4310/ATMP.1998.v2.n2.a4
– volume: 42
  start-page: 1
  issue: 1
  year: 1981
  ident: 10.1016/j.aim.2013.12.015_br0240
  article-title: Une théorie combinatoire des séries formelles
  publication-title: Adv. Math.
  doi: 10.1016/0001-8708(81)90052-9
– volume: 24
  start-page: 221
  issue: 10
  year: 2010
  ident: 10.1016/j.aim.2013.12.015_br0330
  article-title: The Hopf algebra of Möbius intervals
  publication-title: Theory Appl. Categ.
– start-page: 29
  year: 2001
  ident: 10.1016/j.aim.2013.12.015_br0020
  article-title: From finite sets to Feynman diagrams
– volume: vol. 10
  start-page: 133
  year: 2006
  ident: 10.1016/j.aim.2013.12.015_br0050
  article-title: Hopf algebras in renormalization theory: locality and Dyson–Schwinger equations from Hochschild cohomology
– volume: vol. 64
  year: 1972
  ident: 10.1016/j.aim.2013.12.015_br0220
  article-title: Topos annelés et schémas relatifs
– volume: 3
  start-page: 411
  issue: 3
  year: 2002
  ident: 10.1016/j.aim.2013.12.015_br0120
  article-title: Insertion and elimination: the doubly infinite Lie algebra of Feynman graphs
  publication-title: Ann. Henri Poincaré
  doi: 10.1007/s00023-002-8622-9
– volume: 28
  start-page: 127
  year: 1974
  ident: 10.1016/j.aim.2013.12.015_br0140
  article-title: A Hopf algebra arising from the lattice of partitions of a set
  publication-title: J. Algebra
  doi: 10.1016/0021-8693(74)90027-1
– volume: 160
  start-page: 116
  year: 2006
  ident: 10.1016/j.aim.2013.12.015_br0320
  article-title: An étude in non-linear Dyson–Schwinger equations
  publication-title: Nuclear Phys. B Proc. Suppl.
  doi: 10.1016/j.nuclphysbps.2006.09.036
– volume: 67
  start-page: 61
  issue: 1
  year: 2004
  ident: 10.1016/j.aim.2013.12.015_br0350
  article-title: Insertion and elimination Lie algebra: the ladder case
  publication-title: Lett. Math. Phys.
  doi: 10.1023/B:MATH.0000027749.09118.a5
– ident: 10.1016/j.aim.2013.12.015_br0180
– volume: vol. 224
  year: 1971
  ident: 10.1016/j.aim.2013.12.015_br0210
  article-title: SGA 1: Revêtements Étales et Groupe Fondamental
– volume: 11
  start-page: 401
  year: 2013
  ident: 10.1016/j.aim.2013.12.015_br0280
  article-title: Categorification of Hopf algebras of rooted trees
  publication-title: Cent. Eur. J. Math.
– volume: 218
  start-page: 136
  issue: 1
  year: 2008
  ident: 10.1016/j.aim.2013.12.015_br0170
  article-title: Faà di Bruno subalgebras of the Hopf algebra of planar trees from combinatorial Dyson–Schwinger equations
  publication-title: Adv. Math.
  doi: 10.1016/j.aim.2007.12.003
– volume: 26
  start-page: 79
  year: 1972
  ident: 10.1016/j.aim.2013.12.015_br0090
  article-title: An algebraic theory of integration methods
  publication-title: Math. Comp.
  doi: 10.1090/S0025-5718-1972-0305608-0
– volume: 290
  start-page: 291
  issue: 1
  year: 2009
  ident: 10.1016/j.aim.2013.12.015_br0380
  article-title: The structure of renormalization Hopf algebras for gauge theories. I. Representing Feynman graphs on BV-algebras
  publication-title: Comm. Math. Phys.
  doi: 10.1007/s00220-009-0829-x
– year: 1994
  ident: 10.1016/j.aim.2013.12.015_br0100
– volume: 800
  start-page: 517
  issue: 3
  year: 2008
  ident: 10.1016/j.aim.2013.12.015_br0040
  article-title: Renormalization group functions for the Wess–Zumino model: up to 200 loops through Hopf algebras
  publication-title: Nuclear Phys. B
  doi: 10.1016/j.nuclphysb.2008.02.005
– volume: 600
  start-page: 403
  year: 2001
  ident: 10.1016/j.aim.2013.12.015_br0060
  article-title: Exact solutions of Dyson–Schwinger equations for iterated one-loop integrals and propagator-coupling duality
  publication-title: Nuclear Phys. B
  doi: 10.1016/S0550-3213(01)00071-2
– volume: 72
  start-page: 170
  year: 2004
  ident: 10.1016/j.aim.2013.12.015_br0130
  article-title: A hint of renomalization
  publication-title: Amer. J. Phys.
  doi: 10.1119/1.1624112
– volume: 224
  start-page: 2690
  year: 2010
  ident: 10.1016/j.aim.2013.12.015_br0300
  article-title: Polynomial functors and opetopes
  publication-title: Adv. Math.
  doi: 10.1016/j.aim.2010.02.012
– volume: 17
  start-page: 881
  issue: 8
  year: 2005
  ident: 10.1016/j.aim.2013.12.015_br0160
  article-title: Combinatorial Hopf algebras in quantum field theory. I
  publication-title: Rev. Math. Phys.
  doi: 10.1142/S0129055X05002467
SSID ssj0009419
Score 2.1659653
Snippet We prove a Faà di Bruno formula for the Green function in the bialgebra of P-trees, for any polynomial endofunctor P. The formula appears as relative homotopy...
SourceID csuc
crossref
elsevier
SourceType Open Access Repository
Enrichment Source
Index Database
Publisher
StartPage 79
SubjectTerms 05 Combinatorics
05C Graph theory
20 Group theory and generalizations
20L05 Groupoids (i.e. small categories in which all morphisms are isomorphisms)
81 Quantum theory
81T Quantum field theory; related classical field theories
Bialgebras
Classificació AMS
Física matemàtica
Grafs, Teoria de
Graph theory
Group theory
Groupoids
Grupoides
Grups, Teoria de
Homotopy cardinality
Matemàtiques i estadística
Mathematical physics
Perturbative methods of renormalisation
Polynomial functors
Teoria de categories; àlgebra homològica
Teoria de grups
Trees
Àlgebra
Àrees temàtiques de la UPC
Title Groupoids and Faà di Bruno formulae for Green functions in bialgebras of trees
URI https://dx.doi.org/10.1016/j.aim.2013.12.015
https://recercat.cat/handle/2072/225323
Volume 254
WOSCitedRecordID wos000331499900007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1090-2082
  dateEnd: 20171215
  omitProxy: false
  ssIdentifier: ssj0009419
  issn: 0001-8708
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NjtMwELZKlwMcVvyKsoB84ESVlWPnxzlWqy3sAgsSC-rNcmNnlaVNV01brXgFXoJ34cUY2_lrEQiQODRKoziJPOPx5_HMNwg954FlWZceIZmGBQojnuREeiwkGgCdL13phE9v4rMzPpkk73u9r3UuzGYWFwW_vk6u_quo4RoI26TO_oW4m4fCBTgHocMRxA7HPxK89SYtcuXIl8fSboWTocqNHIuFTVdcz6Qj-7ZhN0MzuTUx5SaF5MJsJ9sgD7NpXXYR7MgFDdhb5w3na9mt6nM4NASCHR_DS_sN_myjv3hHcrnMqw2fk3k7K7yuDPOpyfDK5633u_hc7kReVk4KPzBRWpS0nrM6e2YruNPgS7DGxNlf7QwwSQi05FsWmoZBx8a64jPVbO27zM-fJgLnk7g8lLmhG_CZ9fm6xNEdfu0PxBYmBGjEbKYuu4H2aBwmvI_2RifHk9OWwznwq9WU--x6k9yGC-68aAvm9NNynXbQTgfBnN9B-9XSA4-cytxFPV3cQ7fftjK8j941yoNBefBYfv-GVY6t4uBaccwJtoqDG8XBeYFbxcGLDFvFeYA-jo_Pj155VckNL2WcrmCchpkkQcrJNIkUV_5UsSDOEoO6ZUKmkSGcZDrSXEUMhnikFVXTOJG-TrOYSfYQ9YtFoR8hHE1DX0cGoWcmfRmWyppmYRYplZGQSj5ApO4hkVZ89KYsykzUgYeXAjpVmE4VPhXQqQP0omly5chYfn8zdLsA4KCXqVwJQ6Te_DE_SmIqYD5jlA1QUAtHVNDTQUoBCvXrdzz-t2YH6FY7SJ6g_mq51k_RzXSzysvls0rtfgDAl6Io
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Groupoids+and+Fa%C3%A0+di+Bruno+formulae+for+Green+functions+in+bialgebras+of+trees&rft.jtitle=Advances+in+mathematics+%28New+York.+1965%29&rft.au=G%C3%A1lvez-Carrillo%2C+Imma&rft.au=Kock%2C+Joachim&rft.au=Tonks%2C+Andrew&rft.date=2014-03-20&rft.pub=Elsevier+Inc&rft.issn=0001-8708&rft.eissn=1090-2082&rft.volume=254&rft.spage=79&rft.epage=117&rft_id=info:doi/10.1016%2Fj.aim.2013.12.015&rft.externalDocID=S0001870813004623
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0001-8708&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0001-8708&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0001-8708&client=summon