Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling
A phase-field approach was used in order to model the complex mechanisms of fatigue crack nucleation and growth. This popular method enables a flexible framework that recovers accurately expected crack patterns. However, it usually suffers from several efficiency drawbacks, such as the need for a ve...
Saved in:
| Published in: | Finite elements in analysis and design Vol. 224; p. 104004 |
|---|---|
| Main Authors: | , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Elsevier B.V
15.10.2023
|
| Subjects: | |
| ISSN: | 0168-874X, 1872-6925 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | A phase-field approach was used in order to model the complex mechanisms of fatigue crack nucleation and growth. This popular method enables a flexible framework that recovers accurately expected crack patterns. However, it usually suffers from several efficiency drawbacks, such as the need for a very fine mesh, and the heavy computational cost associated with the cycle by cycle approach. For this reason, we put forward the coupling of adaptive mesh refinement and cycle jumps, to significantly accelerate computing time, at a given level of accuracy. Several numerical examples were studied to showcase the abilities of the proposed coupling and some qualitative numerical/experimental comparisons were made. In the end, the proposed coupling was able to recover non accelerated results with significant computing gains.
•Extending the phase-field method to model fatigue-induced fracture.•Accelerating with adaptive mesh refinement and cycle jumps.•Nucleation, fatigue crack propagation, branching and coalescence are accelerated. |
|---|---|
| AbstractList | A phase-field approach was used in order to model the complex mechanisms of fatigue crack nucleation and growth. This popular method enables a flexible framework that recovers accurately expected crack patterns. However, it usually suffers from several efficiency drawbacks, such as the need for a very fine mesh, and the heavy computational cost associated with the cycle by cycle approach. For this reason, we put forward the coupling of adaptive mesh refinement and cycle jumps, to significantly accelerate computing time, at a given level of accuracy. Several numerical examples were studied to showcase the abilities of the proposed coupling and some qualitative numerical/experimental comparisons were made. In the end, the proposed coupling was able to recover non accelerated results with significant computing gains.
•Extending the phase-field method to model fatigue-induced fracture.•Accelerating with adaptive mesh refinement and cycle jumps.•Nucleation, fatigue crack propagation, branching and coalescence are accelerated. |
| ArticleNumber | 104004 |
| Author | Molnár, Gergely Bluthé, Joffrey Gravouil, Anthony Prabel, Benoit Jaccon, Adrien |
| Author_xml | – sequence: 1 givenname: Adrien surname: Jaccon fullname: Jaccon, Adrien email: adrien.jaccon@cea.fr organization: Univ Lyon, INSA-Lyon, CNRS UMR5259, LaMCoS, F-69621, France – sequence: 2 givenname: Benoit surname: Prabel fullname: Prabel, Benoit email: benoit.prabel@cea.fr organization: Université Paris-Saclay, CEA, Service d’Etudes Mécaniques et Thermiques, 91191, Gif-sur-Yvette, France – sequence: 3 givenname: Gergely surname: Molnár fullname: Molnár, Gergely organization: Univ Lyon, INSA-Lyon, CNRS UMR5259, LaMCoS, F-69621, France – sequence: 4 givenname: Joffrey surname: Bluthé fullname: Bluthé, Joffrey organization: Université Paris-Saclay, CEA, Service d’Etudes Mécaniques et Thermiques, 91191, Gif-sur-Yvette, France – sequence: 5 givenname: Anthony surname: Gravouil fullname: Gravouil, Anthony organization: Univ Lyon, INSA-Lyon, CNRS UMR5259, LaMCoS, F-69621, France |
| BookMark | eNqFkMtqwzAQRUVJoUnaL-hGP-BUkh1ZXnQRQl8QKJQWuhOyNEpkbNlITiB_X6Xpqot2NTDMucw9MzTxvQeEbilZUEL5XbOwzkO7YITlaVMQUlygKRUly3jFlhM0TVciE2XxeYVmMTaEkCXjxRS9rYwaRncA3EHc4QCnoA78iJU3WB91C7jZd0PEtg942KkImXXQGmzV6LZ7wDYoPe5DCugNtM5vr9GlVW2Em585Rx-PD-_r52zz-vSyXm0ynQs2ZqrkZQ2CC2q1UsZS0MB5LqrcFDwvLedWmaIyvLRLVnNWC6LTIeWpiqotzecoP-fq0MeYPpdDcJ0KR0mJPGmRjfzWIk9a5FlLoqpflHZjqtL7MSjX_sPen1lItQ4OgozagddgXAA9StO7P_kvW5SC3g |
| CitedBy_id | crossref_primary_10_1016_j_compstruct_2025_119273 crossref_primary_10_1016_j_finel_2025_104414 crossref_primary_10_1016_j_ijmecsci_2024_109279 crossref_primary_10_1016_j_cma_2024_117200 crossref_primary_10_1016_j_cma_2025_118259 crossref_primary_10_1016_j_engfracmech_2024_110212 crossref_primary_10_1016_j_cma_2025_118074 crossref_primary_10_1016_j_cma_2025_118140 crossref_primary_10_1016_j_commatsci_2024_112929 crossref_primary_10_1016_j_jmps_2024_106008 crossref_primary_10_3390_app14209297 crossref_primary_10_1016_j_mechrescom_2025_104508 crossref_primary_10_1016_j_ijfatigue_2025_108875 crossref_primary_10_1016_j_ijmecsci_2024_108989 crossref_primary_10_1016_j_ijfatigue_2024_108786 crossref_primary_10_1016_j_ijpvp_2025_105658 crossref_primary_10_1007_s00466_024_02551_8 crossref_primary_10_1007_s00466_023_02439_z crossref_primary_10_1016_j_ijfatigue_2025_108970 crossref_primary_10_1016_j_cma_2023_116469 crossref_primary_10_1016_j_cma_2024_116917 crossref_primary_10_1016_j_engfailanal_2024_108081 crossref_primary_10_1007_s00466_025_02644_y crossref_primary_10_1016_j_cma_2025_117846 |
| Cites_doi | 10.1016/j.mechmat.2019.103282 10.1016/j.cma.2020.113473 10.1016/S0022-5096(98)00034-9 10.1002/cpa.3160430805 10.1016/j.undsp.2018.04.006 10.1016/j.cma.2021.113874 10.1016/j.cma.2016.08.030 10.1016/j.cma.2012.02.020 10.1115/1.4011547 10.1002/nme.6587 10.1016/j.ijfatigue.2006.01.010 10.1016/j.finel.2019.01.008 10.1016/j.jmps.2010.02.010 10.1016/j.tafmec.2019.102446 10.1007/s00466-016-1275-1 10.1016/j.cma.2010.04.011 10.1016/j.jmps.2017.09.006 10.1002/nme.2861 10.1016/S1359-835X(01)00042-2 10.1007/s00466-013-0882-3 10.1016/j.tafmec.2020.102736 10.1111/ffe.13638 10.1016/j.engfracmech.2004.04.008 10.1007/s00419-020-01821-0 10.1016/j.ijfatigue.2023.107558 10.1016/j.engfracmech.2015.03.045 10.1016/j.cma.2020.113218 10.1016/j.cma.2015.03.009 10.1016/j.compstruc.2005.10.007 10.1016/j.ijfatigue.2021.106521 10.1016/j.tafmec.2019.102282 10.1016/j.prostr.2016.06.460 10.1115/1.3656900 10.1098/rsta.2021.0021 10.1115/1.4042217 10.1016/S0022-5096(99)00028-9 10.1016/j.finel.2017.03.002 10.1016/j.cma.2021.114214 10.1007/s00466-021-01996-5 10.1016/j.engfracmech.2022.108255 10.1016/j.engfracmech.2017.11.036 10.1016/j.jmps.2019.103684 10.1016/j.engfracmech.2022.108390 10.1002/nme.2427 10.1016/j.jmps.2018.06.006 10.1016/j.cma.2015.06.009 10.1016/S0045-7825(96)01070-5 10.1016/j.ijfatigue.2021.106297 10.1016/j.engfracmech.2019.106599 10.1002/gamm.202000003 10.1103/PhysRevLett.120.255501 10.1016/j.engfracmech.2022.108399 10.1016/j.finel.2017.09.003 10.1016/j.euromechsol.2023.104991 10.1016/j.engfracmech.2019.106807 10.1016/j.cma.2020.113247 10.1016/0045-7825(94)90060-4 |
| ContentType | Journal Article |
| Copyright | 2023 Elsevier B.V. |
| Copyright_xml | – notice: 2023 Elsevier B.V. |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.finel.2023.104004 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences Engineering |
| EISSN | 1872-6925 |
| ExternalDocumentID | 10_1016_j_finel_2023_104004 S0168874X23000975 |
| GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO AAYFN ABAOU ABBOA ABMAC ABYKQ ACAZW ACDAQ ACGFS ACIWK ACRLP ACZNC ADBBV ADEZE ADGUI ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIGVJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ARUGR AXJTR BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ IHE J1W JJJVA KOM LX9 LY7 M41 MHUIS MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 RNS ROL RPZ SDF SDG SES SEW SPC SPCBC SST SSV SSW SSZ T5K TN5 XPP ZMT ~02 ~G- 29H 9DU AAQXK AATTM AAXKI AAYWO AAYXX ABEFU ABJNI ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADJOM ADMUD ADNMO AEIPS AEUPX AFFNX AFJKZ AFPUW AGQPQ AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EJD FEDTE FGOYB G-2 HLZ HVGLF HZ~ R2- SBC SET T9H VH1 WUQ ~HD |
| ID | FETCH-LOGICAL-c382t-a767be8681fcaadf1ece663893d4637f66fad49d67f52b62b80ccaa16016abf13 |
| ISICitedReferencesCount | 28 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001040015200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0168-874X |
| IngestDate | Sat Nov 29 07:27:12 EST 2025 Tue Nov 18 22:18:20 EST 2025 Fri Feb 23 02:33:40 EST 2024 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Phase-field Adaptive mesh refinement Fracture mechanics Fatigue crack propagation Cycle jump scheme |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c382t-a767be8681fcaadf1ece663893d4637f66fad49d67f52b62b80ccaa16016abf13 |
| OpenAccessLink | https://hal.science/hal-04161609 |
| ParticipantIDs | crossref_primary_10_1016_j_finel_2023_104004 crossref_citationtrail_10_1016_j_finel_2023_104004 elsevier_sciencedirect_doi_10_1016_j_finel_2023_104004 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-10-15 |
| PublicationDateYYYYMMDD | 2023-10-15 |
| PublicationDate_xml | – month: 10 year: 2023 text: 2023-10-15 day: 15 |
| PublicationDecade | 2020 |
| PublicationTitle | Finite elements in analysis and design |
| PublicationYear | 2023 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Wick (b52) 2016; 57 Perić, Hochard, Dutko, Owen (b55) 1996; 137 Hirshikesh, Jansari, Krishna, Annabattula, Natarajan (b54) 2019; 220 Kristensen, Golahmar, Martínez-Pañeda, Niordson (b41) 2023; 100 Strobl, Seelig (b65) 2016; 2 Badnava, Msekh, Etemadi, Rabczuk (b47) 2018; 138 Molnár, Doitrand, Jaccon, Prabel, Gravouil (b26) 2022; 266 Gibert, Prabel, Gravouil, Jacquemoud (b36) 2019; 157 Nguyen, Yvonnet, Zhu, Bornert, Chateau (b62) 2015; 139 Hirshikesh, Pramod, Waisman, Natarajan (b50) 2021; 383 Romani (b63) 2013 Kristensen, Niordson, Martínez-Pañeda (b30) 2021; 379 Mang, Walloth, Wick, Wollner (b53) 2019; 43 Amendola, Fabrizio (b11) 2018; 39 Alessi, Ulloa (b23) 2023 Schwaab, Biben, Santucci, Gravouil, Vanel (b59) 2018; 120 Miehe, Hofacker, Welschinger (b7) 2010; 199 Lemaitre, Doghri (b39) 1994; 115 Riad, Bardel, Réthoré (b35) 2022; 267 He, Shao (b64) 2019; 86 Carrara, Ambati, Alessi, Lorenzis (b14) 2019 Klinsmann, Rosato, Kamlah, McMeeking (b57) 2015; 294 Ulloa, Wambacq, Alessi, Degrande, François (b16) 2021; 373 Lo, Borden, Ravi-Chandar, Landis (b10) 2019; 132 Golahmar, Niordson, Martínez-Pañeda (b24) 2023; 170 Molnár, Gravouil (b8) 2017; 130 Griffith (b1) 1921; 221 Alessi, Vidoli, Lorenzis (b13) 2018; 190 Miehe, Welschinger, Hofacker (b44) 2010; 83 Paris, Erdogan (b3) 1963; 85 Gibert (b58) 2019 Bourdin, Francfort, Marigo (b5) 2000; 48 Kim, Kim (b49) 2020; 122 Bernard, Moës, Chevaugeon (b31) 2012; 233 Passieux, Réthoré, Gravouil, Baietto (b43) 2013; 52 Irwin (b2) 1957; 24 Freddi, Mingazzi (b51) 2022; 388 Ambrosio, Tortorelli (b6) 1990; 43 CEA (b32) 2022 Freddi, Royer-Carfagni (b66) 2010; 58 Golahmar, Kristensen, Niordson, nez Pañeda (b19) 2022; 154 Seleš, Aldakheel, Tonković, Sorić, Wriggers (b17) 2021; 67 Loew, Poh, Peters, Beex (b25) 2020; 370 Seiler, Linse, Hantschke, Kästner (b15) 2020; 224 Mesgarnejad, Imanian, Karma (b20) 2019; 103 Schreiber, Müller, Kuhn (b60) 2020; 91 Heister, Wheeler, Wick (b46) 2015; 290 Molnár, Doitrand, Estevez, Gravouil (b29) 2020; 109 Loew, Peters, Beex (b12) 2020; 142 Rannou, Gravouil, Baïetto-Dubourg (b42) 2009; 77 Simoes, Braithwaite, Makaya, Martínez-Pañeda (b18) 2022; 45 Helfer, Bary, Dang, Fandeur, Michel (b33) 2017 Wu, Nguyen (b27) 2018; 119 Hasan, Baxevanis (b21) 2021; 150 Tang, Wong, Chau, Lin (b61) 2005; 72 Cojocaru, Karlsson (b38) 2006; 28 Grossman-Ponemon, Mesgarnejad, Karma (b22) 2022; 264 Kristensen, Martínez-Pañeda (b37) 2020; 107 Boldrini, de Moraes, Chiarelli, Fumes, Bittencourt (b9) 2016; 312 Lu, Helfer, Bary, Fandeur (b34) 2020; 370 Zhou, Zhuang (b48) 2018; 3 Paepegem, Degrieck (b40) 2001; 32 Mediavilla, Peerlings, Geers (b56) 2006; 84 Francfort, Marigo (b4) 1998; 46 Tanné, Li, Bourdin, Marigo, Maurini (b28) 2018; 110 Bourdin, Francfort, Marigo (b45) 2008 Kristensen (10.1016/j.finel.2023.104004_b41) 2023; 100 Bourdin (10.1016/j.finel.2023.104004_b45) 2008 Freddi (10.1016/j.finel.2023.104004_b51) 2022; 388 Riad (10.1016/j.finel.2023.104004_b35) 2022; 267 Miehe (10.1016/j.finel.2023.104004_b44) 2010; 83 Badnava (10.1016/j.finel.2023.104004_b47) 2018; 138 Simoes (10.1016/j.finel.2023.104004_b18) 2022; 45 Alessi (10.1016/j.finel.2023.104004_b13) 2018; 190 Alessi (10.1016/j.finel.2023.104004_b23) 2023 Mang (10.1016/j.finel.2023.104004_b53) 2019; 43 Passieux (10.1016/j.finel.2023.104004_b43) 2013; 52 Loew (10.1016/j.finel.2023.104004_b12) 2020; 142 Romani (10.1016/j.finel.2023.104004_b63) 2013 Strobl (10.1016/j.finel.2023.104004_b65) 2016; 2 Tanné (10.1016/j.finel.2023.104004_b28) 2018; 110 Wu (10.1016/j.finel.2023.104004_b27) 2018; 119 Molnár (10.1016/j.finel.2023.104004_b29) 2020; 109 Hirshikesh (10.1016/j.finel.2023.104004_b54) 2019; 220 Tang (10.1016/j.finel.2023.104004_b61) 2005; 72 Kristensen (10.1016/j.finel.2023.104004_b30) 2021; 379 Schwaab (10.1016/j.finel.2023.104004_b59) 2018; 120 Bourdin (10.1016/j.finel.2023.104004_b5) 2000; 48 He (10.1016/j.finel.2023.104004_b64) 2019; 86 Helfer (10.1016/j.finel.2023.104004_b33) 2017 Kim (10.1016/j.finel.2023.104004_b49) 2020; 122 Lu (10.1016/j.finel.2023.104004_b34) 2020; 370 Schreiber (10.1016/j.finel.2023.104004_b60) 2020; 91 Nguyen (10.1016/j.finel.2023.104004_b62) 2015; 139 Molnár (10.1016/j.finel.2023.104004_b8) 2017; 130 Golahmar (10.1016/j.finel.2023.104004_b24) 2023; 170 CEA (10.1016/j.finel.2023.104004_b32) 2022 Paris (10.1016/j.finel.2023.104004_b3) 1963; 85 Molnár (10.1016/j.finel.2023.104004_b26) 2022; 266 Lemaitre (10.1016/j.finel.2023.104004_b39) 1994; 115 Irwin (10.1016/j.finel.2023.104004_b2) 1957; 24 Bernard (10.1016/j.finel.2023.104004_b31) 2012; 233 Grossman-Ponemon (10.1016/j.finel.2023.104004_b22) 2022; 264 Loew (10.1016/j.finel.2023.104004_b25) 2020; 370 Perić (10.1016/j.finel.2023.104004_b55) 1996; 137 Zhou (10.1016/j.finel.2023.104004_b48) 2018; 3 Klinsmann (10.1016/j.finel.2023.104004_b57) 2015; 294 Hasan (10.1016/j.finel.2023.104004_b21) 2021; 150 Francfort (10.1016/j.finel.2023.104004_b4) 1998; 46 Carrara (10.1016/j.finel.2023.104004_b14) 2019 Griffith (10.1016/j.finel.2023.104004_b1) 1921; 221 Seleš (10.1016/j.finel.2023.104004_b17) 2021; 67 Mesgarnejad (10.1016/j.finel.2023.104004_b20) 2019; 103 Gibert (10.1016/j.finel.2023.104004_b36) 2019; 157 Hirshikesh (10.1016/j.finel.2023.104004_b50) 2021; 383 Miehe (10.1016/j.finel.2023.104004_b7) 2010; 199 Kristensen (10.1016/j.finel.2023.104004_b37) 2020; 107 Paepegem (10.1016/j.finel.2023.104004_b40) 2001; 32 Ulloa (10.1016/j.finel.2023.104004_b16) 2021; 373 Seiler (10.1016/j.finel.2023.104004_b15) 2020; 224 Wick (10.1016/j.finel.2023.104004_b52) 2016; 57 Amendola (10.1016/j.finel.2023.104004_b11) 2018; 39 Freddi (10.1016/j.finel.2023.104004_b66) 2010; 58 Lo (10.1016/j.finel.2023.104004_b10) 2019; 132 Golahmar (10.1016/j.finel.2023.104004_b19) 2022; 154 Mediavilla (10.1016/j.finel.2023.104004_b56) 2006; 84 Cojocaru (10.1016/j.finel.2023.104004_b38) 2006; 28 Heister (10.1016/j.finel.2023.104004_b46) 2015; 290 Boldrini (10.1016/j.finel.2023.104004_b9) 2016; 312 Ambrosio (10.1016/j.finel.2023.104004_b6) 1990; 43 Gibert (10.1016/j.finel.2023.104004_b58) 2019 Rannou (10.1016/j.finel.2023.104004_b42) 2009; 77 |
| References_xml | – volume: 157 year: 2019 ident: b36 article-title: A 3D automatic mesh refinement X-FEM approach for fatigue crack propagation publication-title: Finite Elem. Anal. Des. – volume: 132 year: 2019 ident: b10 article-title: A phase-field model for fatigue crack growth publication-title: J. Mech. Phys. Solids – volume: 290 start-page: 466 year: 2015 end-page: 495 ident: b46 article-title: A primal-dual active set method and predictor-corrector mesh adaptivity for computing fracture propagation using a phase-field approach publication-title: Comput. Methods Appl. Mech. Engrg. – volume: 72 start-page: 597 year: 2005 end-page: 615 ident: b61 article-title: Modeling of compression-induced splitting failure in heterogeneous brittle porous solids publication-title: Eng. Fract. Mech. – volume: 122 start-page: 1493 year: 2020 end-page: 1512 ident: b49 article-title: A novel adaptive mesh refinement scheme for the simulation of phase-field fracture using trimmed hexahedral meshes publication-title: Internat. J. Numer. Methods Engrg. – volume: 109 year: 2020 ident: b29 article-title: Toughness or strength? Regularization in phase-field fracture explained by the coupled criterion publication-title: Theor. Appl. Fract. Mech. – volume: 46 start-page: 1319 year: 1998 end-page: 1342 ident: b4 article-title: Revisiting brittle fracture as an energy minimization problem publication-title: J. Mech. Phys. Solids – volume: 45 start-page: 1243 year: 2022 end-page: 1257 ident: b18 article-title: Modelling fatigue crack growth in shape memory alloys publication-title: Fatigue Fract. Eng. Mater. Struct. – volume: 224 year: 2020 ident: b15 article-title: An efficient phase-field model for fatigue fracture in ductile materials publication-title: Eng. Fract. Mech. – volume: 370 year: 2020 ident: b25 article-title: Accelerating fatigue simulations of a phase-field damage model for rubber publication-title: Comput. Methods Appl. Mech. Engrg. – year: 2022 ident: b32 article-title: Cast3M - finite element software developed by the French alternative energies and atomic energy commission – volume: 100 year: 2023 ident: b41 article-title: Accelerated high-cycle phase field fatigue predictions publication-title: Eur. J. Mech. A Solids – volume: 43 year: 2019 ident: b53 article-title: Mesh adaptivity for quasi-static phase-field fractures based on a residual-type a posteriori error estimator publication-title: GAMM-Mitt. – volume: 138 start-page: 31 year: 2018 end-page: 47 ident: b47 article-title: An h-adaptive thermo-mechanical phase field model for fracture publication-title: Finite Elem. Anal. Des. – volume: 107 year: 2020 ident: b37 article-title: Phase field fracture modelling using quasi-Newton methods and a new adaptive step scheme publication-title: Theor. Appl. Fract. Mech. – volume: 2 start-page: 3705 year: 2016 end-page: 3712 ident: b65 article-title: On constitutive assumptions in phase field approaches to brittle fracture publication-title: Procedia Struct. Integr. – volume: 77 start-page: 581 year: 2009 end-page: 600 ident: b42 article-title: A local multigrid X-FEM strategy for 3-D crack propagation publication-title: Internat. J. Numer. Methods Engrg. – volume: 266 year: 2022 ident: b26 article-title: Thermodynamically consistent linear-gradient damage model in Abaqus publication-title: Eng. Fract. Mech. – volume: 48 start-page: 797 year: 2000 end-page: 826 ident: b5 article-title: Numerical experiments in revisited brittle fracture publication-title: J. Mech. Phys. Solids – volume: 154 year: 2022 ident: b19 article-title: A phase field model for hydrogen-assisted fatigue publication-title: Int. J. Fatigue – year: 2017 ident: b33 publication-title: Modélisation par champ de phase de la fissuration des matériaux fragiles: Aspects numériques et applications au combustible nucléaire oxyde – volume: 170 year: 2023 ident: b24 article-title: A phase field model for high-cycle fatigue: Total-life analysis publication-title: Int. J. Fatigue – year: 2019 ident: b58 article-title: Propagation de Fissures En Fatigue Par Une Approche X-FEM Avec Raffinement Automatique de Maillage – volume: 370 year: 2020 ident: b34 article-title: An efficient and robust staggered algorithm applied to the quasi-static description of brittle fracture by a phase-field approach publication-title: Comput. Methods Appl. Mech. Engrg. – year: 2013 ident: b63 article-title: Rupture En Compression des Structures HétÉrogÈnes à Base de MatÉriau Quasi-Fragiles – volume: 58 start-page: 1154 year: 2010 end-page: 1174 ident: b66 article-title: Regularized variational theories of fracture: A unified approach publication-title: J. Mech. Phys. Solids – volume: 110 start-page: 80 year: 2018 end-page: 99 ident: b28 article-title: Crack nucleation in variational phase-field models of brittle fracture publication-title: J. Mech. Phys. Solids – year: 2019 ident: b14 article-title: A framework to model the fatigue behaviour of brittle materials on a variational phase-field approach publication-title: Comput. Methods Appl. Mech. Engrg. – volume: 130 start-page: 27 year: 2017 end-page: 38 ident: b8 article-title: 2D and 3D abaqus implementation of a robust staggered phase-field solution for modeling brittle fracture publication-title: Finite Elem. Anal. Des. – volume: 32 start-page: 1433 year: 2001 end-page: 1441 ident: b40 article-title: Fatigue degradation modelling of plain woven glass/epoxy composites publication-title: Composites A – volume: 383 year: 2021 ident: b50 article-title: Adaptive phase field method using novel physics based refinement criteria publication-title: Comput. Methods Appl. Mech. Engrg. – volume: 294 start-page: 313 year: 2015 end-page: 330 ident: b57 article-title: An assessment of the phase field formulation for crack growth publication-title: Comput. Methods Appl. Mech. Engrg. – volume: 43 start-page: 999 year: 1990 end-page: 1036 ident: b6 article-title: Approximation of functional depending on jumps by elliptic functional via t-convergence publication-title: Comm. Pure Appl. Math. – volume: 137 start-page: 331 year: 1996 end-page: 344 ident: b55 article-title: Transfer operators for evolving meshes in small strain elasto-placticity publication-title: Comput. Methods Appl. Mech. Engrg. – volume: 86 year: 2019 ident: b64 article-title: Closed-form coordinate-free decompositions of the two-dimensional strain and stress for modeling tension–compression dissymmetry publication-title: J. Appl. Mech. – volume: 267 year: 2022 ident: b35 article-title: Effect of microstructural length scales on crack propagation in elastic Cosserat media publication-title: Eng. Fract. Mech. – volume: 85 start-page: 528 year: 1963 end-page: 533 ident: b3 article-title: A critical analysis of crack propagation laws publication-title: J. Basic Eng. – volume: 379 year: 2021 ident: b30 article-title: An assessment of phase field fracture: Crack initiation and growth publication-title: Phil. Trans. R. Soc. A – volume: 39 year: 2018 ident: b11 article-title: Thermomechanics of damage and fatigue by a phase field model publication-title: J. Therm. Stresses – volume: 264 year: 2022 ident: b22 article-title: Phase-field modeling of continuous fatigue via toughness degradation publication-title: Eng. Fract. Mech. – volume: 221 start-page: 163 year: 1921 end-page: 198 ident: b1 article-title: The phenomena of rupture and flow in solids publication-title: Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. – volume: 67 start-page: 1431 year: 2021 end-page: 1452 ident: b17 article-title: A phase-field model of thermo-elastic coupled brittle fracture with explicit time integration publication-title: Comput. Mech. – volume: 84 start-page: 604 year: 2006 end-page: 623 ident: b56 article-title: A robust and consistent remeshing-transfer operator for ductile fracture simulations publication-title: Comput. Struct. – volume: 388 year: 2022 ident: b51 article-title: Mesh refinement procedures for the phase field approach to brittle fracture publication-title: Comput. Methods Appl. Mech. Engrg. – volume: 312 start-page: 395 year: 2016 end-page: 427 ident: b9 article-title: A non-isothermal thermodynamically consistent phase field framework for structural damage and fatigue publication-title: Comput. Methods Appl. Mech. Engrg. – volume: 150 year: 2021 ident: b21 article-title: A phase-field model for low-cycle fatigue of brittle materials publication-title: Int. J. Fatigue – volume: 115 start-page: 197 year: 1994 end-page: 232 ident: b39 article-title: Damage 90: A post processor for crack initiation publication-title: Comput. Methods Appl. Mech. Engrg. – volume: 83 start-page: 1273 year: 2010 end-page: 1311 ident: b44 article-title: Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field FE implementations publication-title: Internat. J. Numer. Methods Engrg. – volume: 233 start-page: 11 year: 2012 end-page: 27 ident: b31 article-title: Damage growth modeling using the thick level set (TLS) approach: Efficient discretization for quasi-static loadings publication-title: Comput. Methods Appl. Mech. Engrg. – volume: 28 start-page: 1677 year: 2006 end-page: 1689 ident: b38 article-title: A simple numerical method of cycle jumps for cyclically loaded structures publication-title: Int. J. Fatigue – volume: 119 start-page: 20 year: 2018 end-page: 42 ident: b27 article-title: A length scale insensitive phase-field damage model for brittle fracture publication-title: J. Mech. Phys. Solids – year: 2023 ident: b23 article-title: Endowing griffth’s fracture theory with the ability to describe fatigue cracks – year: 2008 ident: b45 article-title: The Variational Approach to Fracture – volume: 220 year: 2019 ident: b54 article-title: Adaptive phase field method for quasi-static brittle fracture using a recovery based error indicator and quadtree decomposition publication-title: Eng. Fract. Mech. – volume: 91 start-page: 563 year: 2020 end-page: 577 ident: b60 article-title: Phase field simulation of fatigue crack propagation under complex load situations publication-title: Arch. Appl. Mech. – volume: 199 start-page: 2765 year: 2010 end-page: 2778 ident: b7 article-title: A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits publication-title: Comput. Methods Appl. Mech. Engrg. – volume: 142 year: 2020 ident: b12 article-title: Fatigue phase-field damage modeling of rubber using viscous dissipation: Crack nucleation and propagation publication-title: Mech. Mater. – volume: 190 start-page: 53 year: 2018 end-page: 73 ident: b13 article-title: A phenomenological approach to fatigue with a variational phase-field model: The one-dimensional case publication-title: Eng. Fract. Mech. – volume: 57 start-page: 1017 year: 2016 end-page: 1035 ident: b52 article-title: Goal functional evaluations for phase-field fracture using PU-based DWR mesh adaptivity publication-title: Comput. Mech. – volume: 139 start-page: 18 year: 2015 end-page: 39 ident: b62 article-title: A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure publication-title: Eng. Fract. Mech. – volume: 120 year: 2018 ident: b59 article-title: Interacting cracks obey a multiscale attractive to repulsive transition publication-title: Phys. Rev. Lett. – volume: 373 year: 2021 ident: b16 article-title: Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation publication-title: Comput. Methods Appl. Mech. Engrg. – volume: 52 start-page: 1381 year: 2013 end-page: 1393 ident: b43 article-title: Local/global non-intrusive crack propagation simulation using a multigrid X-FEM solver publication-title: Comput. Mech. – volume: 3 start-page: 190 year: 2018 end-page: 205 ident: b48 article-title: Adaptive phase field simulation of quasi-static crack propagation in rocks publication-title: Undergr. Space – volume: 103 year: 2019 ident: b20 article-title: Phase-field models for fatigue crack growth publication-title: Theor. Appl. Fract. Mech. – volume: 24 start-page: 361 year: 1957 end-page: 364 ident: b2 article-title: The formation of equilibrium cracks during brittle fracture. General ideas and hypotheses. Axially-symmetric cracks publication-title: J. Appl. Mech. – volume: 142 year: 2020 ident: 10.1016/j.finel.2023.104004_b12 article-title: Fatigue phase-field damage modeling of rubber using viscous dissipation: Crack nucleation and propagation publication-title: Mech. Mater. doi: 10.1016/j.mechmat.2019.103282 – volume: 373 year: 2021 ident: 10.1016/j.finel.2023.104004_b16 article-title: Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation publication-title: Comput. Methods Appl. Mech. Engrg. doi: 10.1016/j.cma.2020.113473 – volume: 46 start-page: 1319 issue: 8 year: 1998 ident: 10.1016/j.finel.2023.104004_b4 article-title: Revisiting brittle fracture as an energy minimization problem publication-title: J. Mech. Phys. Solids doi: 10.1016/S0022-5096(98)00034-9 – volume: 43 start-page: 999 issue: 8 year: 1990 ident: 10.1016/j.finel.2023.104004_b6 article-title: Approximation of functional depending on jumps by elliptic functional via t-convergence publication-title: Comm. Pure Appl. Math. doi: 10.1002/cpa.3160430805 – volume: 3 start-page: 190 issue: 3 year: 2018 ident: 10.1016/j.finel.2023.104004_b48 article-title: Adaptive phase field simulation of quasi-static crack propagation in rocks publication-title: Undergr. Space doi: 10.1016/j.undsp.2018.04.006 – volume: 383 year: 2021 ident: 10.1016/j.finel.2023.104004_b50 article-title: Adaptive phase field method using novel physics based refinement criteria publication-title: Comput. Methods Appl. Mech. Engrg. doi: 10.1016/j.cma.2021.113874 – volume: 312 start-page: 395 year: 2016 ident: 10.1016/j.finel.2023.104004_b9 article-title: A non-isothermal thermodynamically consistent phase field framework for structural damage and fatigue publication-title: Comput. Methods Appl. Mech. Engrg. doi: 10.1016/j.cma.2016.08.030 – volume: 233 start-page: 11 year: 2012 ident: 10.1016/j.finel.2023.104004_b31 article-title: Damage growth modeling using the thick level set (TLS) approach: Efficient discretization for quasi-static loadings publication-title: Comput. Methods Appl. Mech. Engrg. doi: 10.1016/j.cma.2012.02.020 – volume: 24 start-page: 361 year: 1957 ident: 10.1016/j.finel.2023.104004_b2 article-title: The formation of equilibrium cracks during brittle fracture. General ideas and hypotheses. Axially-symmetric cracks publication-title: J. Appl. Mech. doi: 10.1115/1.4011547 – volume: 122 start-page: 1493 issue: 6 year: 2020 ident: 10.1016/j.finel.2023.104004_b49 article-title: A novel adaptive mesh refinement scheme for the simulation of phase-field fracture using trimmed hexahedral meshes publication-title: Internat. J. Numer. Methods Engrg. doi: 10.1002/nme.6587 – volume: 28 start-page: 1677 issue: 12 year: 2006 ident: 10.1016/j.finel.2023.104004_b38 article-title: A simple numerical method of cycle jumps for cyclically loaded structures publication-title: Int. J. Fatigue doi: 10.1016/j.ijfatigue.2006.01.010 – year: 2019 ident: 10.1016/j.finel.2023.104004_b14 article-title: A framework to model the fatigue behaviour of brittle materials on a variational phase-field approach publication-title: Comput. Methods Appl. Mech. Engrg. – volume: 157 year: 2019 ident: 10.1016/j.finel.2023.104004_b36 article-title: A 3D automatic mesh refinement X-FEM approach for fatigue crack propagation publication-title: Finite Elem. Anal. Des. doi: 10.1016/j.finel.2019.01.008 – volume: 58 start-page: 1154 issue: 8 year: 2010 ident: 10.1016/j.finel.2023.104004_b66 article-title: Regularized variational theories of fracture: A unified approach publication-title: J. Mech. Phys. Solids doi: 10.1016/j.jmps.2010.02.010 – volume: 107 year: 2020 ident: 10.1016/j.finel.2023.104004_b37 article-title: Phase field fracture modelling using quasi-Newton methods and a new adaptive step scheme publication-title: Theor. Appl. Fract. Mech. doi: 10.1016/j.tafmec.2019.102446 – volume: 57 start-page: 1017 issue: 6 year: 2016 ident: 10.1016/j.finel.2023.104004_b52 article-title: Goal functional evaluations for phase-field fracture using PU-based DWR mesh adaptivity publication-title: Comput. Mech. doi: 10.1007/s00466-016-1275-1 – volume: 199 start-page: 2765 issue: 45–48 year: 2010 ident: 10.1016/j.finel.2023.104004_b7 article-title: A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits publication-title: Comput. Methods Appl. Mech. Engrg. doi: 10.1016/j.cma.2010.04.011 – volume: 110 start-page: 80 year: 2018 ident: 10.1016/j.finel.2023.104004_b28 article-title: Crack nucleation in variational phase-field models of brittle fracture publication-title: J. Mech. Phys. Solids doi: 10.1016/j.jmps.2017.09.006 – volume: 83 start-page: 1273 issue: 10 year: 2010 ident: 10.1016/j.finel.2023.104004_b44 article-title: Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field FE implementations publication-title: Internat. J. Numer. Methods Engrg. doi: 10.1002/nme.2861 – volume: 32 start-page: 1433 issue: 10 year: 2001 ident: 10.1016/j.finel.2023.104004_b40 article-title: Fatigue degradation modelling of plain woven glass/epoxy composites publication-title: Composites A doi: 10.1016/S1359-835X(01)00042-2 – volume: 52 start-page: 1381 issue: 6 year: 2013 ident: 10.1016/j.finel.2023.104004_b43 article-title: Local/global non-intrusive crack propagation simulation using a multigrid X-FEM solver publication-title: Comput. Mech. doi: 10.1007/s00466-013-0882-3 – volume: 109 year: 2020 ident: 10.1016/j.finel.2023.104004_b29 article-title: Toughness or strength? Regularization in phase-field fracture explained by the coupled criterion publication-title: Theor. Appl. Fract. Mech. doi: 10.1016/j.tafmec.2020.102736 – volume: 45 start-page: 1243 issue: 4 year: 2022 ident: 10.1016/j.finel.2023.104004_b18 article-title: Modelling fatigue crack growth in shape memory alloys publication-title: Fatigue Fract. Eng. Mater. Struct. doi: 10.1111/ffe.13638 – volume: 72 start-page: 597 issue: 4 year: 2005 ident: 10.1016/j.finel.2023.104004_b61 article-title: Modeling of compression-induced splitting failure in heterogeneous brittle porous solids publication-title: Eng. Fract. Mech. doi: 10.1016/j.engfracmech.2004.04.008 – volume: 91 start-page: 563 issue: 2 year: 2020 ident: 10.1016/j.finel.2023.104004_b60 article-title: Phase field simulation of fatigue crack propagation under complex load situations publication-title: Arch. Appl. Mech. doi: 10.1007/s00419-020-01821-0 – volume: 170 year: 2023 ident: 10.1016/j.finel.2023.104004_b24 article-title: A phase field model for high-cycle fatigue: Total-life analysis publication-title: Int. J. Fatigue doi: 10.1016/j.ijfatigue.2023.107558 – volume: 139 start-page: 18 year: 2015 ident: 10.1016/j.finel.2023.104004_b62 article-title: A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure publication-title: Eng. Fract. Mech. doi: 10.1016/j.engfracmech.2015.03.045 – volume: 370 year: 2020 ident: 10.1016/j.finel.2023.104004_b34 article-title: An efficient and robust staggered algorithm applied to the quasi-static description of brittle fracture by a phase-field approach publication-title: Comput. Methods Appl. Mech. Engrg. doi: 10.1016/j.cma.2020.113218 – volume: 290 start-page: 466 year: 2015 ident: 10.1016/j.finel.2023.104004_b46 article-title: A primal-dual active set method and predictor-corrector mesh adaptivity for computing fracture propagation using a phase-field approach publication-title: Comput. Methods Appl. Mech. Engrg. doi: 10.1016/j.cma.2015.03.009 – volume: 84 start-page: 604 issue: 8–9 year: 2006 ident: 10.1016/j.finel.2023.104004_b56 article-title: A robust and consistent remeshing-transfer operator for ductile fracture simulations publication-title: Comput. Struct. doi: 10.1016/j.compstruc.2005.10.007 – volume: 154 year: 2022 ident: 10.1016/j.finel.2023.104004_b19 article-title: A phase field model for hydrogen-assisted fatigue publication-title: Int. J. Fatigue doi: 10.1016/j.ijfatigue.2021.106521 – volume: 103 year: 2019 ident: 10.1016/j.finel.2023.104004_b20 article-title: Phase-field models for fatigue crack growth publication-title: Theor. Appl. Fract. Mech. doi: 10.1016/j.tafmec.2019.102282 – volume: 2 start-page: 3705 year: 2016 ident: 10.1016/j.finel.2023.104004_b65 article-title: On constitutive assumptions in phase field approaches to brittle fracture publication-title: Procedia Struct. Integr. doi: 10.1016/j.prostr.2016.06.460 – volume: 221 start-page: 163 issue: 582–593 year: 1921 ident: 10.1016/j.finel.2023.104004_b1 article-title: The phenomena of rupture and flow in solids publication-title: Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. – volume: 85 start-page: 528 issue: 4 year: 1963 ident: 10.1016/j.finel.2023.104004_b3 article-title: A critical analysis of crack propagation laws publication-title: J. Basic Eng. doi: 10.1115/1.3656900 – volume: 379 issue: 2203 year: 2021 ident: 10.1016/j.finel.2023.104004_b30 article-title: An assessment of phase field fracture: Crack initiation and growth publication-title: Phil. Trans. R. Soc. A doi: 10.1098/rsta.2021.0021 – volume: 86 issue: 3 year: 2019 ident: 10.1016/j.finel.2023.104004_b64 article-title: Closed-form coordinate-free decompositions of the two-dimensional strain and stress for modeling tension–compression dissymmetry publication-title: J. Appl. Mech. doi: 10.1115/1.4042217 – volume: 39 year: 2018 ident: 10.1016/j.finel.2023.104004_b11 article-title: Thermomechanics of damage and fatigue by a phase field model publication-title: J. Therm. Stresses – volume: 48 start-page: 797 issue: 4 year: 2000 ident: 10.1016/j.finel.2023.104004_b5 article-title: Numerical experiments in revisited brittle fracture publication-title: J. Mech. Phys. Solids doi: 10.1016/S0022-5096(99)00028-9 – volume: 130 start-page: 27 year: 2017 ident: 10.1016/j.finel.2023.104004_b8 article-title: 2D and 3D abaqus implementation of a robust staggered phase-field solution for modeling brittle fracture publication-title: Finite Elem. Anal. Des. doi: 10.1016/j.finel.2017.03.002 – volume: 388 year: 2022 ident: 10.1016/j.finel.2023.104004_b51 article-title: Mesh refinement procedures for the phase field approach to brittle fracture publication-title: Comput. Methods Appl. Mech. Engrg. doi: 10.1016/j.cma.2021.114214 – volume: 67 start-page: 1431 year: 2021 ident: 10.1016/j.finel.2023.104004_b17 article-title: A phase-field model of thermo-elastic coupled brittle fracture with explicit time integration publication-title: Comput. Mech. doi: 10.1007/s00466-021-01996-5 – volume: 264 year: 2022 ident: 10.1016/j.finel.2023.104004_b22 article-title: Phase-field modeling of continuous fatigue via toughness degradation publication-title: Eng. Fract. Mech. doi: 10.1016/j.engfracmech.2022.108255 – year: 2019 ident: 10.1016/j.finel.2023.104004_b58 – volume: 190 start-page: 53 year: 2018 ident: 10.1016/j.finel.2023.104004_b13 article-title: A phenomenological approach to fatigue with a variational phase-field model: The one-dimensional case publication-title: Eng. Fract. Mech. doi: 10.1016/j.engfracmech.2017.11.036 – volume: 132 year: 2019 ident: 10.1016/j.finel.2023.104004_b10 article-title: A phase-field model for fatigue crack growth publication-title: J. Mech. Phys. Solids doi: 10.1016/j.jmps.2019.103684 – volume: 266 year: 2022 ident: 10.1016/j.finel.2023.104004_b26 article-title: Thermodynamically consistent linear-gradient damage model in Abaqus publication-title: Eng. Fract. Mech. doi: 10.1016/j.engfracmech.2022.108390 – year: 2023 ident: 10.1016/j.finel.2023.104004_b23 – year: 2008 ident: 10.1016/j.finel.2023.104004_b45 – volume: 77 start-page: 581 issue: 4 year: 2009 ident: 10.1016/j.finel.2023.104004_b42 article-title: A local multigrid X-FEM strategy for 3-D crack propagation publication-title: Internat. J. Numer. Methods Engrg. doi: 10.1002/nme.2427 – volume: 119 start-page: 20 year: 2018 ident: 10.1016/j.finel.2023.104004_b27 article-title: A length scale insensitive phase-field damage model for brittle fracture publication-title: J. Mech. Phys. Solids doi: 10.1016/j.jmps.2018.06.006 – volume: 294 start-page: 313 year: 2015 ident: 10.1016/j.finel.2023.104004_b57 article-title: An assessment of the phase field formulation for crack growth publication-title: Comput. Methods Appl. Mech. Engrg. doi: 10.1016/j.cma.2015.06.009 – volume: 137 start-page: 331 issue: 3–4 year: 1996 ident: 10.1016/j.finel.2023.104004_b55 article-title: Transfer operators for evolving meshes in small strain elasto-placticity publication-title: Comput. Methods Appl. Mech. Engrg. doi: 10.1016/S0045-7825(96)01070-5 – volume: 150 year: 2021 ident: 10.1016/j.finel.2023.104004_b21 article-title: A phase-field model for low-cycle fatigue of brittle materials publication-title: Int. J. Fatigue doi: 10.1016/j.ijfatigue.2021.106297 – volume: 220 year: 2019 ident: 10.1016/j.finel.2023.104004_b54 article-title: Adaptive phase field method for quasi-static brittle fracture using a recovery based error indicator and quadtree decomposition publication-title: Eng. Fract. Mech. doi: 10.1016/j.engfracmech.2019.106599 – year: 2022 ident: 10.1016/j.finel.2023.104004_b32 – year: 2017 ident: 10.1016/j.finel.2023.104004_b33 – volume: 43 issue: 1 year: 2019 ident: 10.1016/j.finel.2023.104004_b53 article-title: Mesh adaptivity for quasi-static phase-field fractures based on a residual-type a posteriori error estimator publication-title: GAMM-Mitt. doi: 10.1002/gamm.202000003 – volume: 120 issue: 25 year: 2018 ident: 10.1016/j.finel.2023.104004_b59 article-title: Interacting cracks obey a multiscale attractive to repulsive transition publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.120.255501 – volume: 267 year: 2022 ident: 10.1016/j.finel.2023.104004_b35 article-title: Effect of microstructural length scales on crack propagation in elastic Cosserat media publication-title: Eng. Fract. Mech. doi: 10.1016/j.engfracmech.2022.108399 – volume: 138 start-page: 31 year: 2018 ident: 10.1016/j.finel.2023.104004_b47 article-title: An h-adaptive thermo-mechanical phase field model for fracture publication-title: Finite Elem. Anal. Des. doi: 10.1016/j.finel.2017.09.003 – volume: 100 year: 2023 ident: 10.1016/j.finel.2023.104004_b41 article-title: Accelerated high-cycle phase field fatigue predictions publication-title: Eur. J. Mech. A Solids doi: 10.1016/j.euromechsol.2023.104991 – volume: 224 year: 2020 ident: 10.1016/j.finel.2023.104004_b15 article-title: An efficient phase-field model for fatigue fracture in ductile materials publication-title: Eng. Fract. Mech. doi: 10.1016/j.engfracmech.2019.106807 – volume: 370 year: 2020 ident: 10.1016/j.finel.2023.104004_b25 article-title: Accelerating fatigue simulations of a phase-field damage model for rubber publication-title: Comput. Methods Appl. Mech. Engrg. doi: 10.1016/j.cma.2020.113247 – year: 2013 ident: 10.1016/j.finel.2023.104004_b63 – volume: 115 start-page: 197 issue: 3–4 year: 1994 ident: 10.1016/j.finel.2023.104004_b39 article-title: Damage 90: A post processor for crack initiation publication-title: Comput. Methods Appl. Mech. Engrg. doi: 10.1016/0045-7825(94)90060-4 |
| SSID | ssj0005264 |
| Score | 2.5086412 |
| Snippet | A phase-field approach was used in order to model the complex mechanisms of fatigue crack nucleation and growth. This popular method enables a flexible... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 104004 |
| SubjectTerms | Adaptive mesh refinement Cycle jump scheme Fatigue crack propagation Fracture mechanics Phase-field |
| Title | Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling |
| URI | https://dx.doi.org/10.1016/j.finel.2023.104004 |
| Volume | 224 |
| WOSCitedRecordID | wos001040015200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1872-6925 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0005264 issn: 0168-874X databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELZKlwMceCwglpd84BayapzEjo9dtAhWsEKwSL1Fju1sW5W0Srur5Qfwvxm_0kDRCpC4RFVkx9XMp_F4_M0MQi_zkcxJTfNY05zHGeyQsSBqFCstUl7xIpMjmyj8np2eFpMJ_zgYfA-5MJcL1jTF1RVf_VdVwztQtkmd_Qt1dx-FF_AblA5PUDs8_0jxYyVWlg_0Va-nEWyA4Ed2THL5DUZHc9ChrcMQraawi8WWxhbV8IHzCx3VJnHK3CvYLjlhawutPGfGSY20Y51bMq0IdU3MAuonRsiJkNI3rVamoHJniFtROXrAkW6Ws45682G5aOzVfdK6gH17rrd80yMQ29Td7LvAv01C68ctiGXAucxNF0zbSahx8U1agIF2pM1D7WxywUhMucuPDkabuMzrnQ3AxSLmh0a25maJpOYWe-RaHP9SWfuzWc0sBscwk8-S30B7hOW8GKK98bvjyUmPK0R9kXj370L5KksU3Fnq9y5Oz205u4fu-PMGHjuc3EcD3eyju_7sgb1lX--j273ClA_QpwAibECEtyDCoGNsQYQtiDCACPdAhD2IcAARDiB6iL68OT57_Tb23TdimRZkEwtGWaULWiS1FELViZaaWv9WZTRlNaW1UBlXlNU5qSipihFYA5GY-j6iqpP0ERo2y0Y_RlhxnTLYVDmMzDKRCcEEq6pE5kISKtQBIkFgpfSl6U2HlEUZOIjz0kq5NFIunZQP0Ktu0spVZrl-OA2aKL1z6ZzGEqBz3cQn_zrxKbq1xf0zNNy0F_o5uikvN7N1-8JD7AfJDKAs |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Adaptive+mesh+refinement+and+cycle+jumps+for+phase-field+fatigue+fracture+modeling&rft.jtitle=Finite+elements+in+analysis+and+design&rft.au=Jaccon%2C+Adrien&rft.au=Prabel%2C+Benoit&rft.au=Moln%C3%A1r%2C+Gergely&rft.au=Bluth%C3%A9%2C+Joffrey&rft.date=2023-10-15&rft.pub=Elsevier+B.V&rft.issn=0168-874X&rft.eissn=1872-6925&rft.volume=224&rft_id=info:doi/10.1016%2Fj.finel.2023.104004&rft.externalDocID=S0168874X23000975 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0168-874X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0168-874X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0168-874X&client=summon |