Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling

A phase-field approach was used in order to model the complex mechanisms of fatigue crack nucleation and growth. This popular method enables a flexible framework that recovers accurately expected crack patterns. However, it usually suffers from several efficiency drawbacks, such as the need for a ve...

Full description

Saved in:
Bibliographic Details
Published in:Finite elements in analysis and design Vol. 224; p. 104004
Main Authors: Jaccon, Adrien, Prabel, Benoit, Molnár, Gergely, Bluthé, Joffrey, Gravouil, Anthony
Format: Journal Article
Language:English
Published: Elsevier B.V 15.10.2023
Subjects:
ISSN:0168-874X, 1872-6925
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract A phase-field approach was used in order to model the complex mechanisms of fatigue crack nucleation and growth. This popular method enables a flexible framework that recovers accurately expected crack patterns. However, it usually suffers from several efficiency drawbacks, such as the need for a very fine mesh, and the heavy computational cost associated with the cycle by cycle approach. For this reason, we put forward the coupling of adaptive mesh refinement and cycle jumps, to significantly accelerate computing time, at a given level of accuracy. Several numerical examples were studied to showcase the abilities of the proposed coupling and some qualitative numerical/experimental comparisons were made. In the end, the proposed coupling was able to recover non accelerated results with significant computing gains. •Extending the phase-field method to model fatigue-induced fracture.•Accelerating with adaptive mesh refinement and cycle jumps.•Nucleation, fatigue crack propagation, branching and coalescence are accelerated.
AbstractList A phase-field approach was used in order to model the complex mechanisms of fatigue crack nucleation and growth. This popular method enables a flexible framework that recovers accurately expected crack patterns. However, it usually suffers from several efficiency drawbacks, such as the need for a very fine mesh, and the heavy computational cost associated with the cycle by cycle approach. For this reason, we put forward the coupling of adaptive mesh refinement and cycle jumps, to significantly accelerate computing time, at a given level of accuracy. Several numerical examples were studied to showcase the abilities of the proposed coupling and some qualitative numerical/experimental comparisons were made. In the end, the proposed coupling was able to recover non accelerated results with significant computing gains. •Extending the phase-field method to model fatigue-induced fracture.•Accelerating with adaptive mesh refinement and cycle jumps.•Nucleation, fatigue crack propagation, branching and coalescence are accelerated.
ArticleNumber 104004
Author Molnár, Gergely
Bluthé, Joffrey
Gravouil, Anthony
Prabel, Benoit
Jaccon, Adrien
Author_xml – sequence: 1
  givenname: Adrien
  surname: Jaccon
  fullname: Jaccon, Adrien
  email: adrien.jaccon@cea.fr
  organization: Univ Lyon, INSA-Lyon, CNRS UMR5259, LaMCoS, F-69621, France
– sequence: 2
  givenname: Benoit
  surname: Prabel
  fullname: Prabel, Benoit
  email: benoit.prabel@cea.fr
  organization: Université Paris-Saclay, CEA, Service d’Etudes Mécaniques et Thermiques, 91191, Gif-sur-Yvette, France
– sequence: 3
  givenname: Gergely
  surname: Molnár
  fullname: Molnár, Gergely
  organization: Univ Lyon, INSA-Lyon, CNRS UMR5259, LaMCoS, F-69621, France
– sequence: 4
  givenname: Joffrey
  surname: Bluthé
  fullname: Bluthé, Joffrey
  organization: Université Paris-Saclay, CEA, Service d’Etudes Mécaniques et Thermiques, 91191, Gif-sur-Yvette, France
– sequence: 5
  givenname: Anthony
  surname: Gravouil
  fullname: Gravouil, Anthony
  organization: Univ Lyon, INSA-Lyon, CNRS UMR5259, LaMCoS, F-69621, France
BookMark eNqFkMtqwzAQRUVJoUnaL-hGP-BUkh1ZXnQRQl8QKJQWuhOyNEpkbNlITiB_X6Xpqot2NTDMucw9MzTxvQeEbilZUEL5XbOwzkO7YITlaVMQUlygKRUly3jFlhM0TVciE2XxeYVmMTaEkCXjxRS9rYwaRncA3EHc4QCnoA78iJU3WB91C7jZd0PEtg942KkImXXQGmzV6LZ7wDYoPe5DCugNtM5vr9GlVW2Em585Rx-PD-_r52zz-vSyXm0ynQs2ZqrkZQ2CC2q1UsZS0MB5LqrcFDwvLedWmaIyvLRLVnNWC6LTIeWpiqotzecoP-fq0MeYPpdDcJ0KR0mJPGmRjfzWIk9a5FlLoqpflHZjqtL7MSjX_sPen1lItQ4OgozagddgXAA9StO7P_kvW5SC3g
CitedBy_id crossref_primary_10_1016_j_compstruct_2025_119273
crossref_primary_10_1016_j_finel_2025_104414
crossref_primary_10_1016_j_ijmecsci_2024_109279
crossref_primary_10_1016_j_cma_2024_117200
crossref_primary_10_1016_j_cma_2025_118259
crossref_primary_10_1016_j_engfracmech_2024_110212
crossref_primary_10_1016_j_cma_2025_118074
crossref_primary_10_1016_j_cma_2025_118140
crossref_primary_10_1016_j_commatsci_2024_112929
crossref_primary_10_1016_j_jmps_2024_106008
crossref_primary_10_3390_app14209297
crossref_primary_10_1016_j_mechrescom_2025_104508
crossref_primary_10_1016_j_ijfatigue_2025_108875
crossref_primary_10_1016_j_ijmecsci_2024_108989
crossref_primary_10_1016_j_ijfatigue_2024_108786
crossref_primary_10_1016_j_ijpvp_2025_105658
crossref_primary_10_1007_s00466_024_02551_8
crossref_primary_10_1007_s00466_023_02439_z
crossref_primary_10_1016_j_ijfatigue_2025_108970
crossref_primary_10_1016_j_cma_2023_116469
crossref_primary_10_1016_j_cma_2024_116917
crossref_primary_10_1016_j_engfailanal_2024_108081
crossref_primary_10_1007_s00466_025_02644_y
crossref_primary_10_1016_j_cma_2025_117846
Cites_doi 10.1016/j.mechmat.2019.103282
10.1016/j.cma.2020.113473
10.1016/S0022-5096(98)00034-9
10.1002/cpa.3160430805
10.1016/j.undsp.2018.04.006
10.1016/j.cma.2021.113874
10.1016/j.cma.2016.08.030
10.1016/j.cma.2012.02.020
10.1115/1.4011547
10.1002/nme.6587
10.1016/j.ijfatigue.2006.01.010
10.1016/j.finel.2019.01.008
10.1016/j.jmps.2010.02.010
10.1016/j.tafmec.2019.102446
10.1007/s00466-016-1275-1
10.1016/j.cma.2010.04.011
10.1016/j.jmps.2017.09.006
10.1002/nme.2861
10.1016/S1359-835X(01)00042-2
10.1007/s00466-013-0882-3
10.1016/j.tafmec.2020.102736
10.1111/ffe.13638
10.1016/j.engfracmech.2004.04.008
10.1007/s00419-020-01821-0
10.1016/j.ijfatigue.2023.107558
10.1016/j.engfracmech.2015.03.045
10.1016/j.cma.2020.113218
10.1016/j.cma.2015.03.009
10.1016/j.compstruc.2005.10.007
10.1016/j.ijfatigue.2021.106521
10.1016/j.tafmec.2019.102282
10.1016/j.prostr.2016.06.460
10.1115/1.3656900
10.1098/rsta.2021.0021
10.1115/1.4042217
10.1016/S0022-5096(99)00028-9
10.1016/j.finel.2017.03.002
10.1016/j.cma.2021.114214
10.1007/s00466-021-01996-5
10.1016/j.engfracmech.2022.108255
10.1016/j.engfracmech.2017.11.036
10.1016/j.jmps.2019.103684
10.1016/j.engfracmech.2022.108390
10.1002/nme.2427
10.1016/j.jmps.2018.06.006
10.1016/j.cma.2015.06.009
10.1016/S0045-7825(96)01070-5
10.1016/j.ijfatigue.2021.106297
10.1016/j.engfracmech.2019.106599
10.1002/gamm.202000003
10.1103/PhysRevLett.120.255501
10.1016/j.engfracmech.2022.108399
10.1016/j.finel.2017.09.003
10.1016/j.euromechsol.2023.104991
10.1016/j.engfracmech.2019.106807
10.1016/j.cma.2020.113247
10.1016/0045-7825(94)90060-4
ContentType Journal Article
Copyright 2023 Elsevier B.V.
Copyright_xml – notice: 2023 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.finel.2023.104004
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
EISSN 1872-6925
ExternalDocumentID 10_1016_j_finel_2023_104004
S0168874X23000975
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
AAYFN
ABAOU
ABBOA
ABMAC
ABYKQ
ACAZW
ACDAQ
ACGFS
ACIWK
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIGVJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ARUGR
AXJTR
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
IHE
J1W
JJJVA
KOM
LX9
LY7
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
RNS
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SST
SSV
SSW
SSZ
T5K
TN5
XPP
ZMT
~02
~G-
29H
9DU
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABEFU
ABJNI
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AGQPQ
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
R2-
SBC
SET
T9H
VH1
WUQ
~HD
ID FETCH-LOGICAL-c382t-a767be8681fcaadf1ece663893d4637f66fad49d67f52b62b80ccaa16016abf13
ISICitedReferencesCount 28
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001040015200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0168-874X
IngestDate Sat Nov 29 07:27:12 EST 2025
Tue Nov 18 22:18:20 EST 2025
Fri Feb 23 02:33:40 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Phase-field
Adaptive mesh refinement
Fracture mechanics
Fatigue crack propagation
Cycle jump scheme
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c382t-a767be8681fcaadf1ece663893d4637f66fad49d67f52b62b80ccaa16016abf13
OpenAccessLink https://hal.science/hal-04161609
ParticipantIDs crossref_primary_10_1016_j_finel_2023_104004
crossref_citationtrail_10_1016_j_finel_2023_104004
elsevier_sciencedirect_doi_10_1016_j_finel_2023_104004
PublicationCentury 2000
PublicationDate 2023-10-15
PublicationDateYYYYMMDD 2023-10-15
PublicationDate_xml – month: 10
  year: 2023
  text: 2023-10-15
  day: 15
PublicationDecade 2020
PublicationTitle Finite elements in analysis and design
PublicationYear 2023
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Wick (b52) 2016; 57
Perić, Hochard, Dutko, Owen (b55) 1996; 137
Hirshikesh, Jansari, Krishna, Annabattula, Natarajan (b54) 2019; 220
Kristensen, Golahmar, Martínez-Pañeda, Niordson (b41) 2023; 100
Strobl, Seelig (b65) 2016; 2
Badnava, Msekh, Etemadi, Rabczuk (b47) 2018; 138
Molnár, Doitrand, Jaccon, Prabel, Gravouil (b26) 2022; 266
Gibert, Prabel, Gravouil, Jacquemoud (b36) 2019; 157
Nguyen, Yvonnet, Zhu, Bornert, Chateau (b62) 2015; 139
Hirshikesh, Pramod, Waisman, Natarajan (b50) 2021; 383
Romani (b63) 2013
Kristensen, Niordson, Martínez-Pañeda (b30) 2021; 379
Mang, Walloth, Wick, Wollner (b53) 2019; 43
Amendola, Fabrizio (b11) 2018; 39
Alessi, Ulloa (b23) 2023
Schwaab, Biben, Santucci, Gravouil, Vanel (b59) 2018; 120
Miehe, Hofacker, Welschinger (b7) 2010; 199
Lemaitre, Doghri (b39) 1994; 115
Riad, Bardel, Réthoré (b35) 2022; 267
He, Shao (b64) 2019; 86
Carrara, Ambati, Alessi, Lorenzis (b14) 2019
Klinsmann, Rosato, Kamlah, McMeeking (b57) 2015; 294
Ulloa, Wambacq, Alessi, Degrande, François (b16) 2021; 373
Lo, Borden, Ravi-Chandar, Landis (b10) 2019; 132
Golahmar, Niordson, Martínez-Pañeda (b24) 2023; 170
Molnár, Gravouil (b8) 2017; 130
Griffith (b1) 1921; 221
Alessi, Vidoli, Lorenzis (b13) 2018; 190
Miehe, Welschinger, Hofacker (b44) 2010; 83
Paris, Erdogan (b3) 1963; 85
Gibert (b58) 2019
Bourdin, Francfort, Marigo (b5) 2000; 48
Kim, Kim (b49) 2020; 122
Bernard, Moës, Chevaugeon (b31) 2012; 233
Passieux, Réthoré, Gravouil, Baietto (b43) 2013; 52
Irwin (b2) 1957; 24
Freddi, Mingazzi (b51) 2022; 388
Ambrosio, Tortorelli (b6) 1990; 43
CEA (b32) 2022
Freddi, Royer-Carfagni (b66) 2010; 58
Golahmar, Kristensen, Niordson, nez Pañeda (b19) 2022; 154
Seleš, Aldakheel, Tonković, Sorić, Wriggers (b17) 2021; 67
Loew, Poh, Peters, Beex (b25) 2020; 370
Seiler, Linse, Hantschke, Kästner (b15) 2020; 224
Mesgarnejad, Imanian, Karma (b20) 2019; 103
Schreiber, Müller, Kuhn (b60) 2020; 91
Heister, Wheeler, Wick (b46) 2015; 290
Molnár, Doitrand, Estevez, Gravouil (b29) 2020; 109
Loew, Peters, Beex (b12) 2020; 142
Rannou, Gravouil, Baïetto-Dubourg (b42) 2009; 77
Simoes, Braithwaite, Makaya, Martínez-Pañeda (b18) 2022; 45
Helfer, Bary, Dang, Fandeur, Michel (b33) 2017
Wu, Nguyen (b27) 2018; 119
Hasan, Baxevanis (b21) 2021; 150
Tang, Wong, Chau, Lin (b61) 2005; 72
Cojocaru, Karlsson (b38) 2006; 28
Grossman-Ponemon, Mesgarnejad, Karma (b22) 2022; 264
Kristensen, Martínez-Pañeda (b37) 2020; 107
Boldrini, de Moraes, Chiarelli, Fumes, Bittencourt (b9) 2016; 312
Lu, Helfer, Bary, Fandeur (b34) 2020; 370
Zhou, Zhuang (b48) 2018; 3
Paepegem, Degrieck (b40) 2001; 32
Mediavilla, Peerlings, Geers (b56) 2006; 84
Francfort, Marigo (b4) 1998; 46
Tanné, Li, Bourdin, Marigo, Maurini (b28) 2018; 110
Bourdin, Francfort, Marigo (b45) 2008
Kristensen (10.1016/j.finel.2023.104004_b41) 2023; 100
Bourdin (10.1016/j.finel.2023.104004_b45) 2008
Freddi (10.1016/j.finel.2023.104004_b51) 2022; 388
Riad (10.1016/j.finel.2023.104004_b35) 2022; 267
Miehe (10.1016/j.finel.2023.104004_b44) 2010; 83
Badnava (10.1016/j.finel.2023.104004_b47) 2018; 138
Simoes (10.1016/j.finel.2023.104004_b18) 2022; 45
Alessi (10.1016/j.finel.2023.104004_b13) 2018; 190
Alessi (10.1016/j.finel.2023.104004_b23) 2023
Mang (10.1016/j.finel.2023.104004_b53) 2019; 43
Passieux (10.1016/j.finel.2023.104004_b43) 2013; 52
Loew (10.1016/j.finel.2023.104004_b12) 2020; 142
Romani (10.1016/j.finel.2023.104004_b63) 2013
Strobl (10.1016/j.finel.2023.104004_b65) 2016; 2
Tanné (10.1016/j.finel.2023.104004_b28) 2018; 110
Wu (10.1016/j.finel.2023.104004_b27) 2018; 119
Molnár (10.1016/j.finel.2023.104004_b29) 2020; 109
Hirshikesh (10.1016/j.finel.2023.104004_b54) 2019; 220
Tang (10.1016/j.finel.2023.104004_b61) 2005; 72
Kristensen (10.1016/j.finel.2023.104004_b30) 2021; 379
Schwaab (10.1016/j.finel.2023.104004_b59) 2018; 120
Bourdin (10.1016/j.finel.2023.104004_b5) 2000; 48
He (10.1016/j.finel.2023.104004_b64) 2019; 86
Helfer (10.1016/j.finel.2023.104004_b33) 2017
Kim (10.1016/j.finel.2023.104004_b49) 2020; 122
Lu (10.1016/j.finel.2023.104004_b34) 2020; 370
Schreiber (10.1016/j.finel.2023.104004_b60) 2020; 91
Nguyen (10.1016/j.finel.2023.104004_b62) 2015; 139
Molnár (10.1016/j.finel.2023.104004_b8) 2017; 130
Golahmar (10.1016/j.finel.2023.104004_b24) 2023; 170
CEA (10.1016/j.finel.2023.104004_b32) 2022
Paris (10.1016/j.finel.2023.104004_b3) 1963; 85
Molnár (10.1016/j.finel.2023.104004_b26) 2022; 266
Lemaitre (10.1016/j.finel.2023.104004_b39) 1994; 115
Irwin (10.1016/j.finel.2023.104004_b2) 1957; 24
Bernard (10.1016/j.finel.2023.104004_b31) 2012; 233
Grossman-Ponemon (10.1016/j.finel.2023.104004_b22) 2022; 264
Loew (10.1016/j.finel.2023.104004_b25) 2020; 370
Perić (10.1016/j.finel.2023.104004_b55) 1996; 137
Zhou (10.1016/j.finel.2023.104004_b48) 2018; 3
Klinsmann (10.1016/j.finel.2023.104004_b57) 2015; 294
Hasan (10.1016/j.finel.2023.104004_b21) 2021; 150
Francfort (10.1016/j.finel.2023.104004_b4) 1998; 46
Carrara (10.1016/j.finel.2023.104004_b14) 2019
Griffith (10.1016/j.finel.2023.104004_b1) 1921; 221
Seleš (10.1016/j.finel.2023.104004_b17) 2021; 67
Mesgarnejad (10.1016/j.finel.2023.104004_b20) 2019; 103
Gibert (10.1016/j.finel.2023.104004_b36) 2019; 157
Hirshikesh (10.1016/j.finel.2023.104004_b50) 2021; 383
Miehe (10.1016/j.finel.2023.104004_b7) 2010; 199
Kristensen (10.1016/j.finel.2023.104004_b37) 2020; 107
Paepegem (10.1016/j.finel.2023.104004_b40) 2001; 32
Ulloa (10.1016/j.finel.2023.104004_b16) 2021; 373
Seiler (10.1016/j.finel.2023.104004_b15) 2020; 224
Wick (10.1016/j.finel.2023.104004_b52) 2016; 57
Amendola (10.1016/j.finel.2023.104004_b11) 2018; 39
Freddi (10.1016/j.finel.2023.104004_b66) 2010; 58
Lo (10.1016/j.finel.2023.104004_b10) 2019; 132
Golahmar (10.1016/j.finel.2023.104004_b19) 2022; 154
Mediavilla (10.1016/j.finel.2023.104004_b56) 2006; 84
Cojocaru (10.1016/j.finel.2023.104004_b38) 2006; 28
Heister (10.1016/j.finel.2023.104004_b46) 2015; 290
Boldrini (10.1016/j.finel.2023.104004_b9) 2016; 312
Ambrosio (10.1016/j.finel.2023.104004_b6) 1990; 43
Gibert (10.1016/j.finel.2023.104004_b58) 2019
Rannou (10.1016/j.finel.2023.104004_b42) 2009; 77
References_xml – volume: 157
  year: 2019
  ident: b36
  article-title: A 3D automatic mesh refinement X-FEM approach for fatigue crack propagation
  publication-title: Finite Elem. Anal. Des.
– volume: 132
  year: 2019
  ident: b10
  article-title: A phase-field model for fatigue crack growth
  publication-title: J. Mech. Phys. Solids
– volume: 290
  start-page: 466
  year: 2015
  end-page: 495
  ident: b46
  article-title: A primal-dual active set method and predictor-corrector mesh adaptivity for computing fracture propagation using a phase-field approach
  publication-title: Comput. Methods Appl. Mech. Engrg.
– volume: 72
  start-page: 597
  year: 2005
  end-page: 615
  ident: b61
  article-title: Modeling of compression-induced splitting failure in heterogeneous brittle porous solids
  publication-title: Eng. Fract. Mech.
– volume: 122
  start-page: 1493
  year: 2020
  end-page: 1512
  ident: b49
  article-title: A novel adaptive mesh refinement scheme for the simulation of phase-field fracture using trimmed hexahedral meshes
  publication-title: Internat. J. Numer. Methods Engrg.
– volume: 109
  year: 2020
  ident: b29
  article-title: Toughness or strength? Regularization in phase-field fracture explained by the coupled criterion
  publication-title: Theor. Appl. Fract. Mech.
– volume: 46
  start-page: 1319
  year: 1998
  end-page: 1342
  ident: b4
  article-title: Revisiting brittle fracture as an energy minimization problem
  publication-title: J. Mech. Phys. Solids
– volume: 45
  start-page: 1243
  year: 2022
  end-page: 1257
  ident: b18
  article-title: Modelling fatigue crack growth in shape memory alloys
  publication-title: Fatigue Fract. Eng. Mater. Struct.
– volume: 224
  year: 2020
  ident: b15
  article-title: An efficient phase-field model for fatigue fracture in ductile materials
  publication-title: Eng. Fract. Mech.
– volume: 370
  year: 2020
  ident: b25
  article-title: Accelerating fatigue simulations of a phase-field damage model for rubber
  publication-title: Comput. Methods Appl. Mech. Engrg.
– year: 2022
  ident: b32
  article-title: Cast3M - finite element software developed by the French alternative energies and atomic energy commission
– volume: 100
  year: 2023
  ident: b41
  article-title: Accelerated high-cycle phase field fatigue predictions
  publication-title: Eur. J. Mech. A Solids
– volume: 43
  year: 2019
  ident: b53
  article-title: Mesh adaptivity for quasi-static phase-field fractures based on a residual-type a posteriori error estimator
  publication-title: GAMM-Mitt.
– volume: 138
  start-page: 31
  year: 2018
  end-page: 47
  ident: b47
  article-title: An h-adaptive thermo-mechanical phase field model for fracture
  publication-title: Finite Elem. Anal. Des.
– volume: 107
  year: 2020
  ident: b37
  article-title: Phase field fracture modelling using quasi-Newton methods and a new adaptive step scheme
  publication-title: Theor. Appl. Fract. Mech.
– volume: 2
  start-page: 3705
  year: 2016
  end-page: 3712
  ident: b65
  article-title: On constitutive assumptions in phase field approaches to brittle fracture
  publication-title: Procedia Struct. Integr.
– volume: 77
  start-page: 581
  year: 2009
  end-page: 600
  ident: b42
  article-title: A local multigrid X-FEM strategy for 3-D crack propagation
  publication-title: Internat. J. Numer. Methods Engrg.
– volume: 266
  year: 2022
  ident: b26
  article-title: Thermodynamically consistent linear-gradient damage model in Abaqus
  publication-title: Eng. Fract. Mech.
– volume: 48
  start-page: 797
  year: 2000
  end-page: 826
  ident: b5
  article-title: Numerical experiments in revisited brittle fracture
  publication-title: J. Mech. Phys. Solids
– volume: 154
  year: 2022
  ident: b19
  article-title: A phase field model for hydrogen-assisted fatigue
  publication-title: Int. J. Fatigue
– year: 2017
  ident: b33
  publication-title: Modélisation par champ de phase de la fissuration des matériaux fragiles: Aspects numériques et applications au combustible nucléaire oxyde
– volume: 170
  year: 2023
  ident: b24
  article-title: A phase field model for high-cycle fatigue: Total-life analysis
  publication-title: Int. J. Fatigue
– year: 2019
  ident: b58
  article-title: Propagation de Fissures En Fatigue Par Une Approche X-FEM Avec Raffinement Automatique de Maillage
– volume: 370
  year: 2020
  ident: b34
  article-title: An efficient and robust staggered algorithm applied to the quasi-static description of brittle fracture by a phase-field approach
  publication-title: Comput. Methods Appl. Mech. Engrg.
– year: 2013
  ident: b63
  article-title: Rupture En Compression des Structures HétÉrogÈnes à Base de MatÉriau Quasi-Fragiles
– volume: 58
  start-page: 1154
  year: 2010
  end-page: 1174
  ident: b66
  article-title: Regularized variational theories of fracture: A unified approach
  publication-title: J. Mech. Phys. Solids
– volume: 110
  start-page: 80
  year: 2018
  end-page: 99
  ident: b28
  article-title: Crack nucleation in variational phase-field models of brittle fracture
  publication-title: J. Mech. Phys. Solids
– year: 2019
  ident: b14
  article-title: A framework to model the fatigue behaviour of brittle materials on a variational phase-field approach
  publication-title: Comput. Methods Appl. Mech. Engrg.
– volume: 130
  start-page: 27
  year: 2017
  end-page: 38
  ident: b8
  article-title: 2D and 3D abaqus implementation of a robust staggered phase-field solution for modeling brittle fracture
  publication-title: Finite Elem. Anal. Des.
– volume: 32
  start-page: 1433
  year: 2001
  end-page: 1441
  ident: b40
  article-title: Fatigue degradation modelling of plain woven glass/epoxy composites
  publication-title: Composites A
– volume: 383
  year: 2021
  ident: b50
  article-title: Adaptive phase field method using novel physics based refinement criteria
  publication-title: Comput. Methods Appl. Mech. Engrg.
– volume: 294
  start-page: 313
  year: 2015
  end-page: 330
  ident: b57
  article-title: An assessment of the phase field formulation for crack growth
  publication-title: Comput. Methods Appl. Mech. Engrg.
– volume: 43
  start-page: 999
  year: 1990
  end-page: 1036
  ident: b6
  article-title: Approximation of functional depending on jumps by elliptic functional via t-convergence
  publication-title: Comm. Pure Appl. Math.
– volume: 137
  start-page: 331
  year: 1996
  end-page: 344
  ident: b55
  article-title: Transfer operators for evolving meshes in small strain elasto-placticity
  publication-title: Comput. Methods Appl. Mech. Engrg.
– volume: 86
  year: 2019
  ident: b64
  article-title: Closed-form coordinate-free decompositions of the two-dimensional strain and stress for modeling tension–compression dissymmetry
  publication-title: J. Appl. Mech.
– volume: 267
  year: 2022
  ident: b35
  article-title: Effect of microstructural length scales on crack propagation in elastic Cosserat media
  publication-title: Eng. Fract. Mech.
– volume: 85
  start-page: 528
  year: 1963
  end-page: 533
  ident: b3
  article-title: A critical analysis of crack propagation laws
  publication-title: J. Basic Eng.
– volume: 379
  year: 2021
  ident: b30
  article-title: An assessment of phase field fracture: Crack initiation and growth
  publication-title: Phil. Trans. R. Soc. A
– volume: 39
  year: 2018
  ident: b11
  article-title: Thermomechanics of damage and fatigue by a phase field model
  publication-title: J. Therm. Stresses
– volume: 264
  year: 2022
  ident: b22
  article-title: Phase-field modeling of continuous fatigue via toughness degradation
  publication-title: Eng. Fract. Mech.
– volume: 221
  start-page: 163
  year: 1921
  end-page: 198
  ident: b1
  article-title: The phenomena of rupture and flow in solids
  publication-title: Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci.
– volume: 67
  start-page: 1431
  year: 2021
  end-page: 1452
  ident: b17
  article-title: A phase-field model of thermo-elastic coupled brittle fracture with explicit time integration
  publication-title: Comput. Mech.
– volume: 84
  start-page: 604
  year: 2006
  end-page: 623
  ident: b56
  article-title: A robust and consistent remeshing-transfer operator for ductile fracture simulations
  publication-title: Comput. Struct.
– volume: 388
  year: 2022
  ident: b51
  article-title: Mesh refinement procedures for the phase field approach to brittle fracture
  publication-title: Comput. Methods Appl. Mech. Engrg.
– volume: 312
  start-page: 395
  year: 2016
  end-page: 427
  ident: b9
  article-title: A non-isothermal thermodynamically consistent phase field framework for structural damage and fatigue
  publication-title: Comput. Methods Appl. Mech. Engrg.
– volume: 150
  year: 2021
  ident: b21
  article-title: A phase-field model for low-cycle fatigue of brittle materials
  publication-title: Int. J. Fatigue
– volume: 115
  start-page: 197
  year: 1994
  end-page: 232
  ident: b39
  article-title: Damage 90: A post processor for crack initiation
  publication-title: Comput. Methods Appl. Mech. Engrg.
– volume: 83
  start-page: 1273
  year: 2010
  end-page: 1311
  ident: b44
  article-title: Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field FE implementations
  publication-title: Internat. J. Numer. Methods Engrg.
– volume: 233
  start-page: 11
  year: 2012
  end-page: 27
  ident: b31
  article-title: Damage growth modeling using the thick level set (TLS) approach: Efficient discretization for quasi-static loadings
  publication-title: Comput. Methods Appl. Mech. Engrg.
– volume: 28
  start-page: 1677
  year: 2006
  end-page: 1689
  ident: b38
  article-title: A simple numerical method of cycle jumps for cyclically loaded structures
  publication-title: Int. J. Fatigue
– volume: 119
  start-page: 20
  year: 2018
  end-page: 42
  ident: b27
  article-title: A length scale insensitive phase-field damage model for brittle fracture
  publication-title: J. Mech. Phys. Solids
– year: 2023
  ident: b23
  article-title: Endowing griffth’s fracture theory with the ability to describe fatigue cracks
– year: 2008
  ident: b45
  article-title: The Variational Approach to Fracture
– volume: 220
  year: 2019
  ident: b54
  article-title: Adaptive phase field method for quasi-static brittle fracture using a recovery based error indicator and quadtree decomposition
  publication-title: Eng. Fract. Mech.
– volume: 91
  start-page: 563
  year: 2020
  end-page: 577
  ident: b60
  article-title: Phase field simulation of fatigue crack propagation under complex load situations
  publication-title: Arch. Appl. Mech.
– volume: 199
  start-page: 2765
  year: 2010
  end-page: 2778
  ident: b7
  article-title: A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits
  publication-title: Comput. Methods Appl. Mech. Engrg.
– volume: 142
  year: 2020
  ident: b12
  article-title: Fatigue phase-field damage modeling of rubber using viscous dissipation: Crack nucleation and propagation
  publication-title: Mech. Mater.
– volume: 190
  start-page: 53
  year: 2018
  end-page: 73
  ident: b13
  article-title: A phenomenological approach to fatigue with a variational phase-field model: The one-dimensional case
  publication-title: Eng. Fract. Mech.
– volume: 57
  start-page: 1017
  year: 2016
  end-page: 1035
  ident: b52
  article-title: Goal functional evaluations for phase-field fracture using PU-based DWR mesh adaptivity
  publication-title: Comput. Mech.
– volume: 139
  start-page: 18
  year: 2015
  end-page: 39
  ident: b62
  article-title: A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure
  publication-title: Eng. Fract. Mech.
– volume: 120
  year: 2018
  ident: b59
  article-title: Interacting cracks obey a multiscale attractive to repulsive transition
  publication-title: Phys. Rev. Lett.
– volume: 373
  year: 2021
  ident: b16
  article-title: Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation
  publication-title: Comput. Methods Appl. Mech. Engrg.
– volume: 52
  start-page: 1381
  year: 2013
  end-page: 1393
  ident: b43
  article-title: Local/global non-intrusive crack propagation simulation using a multigrid X-FEM solver
  publication-title: Comput. Mech.
– volume: 3
  start-page: 190
  year: 2018
  end-page: 205
  ident: b48
  article-title: Adaptive phase field simulation of quasi-static crack propagation in rocks
  publication-title: Undergr. Space
– volume: 103
  year: 2019
  ident: b20
  article-title: Phase-field models for fatigue crack growth
  publication-title: Theor. Appl. Fract. Mech.
– volume: 24
  start-page: 361
  year: 1957
  end-page: 364
  ident: b2
  article-title: The formation of equilibrium cracks during brittle fracture. General ideas and hypotheses. Axially-symmetric cracks
  publication-title: J. Appl. Mech.
– volume: 142
  year: 2020
  ident: 10.1016/j.finel.2023.104004_b12
  article-title: Fatigue phase-field damage modeling of rubber using viscous dissipation: Crack nucleation and propagation
  publication-title: Mech. Mater.
  doi: 10.1016/j.mechmat.2019.103282
– volume: 373
  year: 2021
  ident: 10.1016/j.finel.2023.104004_b16
  article-title: Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/j.cma.2020.113473
– volume: 46
  start-page: 1319
  issue: 8
  year: 1998
  ident: 10.1016/j.finel.2023.104004_b4
  article-title: Revisiting brittle fracture as an energy minimization problem
  publication-title: J. Mech. Phys. Solids
  doi: 10.1016/S0022-5096(98)00034-9
– volume: 43
  start-page: 999
  issue: 8
  year: 1990
  ident: 10.1016/j.finel.2023.104004_b6
  article-title: Approximation of functional depending on jumps by elliptic functional via t-convergence
  publication-title: Comm. Pure Appl. Math.
  doi: 10.1002/cpa.3160430805
– volume: 3
  start-page: 190
  issue: 3
  year: 2018
  ident: 10.1016/j.finel.2023.104004_b48
  article-title: Adaptive phase field simulation of quasi-static crack propagation in rocks
  publication-title: Undergr. Space
  doi: 10.1016/j.undsp.2018.04.006
– volume: 383
  year: 2021
  ident: 10.1016/j.finel.2023.104004_b50
  article-title: Adaptive phase field method using novel physics based refinement criteria
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/j.cma.2021.113874
– volume: 312
  start-page: 395
  year: 2016
  ident: 10.1016/j.finel.2023.104004_b9
  article-title: A non-isothermal thermodynamically consistent phase field framework for structural damage and fatigue
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/j.cma.2016.08.030
– volume: 233
  start-page: 11
  year: 2012
  ident: 10.1016/j.finel.2023.104004_b31
  article-title: Damage growth modeling using the thick level set (TLS) approach: Efficient discretization for quasi-static loadings
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/j.cma.2012.02.020
– volume: 24
  start-page: 361
  year: 1957
  ident: 10.1016/j.finel.2023.104004_b2
  article-title: The formation of equilibrium cracks during brittle fracture. General ideas and hypotheses. Axially-symmetric cracks
  publication-title: J. Appl. Mech.
  doi: 10.1115/1.4011547
– volume: 122
  start-page: 1493
  issue: 6
  year: 2020
  ident: 10.1016/j.finel.2023.104004_b49
  article-title: A novel adaptive mesh refinement scheme for the simulation of phase-field fracture using trimmed hexahedral meshes
  publication-title: Internat. J. Numer. Methods Engrg.
  doi: 10.1002/nme.6587
– volume: 28
  start-page: 1677
  issue: 12
  year: 2006
  ident: 10.1016/j.finel.2023.104004_b38
  article-title: A simple numerical method of cycle jumps for cyclically loaded structures
  publication-title: Int. J. Fatigue
  doi: 10.1016/j.ijfatigue.2006.01.010
– year: 2019
  ident: 10.1016/j.finel.2023.104004_b14
  article-title: A framework to model the fatigue behaviour of brittle materials on a variational phase-field approach
  publication-title: Comput. Methods Appl. Mech. Engrg.
– volume: 157
  year: 2019
  ident: 10.1016/j.finel.2023.104004_b36
  article-title: A 3D automatic mesh refinement X-FEM approach for fatigue crack propagation
  publication-title: Finite Elem. Anal. Des.
  doi: 10.1016/j.finel.2019.01.008
– volume: 58
  start-page: 1154
  issue: 8
  year: 2010
  ident: 10.1016/j.finel.2023.104004_b66
  article-title: Regularized variational theories of fracture: A unified approach
  publication-title: J. Mech. Phys. Solids
  doi: 10.1016/j.jmps.2010.02.010
– volume: 107
  year: 2020
  ident: 10.1016/j.finel.2023.104004_b37
  article-title: Phase field fracture modelling using quasi-Newton methods and a new adaptive step scheme
  publication-title: Theor. Appl. Fract. Mech.
  doi: 10.1016/j.tafmec.2019.102446
– volume: 57
  start-page: 1017
  issue: 6
  year: 2016
  ident: 10.1016/j.finel.2023.104004_b52
  article-title: Goal functional evaluations for phase-field fracture using PU-based DWR mesh adaptivity
  publication-title: Comput. Mech.
  doi: 10.1007/s00466-016-1275-1
– volume: 199
  start-page: 2765
  issue: 45–48
  year: 2010
  ident: 10.1016/j.finel.2023.104004_b7
  article-title: A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/j.cma.2010.04.011
– volume: 110
  start-page: 80
  year: 2018
  ident: 10.1016/j.finel.2023.104004_b28
  article-title: Crack nucleation in variational phase-field models of brittle fracture
  publication-title: J. Mech. Phys. Solids
  doi: 10.1016/j.jmps.2017.09.006
– volume: 83
  start-page: 1273
  issue: 10
  year: 2010
  ident: 10.1016/j.finel.2023.104004_b44
  article-title: Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field FE implementations
  publication-title: Internat. J. Numer. Methods Engrg.
  doi: 10.1002/nme.2861
– volume: 32
  start-page: 1433
  issue: 10
  year: 2001
  ident: 10.1016/j.finel.2023.104004_b40
  article-title: Fatigue degradation modelling of plain woven glass/epoxy composites
  publication-title: Composites A
  doi: 10.1016/S1359-835X(01)00042-2
– volume: 52
  start-page: 1381
  issue: 6
  year: 2013
  ident: 10.1016/j.finel.2023.104004_b43
  article-title: Local/global non-intrusive crack propagation simulation using a multigrid X-FEM solver
  publication-title: Comput. Mech.
  doi: 10.1007/s00466-013-0882-3
– volume: 109
  year: 2020
  ident: 10.1016/j.finel.2023.104004_b29
  article-title: Toughness or strength? Regularization in phase-field fracture explained by the coupled criterion
  publication-title: Theor. Appl. Fract. Mech.
  doi: 10.1016/j.tafmec.2020.102736
– volume: 45
  start-page: 1243
  issue: 4
  year: 2022
  ident: 10.1016/j.finel.2023.104004_b18
  article-title: Modelling fatigue crack growth in shape memory alloys
  publication-title: Fatigue Fract. Eng. Mater. Struct.
  doi: 10.1111/ffe.13638
– volume: 72
  start-page: 597
  issue: 4
  year: 2005
  ident: 10.1016/j.finel.2023.104004_b61
  article-title: Modeling of compression-induced splitting failure in heterogeneous brittle porous solids
  publication-title: Eng. Fract. Mech.
  doi: 10.1016/j.engfracmech.2004.04.008
– volume: 91
  start-page: 563
  issue: 2
  year: 2020
  ident: 10.1016/j.finel.2023.104004_b60
  article-title: Phase field simulation of fatigue crack propagation under complex load situations
  publication-title: Arch. Appl. Mech.
  doi: 10.1007/s00419-020-01821-0
– volume: 170
  year: 2023
  ident: 10.1016/j.finel.2023.104004_b24
  article-title: A phase field model for high-cycle fatigue: Total-life analysis
  publication-title: Int. J. Fatigue
  doi: 10.1016/j.ijfatigue.2023.107558
– volume: 139
  start-page: 18
  year: 2015
  ident: 10.1016/j.finel.2023.104004_b62
  article-title: A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure
  publication-title: Eng. Fract. Mech.
  doi: 10.1016/j.engfracmech.2015.03.045
– volume: 370
  year: 2020
  ident: 10.1016/j.finel.2023.104004_b34
  article-title: An efficient and robust staggered algorithm applied to the quasi-static description of brittle fracture by a phase-field approach
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/j.cma.2020.113218
– volume: 290
  start-page: 466
  year: 2015
  ident: 10.1016/j.finel.2023.104004_b46
  article-title: A primal-dual active set method and predictor-corrector mesh adaptivity for computing fracture propagation using a phase-field approach
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/j.cma.2015.03.009
– volume: 84
  start-page: 604
  issue: 8–9
  year: 2006
  ident: 10.1016/j.finel.2023.104004_b56
  article-title: A robust and consistent remeshing-transfer operator for ductile fracture simulations
  publication-title: Comput. Struct.
  doi: 10.1016/j.compstruc.2005.10.007
– volume: 154
  year: 2022
  ident: 10.1016/j.finel.2023.104004_b19
  article-title: A phase field model for hydrogen-assisted fatigue
  publication-title: Int. J. Fatigue
  doi: 10.1016/j.ijfatigue.2021.106521
– volume: 103
  year: 2019
  ident: 10.1016/j.finel.2023.104004_b20
  article-title: Phase-field models for fatigue crack growth
  publication-title: Theor. Appl. Fract. Mech.
  doi: 10.1016/j.tafmec.2019.102282
– volume: 2
  start-page: 3705
  year: 2016
  ident: 10.1016/j.finel.2023.104004_b65
  article-title: On constitutive assumptions in phase field approaches to brittle fracture
  publication-title: Procedia Struct. Integr.
  doi: 10.1016/j.prostr.2016.06.460
– volume: 221
  start-page: 163
  issue: 582–593
  year: 1921
  ident: 10.1016/j.finel.2023.104004_b1
  article-title: The phenomena of rupture and flow in solids
  publication-title: Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci.
– volume: 85
  start-page: 528
  issue: 4
  year: 1963
  ident: 10.1016/j.finel.2023.104004_b3
  article-title: A critical analysis of crack propagation laws
  publication-title: J. Basic Eng.
  doi: 10.1115/1.3656900
– volume: 379
  issue: 2203
  year: 2021
  ident: 10.1016/j.finel.2023.104004_b30
  article-title: An assessment of phase field fracture: Crack initiation and growth
  publication-title: Phil. Trans. R. Soc. A
  doi: 10.1098/rsta.2021.0021
– volume: 86
  issue: 3
  year: 2019
  ident: 10.1016/j.finel.2023.104004_b64
  article-title: Closed-form coordinate-free decompositions of the two-dimensional strain and stress for modeling tension–compression dissymmetry
  publication-title: J. Appl. Mech.
  doi: 10.1115/1.4042217
– volume: 39
  year: 2018
  ident: 10.1016/j.finel.2023.104004_b11
  article-title: Thermomechanics of damage and fatigue by a phase field model
  publication-title: J. Therm. Stresses
– volume: 48
  start-page: 797
  issue: 4
  year: 2000
  ident: 10.1016/j.finel.2023.104004_b5
  article-title: Numerical experiments in revisited brittle fracture
  publication-title: J. Mech. Phys. Solids
  doi: 10.1016/S0022-5096(99)00028-9
– volume: 130
  start-page: 27
  year: 2017
  ident: 10.1016/j.finel.2023.104004_b8
  article-title: 2D and 3D abaqus implementation of a robust staggered phase-field solution for modeling brittle fracture
  publication-title: Finite Elem. Anal. Des.
  doi: 10.1016/j.finel.2017.03.002
– volume: 388
  year: 2022
  ident: 10.1016/j.finel.2023.104004_b51
  article-title: Mesh refinement procedures for the phase field approach to brittle fracture
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/j.cma.2021.114214
– volume: 67
  start-page: 1431
  year: 2021
  ident: 10.1016/j.finel.2023.104004_b17
  article-title: A phase-field model of thermo-elastic coupled brittle fracture with explicit time integration
  publication-title: Comput. Mech.
  doi: 10.1007/s00466-021-01996-5
– volume: 264
  year: 2022
  ident: 10.1016/j.finel.2023.104004_b22
  article-title: Phase-field modeling of continuous fatigue via toughness degradation
  publication-title: Eng. Fract. Mech.
  doi: 10.1016/j.engfracmech.2022.108255
– year: 2019
  ident: 10.1016/j.finel.2023.104004_b58
– volume: 190
  start-page: 53
  year: 2018
  ident: 10.1016/j.finel.2023.104004_b13
  article-title: A phenomenological approach to fatigue with a variational phase-field model: The one-dimensional case
  publication-title: Eng. Fract. Mech.
  doi: 10.1016/j.engfracmech.2017.11.036
– volume: 132
  year: 2019
  ident: 10.1016/j.finel.2023.104004_b10
  article-title: A phase-field model for fatigue crack growth
  publication-title: J. Mech. Phys. Solids
  doi: 10.1016/j.jmps.2019.103684
– volume: 266
  year: 2022
  ident: 10.1016/j.finel.2023.104004_b26
  article-title: Thermodynamically consistent linear-gradient damage model in Abaqus
  publication-title: Eng. Fract. Mech.
  doi: 10.1016/j.engfracmech.2022.108390
– year: 2023
  ident: 10.1016/j.finel.2023.104004_b23
– year: 2008
  ident: 10.1016/j.finel.2023.104004_b45
– volume: 77
  start-page: 581
  issue: 4
  year: 2009
  ident: 10.1016/j.finel.2023.104004_b42
  article-title: A local multigrid X-FEM strategy for 3-D crack propagation
  publication-title: Internat. J. Numer. Methods Engrg.
  doi: 10.1002/nme.2427
– volume: 119
  start-page: 20
  year: 2018
  ident: 10.1016/j.finel.2023.104004_b27
  article-title: A length scale insensitive phase-field damage model for brittle fracture
  publication-title: J. Mech. Phys. Solids
  doi: 10.1016/j.jmps.2018.06.006
– volume: 294
  start-page: 313
  year: 2015
  ident: 10.1016/j.finel.2023.104004_b57
  article-title: An assessment of the phase field formulation for crack growth
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/j.cma.2015.06.009
– volume: 137
  start-page: 331
  issue: 3–4
  year: 1996
  ident: 10.1016/j.finel.2023.104004_b55
  article-title: Transfer operators for evolving meshes in small strain elasto-placticity
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/S0045-7825(96)01070-5
– volume: 150
  year: 2021
  ident: 10.1016/j.finel.2023.104004_b21
  article-title: A phase-field model for low-cycle fatigue of brittle materials
  publication-title: Int. J. Fatigue
  doi: 10.1016/j.ijfatigue.2021.106297
– volume: 220
  year: 2019
  ident: 10.1016/j.finel.2023.104004_b54
  article-title: Adaptive phase field method for quasi-static brittle fracture using a recovery based error indicator and quadtree decomposition
  publication-title: Eng. Fract. Mech.
  doi: 10.1016/j.engfracmech.2019.106599
– year: 2022
  ident: 10.1016/j.finel.2023.104004_b32
– year: 2017
  ident: 10.1016/j.finel.2023.104004_b33
– volume: 43
  issue: 1
  year: 2019
  ident: 10.1016/j.finel.2023.104004_b53
  article-title: Mesh adaptivity for quasi-static phase-field fractures based on a residual-type a posteriori error estimator
  publication-title: GAMM-Mitt.
  doi: 10.1002/gamm.202000003
– volume: 120
  issue: 25
  year: 2018
  ident: 10.1016/j.finel.2023.104004_b59
  article-title: Interacting cracks obey a multiscale attractive to repulsive transition
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.120.255501
– volume: 267
  year: 2022
  ident: 10.1016/j.finel.2023.104004_b35
  article-title: Effect of microstructural length scales on crack propagation in elastic Cosserat media
  publication-title: Eng. Fract. Mech.
  doi: 10.1016/j.engfracmech.2022.108399
– volume: 138
  start-page: 31
  year: 2018
  ident: 10.1016/j.finel.2023.104004_b47
  article-title: An h-adaptive thermo-mechanical phase field model for fracture
  publication-title: Finite Elem. Anal. Des.
  doi: 10.1016/j.finel.2017.09.003
– volume: 100
  year: 2023
  ident: 10.1016/j.finel.2023.104004_b41
  article-title: Accelerated high-cycle phase field fatigue predictions
  publication-title: Eur. J. Mech. A Solids
  doi: 10.1016/j.euromechsol.2023.104991
– volume: 224
  year: 2020
  ident: 10.1016/j.finel.2023.104004_b15
  article-title: An efficient phase-field model for fatigue fracture in ductile materials
  publication-title: Eng. Fract. Mech.
  doi: 10.1016/j.engfracmech.2019.106807
– volume: 370
  year: 2020
  ident: 10.1016/j.finel.2023.104004_b25
  article-title: Accelerating fatigue simulations of a phase-field damage model for rubber
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/j.cma.2020.113247
– year: 2013
  ident: 10.1016/j.finel.2023.104004_b63
– volume: 115
  start-page: 197
  issue: 3–4
  year: 1994
  ident: 10.1016/j.finel.2023.104004_b39
  article-title: Damage 90: A post processor for crack initiation
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/0045-7825(94)90060-4
SSID ssj0005264
Score 2.5086412
Snippet A phase-field approach was used in order to model the complex mechanisms of fatigue crack nucleation and growth. This popular method enables a flexible...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 104004
SubjectTerms Adaptive mesh refinement
Cycle jump scheme
Fatigue crack propagation
Fracture mechanics
Phase-field
Title Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling
URI https://dx.doi.org/10.1016/j.finel.2023.104004
Volume 224
WOSCitedRecordID wos001040015200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-6925
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0005264
  issn: 0168-874X
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELZKlwMceCwglpd84BayapzEjo9dtAhWsEKwSL1Fju1sW5W0Srur5Qfwvxm_0kDRCpC4RFVkx9XMp_F4_M0MQi_zkcxJTfNY05zHGeyQsSBqFCstUl7xIpMjmyj8np2eFpMJ_zgYfA-5MJcL1jTF1RVf_VdVwztQtkmd_Qt1dx-FF_AblA5PUDs8_0jxYyVWlg_0Va-nEWyA4Ed2THL5DUZHc9ChrcMQraawi8WWxhbV8IHzCx3VJnHK3CvYLjlhawutPGfGSY20Y51bMq0IdU3MAuonRsiJkNI3rVamoHJniFtROXrAkW6Ws45682G5aOzVfdK6gH17rrd80yMQ29Td7LvAv01C68ctiGXAucxNF0zbSahx8U1agIF2pM1D7WxywUhMucuPDkabuMzrnQ3AxSLmh0a25maJpOYWe-RaHP9SWfuzWc0sBscwk8-S30B7hOW8GKK98bvjyUmPK0R9kXj370L5KksU3Fnq9y5Oz205u4fu-PMGHjuc3EcD3eyju_7sgb1lX--j273ClA_QpwAibECEtyDCoGNsQYQtiDCACPdAhD2IcAARDiB6iL68OT57_Tb23TdimRZkEwtGWaULWiS1FELViZaaWv9WZTRlNaW1UBlXlNU5qSipihFYA5GY-j6iqpP0ERo2y0Y_RlhxnTLYVDmMzDKRCcEEq6pE5kISKtQBIkFgpfSl6U2HlEUZOIjz0kq5NFIunZQP0Ktu0spVZrl-OA2aKL1z6ZzGEqBz3cQn_zrxKbq1xf0zNNy0F_o5uikvN7N1-8JD7AfJDKAs
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Adaptive+mesh+refinement+and+cycle+jumps+for+phase-field+fatigue+fracture+modeling&rft.jtitle=Finite+elements+in+analysis+and+design&rft.au=Jaccon%2C+Adrien&rft.au=Prabel%2C+Benoit&rft.au=Moln%C3%A1r%2C+Gergely&rft.au=Bluth%C3%A9%2C+Joffrey&rft.date=2023-10-15&rft.pub=Elsevier+B.V&rft.issn=0168-874X&rft.eissn=1872-6925&rft.volume=224&rft_id=info:doi/10.1016%2Fj.finel.2023.104004&rft.externalDocID=S0168874X23000975
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0168-874X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0168-874X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0168-874X&client=summon