Exciting fixed point results in revised fuzzy cone metric spaces under a new control function with supportive applications

In the context of revised fuzzy cone metric spaces (RFCMS). This research attempts to present an innovative concept of tripled fixed point (TFP) conclusions employing a control function. A continuous, one-to-one self-map having subsequential convergence (SC) in RFCMS functions as the control functio...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Fixed point theory and algorithms for sciences and engineering Ročník 2025; číslo 1; s. 28 - 22
Hlavní autoři: Ravichandran, Thangathamizh, Mubeen Tajudeen, M., Akgul, Ali, Abdalla, Mohamed, Hassani, Murad Khan
Médium: Journal Article
Jazyk:angličtina
Vydáno: Cham Springer International Publishing 06.10.2025
Springer Nature B.V
SpringerOpen
Témata:
ISSN:2730-5422, 2730-5422
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In the context of revised fuzzy cone metric spaces (RFCMS). This research attempts to present an innovative concept of tripled fixed point (TFP) conclusions employing a control function. A continuous, one-to-one self-map having subsequential convergence (SC) in RFCMS functions as the control function. Apart from that, under adapted contractive-type circumstances, distinct TFP conclusions are generated through employing the triangular characteristic of RFCM. To reinforce the findings, two illustrative examples are provided. Lastly, the theoretical conclusions are validated by showing that the solutions for a class of Volterra integral equations (VIEs) exist and are unique.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2730-5422
2730-5422
DOI:10.1186/s13663-025-00796-3