A neural network-based intelligent system for substation surveillance video analysis with edge and IoT integration
Substations are vital components of power infrastructure, and their security is crucial to the stable operation of the power grid. With the rapid development of Internet of Things (IoT) technologies and edge computing, substation monitoring systems are evolving toward greater intelligence and autono...
Gespeichert in:
| Veröffentlicht in: | EURASIP journal on wireless communications and networking Jg. 2025; H. 1; S. 95 - 18 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Cham
Springer International Publishing
19.11.2025
Springer Nature B.V SpringerOpen |
| Schlagworte: | |
| ISSN: | 1687-1499, 1687-1472, 1687-1499 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Substations are vital components of power infrastructure, and their security is crucial to the stable operation of the power grid. With the rapid development of Internet of Things (IoT) technologies and edge computing, substation monitoring systems are evolving toward greater intelligence and autonomy. Therefore, to improve the efficiency of anomaly recognition and differentiation in the substation monitoring system, this study proposes a video anomaly recognition algorithm that combines multi-instance learning optimized wavelet transform algorithm with long short-term memory network. Meanwhile, an intelligent analysis system for substation monitoring videos has been established. The results showed that the system exhibited high accuracy, with an overall accuracy value maintained between 90 and 100%, and no values below 90% were observed. The classification accuracy of the system for images was above 90%. This means that the method can more accurately classify surveillance video content into the correct categories. In summary, the intelligent analysis system for monitoring videos of the constructed substation has improved the safety management level of the substation and provided strong technical support for the automation and intelligent management of the substation. By incorporating emerging mobile computing technologies, the system ensures scalable deployment and enhanced adaptability in complex and dynamic substation environments. |
|---|---|
| AbstractList | Abstract Substations are vital components of power infrastructure, and their security is crucial to the stable operation of the power grid. With the rapid development of Internet of Things (IoT) technologies and edge computing, substation monitoring systems are evolving toward greater intelligence and autonomy. Therefore, to improve the efficiency of anomaly recognition and differentiation in the substation monitoring system, this study proposes a video anomaly recognition algorithm that combines multi-instance learning optimized wavelet transform algorithm with long short-term memory network. Meanwhile, an intelligent analysis system for substation monitoring videos has been established. The results showed that the system exhibited high accuracy, with an overall accuracy value maintained between 90 and 100%, and no values below 90% were observed. The classification accuracy of the system for images was above 90%. This means that the method can more accurately classify surveillance video content into the correct categories. In summary, the intelligent analysis system for monitoring videos of the constructed substation has improved the safety management level of the substation and provided strong technical support for the automation and intelligent management of the substation. By incorporating emerging mobile computing technologies, the system ensures scalable deployment and enhanced adaptability in complex and dynamic substation environments. Substations are vital components of power infrastructure, and their security is crucial to the stable operation of the power grid. With the rapid development of Internet of Things (IoT) technologies and edge computing, substation monitoring systems are evolving toward greater intelligence and autonomy. Therefore, to improve the efficiency of anomaly recognition and differentiation in the substation monitoring system, this study proposes a video anomaly recognition algorithm that combines multi-instance learning optimized wavelet transform algorithm with long short-term memory network. Meanwhile, an intelligent analysis system for substation monitoring videos has been established. The results showed that the system exhibited high accuracy, with an overall accuracy value maintained between 90 and 100%, and no values below 90% were observed. The classification accuracy of the system for images was above 90%. This means that the method can more accurately classify surveillance video content into the correct categories. In summary, the intelligent analysis system for monitoring videos of the constructed substation has improved the safety management level of the substation and provided strong technical support for the automation and intelligent management of the substation. By incorporating emerging mobile computing technologies, the system ensures scalable deployment and enhanced adaptability in complex and dynamic substation environments. |
| ArticleNumber | 95 |
| Author | Tong, Bing Li, Yuyao Chen, Xin |
| Author_xml | – sequence: 1 givenname: Bing orcidid: 0009-0002-0180-082X surname: Tong fullname: Tong, Bing email: tongbing561@163.com organization: Qujing Bureau of EHV Power Transmission Company, China Southern Power Grid Co., Ltd – sequence: 2 givenname: Yuyao orcidid: 0009-0005-6234-5658 surname: Li fullname: Li, Yuyao organization: Qujing Bureau of EHV Power Transmission Company, China Southern Power Grid Co., Ltd – sequence: 3 givenname: Xin orcidid: 0009-0003-4632-4617 surname: Chen fullname: Chen, Xin organization: Qujing Bureau of EHV Power Transmission Company, China Southern Power Grid Co., Ltd |
| BookMark | eNp9kTtPHDEUha2ISDzCH6CyRD3Br52xS4RIWAmJhtSW174evBlsYntB8-_j3YmAKsV96Oqcz7LOKTqKKQJCF5R8p1T2V4XynsuOsNW-mOzmL-iE9nLoqFDq6NN-jE5L2RLCuVDsBOVrHGGXzdRGfUv5d7cxBRwOscI0hRFixWUuFZ6xTxmX3aZUU0OKbc2vEKbJRAv4NThI2EQzzSUU_BbqEwY3Qjs5vE6PB96YD85v6Ks3U4Hzf_MM_fpx-3hz190__FzfXN93lktWOymlt86olbTcD96pQTCpQAhgAnprKWeEC8tBSkE2kveS2Q3znhA5KA-Sn6H1wnXJbPVLDs8mzzqZoA-HlEdtcg12Ak0N7cEy5Z0UwjuinDPWg1CtuwFYY10urJec_uygVL1Nu9y-WzRnA18JRsWqqdiisjmVksG_v0qJ3uekl5x0y0gfctJzM_HFVJo4jpA_0P9x_QVg65rb |
| Cites_doi | 10.1007/s11042-020-08776-y 10.35378/gujs.937169 10.1007/s12652-021-03157-1 10.1111/mice.12628 10.1007/s10462-020-09904-8 10.1109/TITS.2022.3167650 10.1007/s13735-022-00227-8 10.1021/acs.jpclett.2c02299 10.1109/TII.2021.3065425 10.1007/s11042-021-10570-3 10.1109/TITS.2022.3232242 10.1109/JIOT.2021.3077449 10.1109/TTE.2021.3074638 10.1109/TII.2021.3122801 10.1007/s11042-022-13169-4 10.1109/TII.2022.3146598 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2025 The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: The Author(s) 2025 – notice: The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | C6C AAYXX CITATION 3V. 7SC 7SP 7XB 8AL 8FD 8FE 8FG 8FK ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- L7M L~C L~D M0N P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS Q9U DOA |
| DOI | 10.1186/s13638-025-02528-y |
| DatabaseName | Springer Nature OA Free Journals CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts Electronics & Communications Abstracts ProQuest Central (purchase pre-March 2016) Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials AUTh Library subscriptions: ProQuest Central Technology Collection ProQuest One Community College ProQuest Central Korea ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic Open Access: DOAJ - Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Collection ProQuest Computing ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition Electronics & Communications Abstracts ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) |
| DatabaseTitleList | Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1687-1499 |
| EndPage | 18 |
| ExternalDocumentID | oai_doaj_org_article_1a16ec29fd844fd09ddacfe49acfd7e2 10_1186_s13638_025_02528_y |
| GroupedDBID | .4S .DC 0R~ 29G 2WC 4.4 40G 5GY 5VS 6OB 8FE 8FG 8R4 8R5 AAFWJ AAJSJ AAKKN AAKPC AASML ABDBF ABEEZ ABFTD ABUWG ACACY ACGFS ACUHS ACULB ADBBV ADDVE ADMLS AENEX AFFHD AFGXO AFKRA AFPKN AHBYD AHYZX ALMA_UNASSIGNED_HOLDINGS AMKLP ARAPS ARCSS AZQEC BCNDV BENPR BGLVJ BPHCQ C24 C6C CCPQU CS3 DU5 DWQXO E3Z EAD EAP EAS EBLON EBS EDO EMK ESX GNUQQ GROUPED_DOAJ HCIFZ HZ~ I-F K6V K7- KQ8 OK1 OVT P2P P62 PHGZM PHGZT PIMPY PQGLB PQQKQ PROAC Q2X RHU RNS SEG SOJ TUS U2A XSB AAYXX CITATION 3V. 7SC 7SP 7XB 8AL 8FD 8FK JQ2 L7M L~C L~D M0N PKEHL PQEST PQUKI PRINS Q9U |
| ID | FETCH-LOGICAL-c382t-888fcda958c3f7fd974289e44e24e6cc132034c3e8840b83682cb2ff00879fe83 |
| IEDL.DBID | C24 |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001618097000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1687-1499 1687-1472 |
| IngestDate | Mon Nov 24 19:21:18 EST 2025 Thu Nov 20 19:11:02 EST 2025 Thu Nov 27 01:06:09 EST 2025 Thu Nov 20 01:11:18 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Video anomaly recognition algorithm Substation LSTM Wavelet transform Multi-instance learning Surveillance video |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c382t-888fcda958c3f7fd974289e44e24e6cc132034c3e8840b83682cb2ff00879fe83 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0009-0002-0180-082X 0009-0003-4632-4617 0009-0005-6234-5658 |
| OpenAccessLink | https://link.springer.com/10.1186/s13638-025-02528-y |
| PQID | 3273542145 |
| PQPubID | 237293 |
| PageCount | 18 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_1a16ec29fd844fd09ddacfe49acfd7e2 proquest_journals_3273542145 crossref_primary_10_1186_s13638_025_02528_y springer_journals_10_1186_s13638_025_02528_y |
| PublicationCentury | 2000 |
| PublicationDate | 2025-11-19 |
| PublicationDateYYYYMMDD | 2025-11-19 |
| PublicationDate_xml | – month: 11 year: 2025 text: 2025-11-19 day: 19 |
| PublicationDecade | 2020 |
| PublicationPlace | Cham |
| PublicationPlace_xml | – name: Cham – name: New York |
| PublicationTitle | EURASIP journal on wireless communications and networking |
| PublicationTitleAbbrev | J Wireless Com Network |
| PublicationYear | 2025 |
| Publisher | Springer International Publishing Springer Nature B.V SpringerOpen |
| Publisher_xml | – name: Springer International Publishing – name: Springer Nature B.V – name: SpringerOpen |
| References | S Liu (2528_CR5) 2023; 24 D Lee (2528_CR1) 2021; 80 P Pareek (2528_CR4) 2021; 54 X Chen (2528_CR10) 2022; 24 D Samariya (2528_CR14) 2023; 10 A Mansouri (2528_CR19) 2021; 43 KK Verma (2528_CR7) 2022; 14 DR Patrikar (2528_CR8) 2022; 11 D Tang (2528_CR16) 2022; 13 N Jin (2528_CR13) 2021; 17 Y Xu (2528_CR18) 2021; 36 X Zhou (2528_CR2) 2021; 8 X Shu (2528_CR12) 2021; 7 R Maqsood (2528_CR15) 2021; 80 SE Taşabat (2528_CR17) 2021; 35 C Huang (2528_CR9) 2021; 18 T Hussain (2528_CR3) 2022; 81 R Rajavel (2528_CR6) 2022; 13 W Wu (2528_CR11) 2022; 18 S Choudhuri (2528_CR20) 2023; 1 |
| References_xml | – volume: 80 start-page: 34517 issue: 26 year: 2021 ident: 2528_CR1 publication-title: Multimed. Tools Appl. doi: 10.1007/s11042-020-08776-y – volume: 10 start-page: 829 issue: 3 year: 2023 ident: 2528_CR14 publication-title: Ann. Data Sci. – volume: 35 start-page: 1200 issue: 3 year: 2021 ident: 2528_CR17 publication-title: Gazi Univ. J. Sci. doi: 10.35378/gujs.937169 – volume: 13 start-page: 3195 issue: 6 year: 2022 ident: 2528_CR6 publication-title: J. Ambient Intell. Hum. Comput. doi: 10.1007/s12652-021-03157-1 – volume: 14 start-page: 397 issue: 1 year: 2022 ident: 2528_CR7 publication-title: Int. J. Inf. Technol. – volume: 36 start-page: 504 issue: 4 year: 2021 ident: 2528_CR18 publication-title: Comput. Aided Civil Infrastruct. Eng. doi: 10.1111/mice.12628 – volume: 54 start-page: 2259 issue: 3 year: 2021 ident: 2528_CR4 publication-title: Artif. Intell. Rev. doi: 10.1007/s10462-020-09904-8 – volume: 24 start-page: 4541 issue: 4 year: 2022 ident: 2528_CR10 publication-title: IEEE Trans. Intell. Transp. Syst. doi: 10.1109/TITS.2022.3167650 – volume: 11 start-page: 85 issue: 2 year: 2022 ident: 2528_CR8 publication-title: Int. J. Multimed. Inf. Retrieval doi: 10.1007/s13735-022-00227-8 – volume: 13 start-page: 10377 issue: 44 year: 2022 ident: 2528_CR16 publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.2c02299 – volume: 17 start-page: 8514 issue: 12 year: 2021 ident: 2528_CR13 publication-title: IEEE Trans. Ind. Inform. doi: 10.1109/TII.2021.3065425 – volume: 80 start-page: 18693 issue: 12 year: 2021 ident: 2528_CR15 publication-title: Multimed. Tools Appl. doi: 10.1007/s11042-021-10570-3 – volume: 24 start-page: 15795 issue: 12 year: 2023 ident: 2528_CR5 publication-title: IEEE Trans. Intell. Transp. Syst. doi: 10.1109/TITS.2022.3232242 – volume: 1 start-page: 43 issue: 1 year: 2023 ident: 2528_CR20 publication-title: Artif. Intell. Appl. – volume: 8 start-page: 12588 issue: 16 year: 2021 ident: 2528_CR2 publication-title: IEEE Internet Things J. doi: 10.1109/JIOT.2021.3077449 – volume: 7 start-page: 2238 issue: 4 year: 2021 ident: 2528_CR12 publication-title: IEEE Trans. Transp. Electrif. doi: 10.1109/TTE.2021.3074638 – volume: 18 start-page: 5171 issue: 8 year: 2021 ident: 2528_CR9 publication-title: IEEE Trans. Ind. Inform. doi: 10.1109/TII.2021.3122801 – volume: 81 start-page: 38151 issue: 26 year: 2022 ident: 2528_CR3 publication-title: Multimed. Tools Appl. doi: 10.1007/s11042-022-13169-4 – volume: 18 start-page: 7537 issue: 11 year: 2022 ident: 2528_CR11 publication-title: IEEE Trans. Ind. Inform. doi: 10.1109/TII.2022.3146598 – volume: 43 start-page: 257 issue: 3 year: 2021 ident: 2528_CR19 publication-title: Int. J. Comput. Appl. |
| SSID | ssj0033492 |
| Score | 2.3847146 |
| Snippet | Substations are vital components of power infrastructure, and their security is crucial to the stable operation of the power grid. With the rapid development... Abstract Substations are vital components of power infrastructure, and their security is crucial to the stable operation of the power grid. With the rapid... |
| SourceID | doaj proquest crossref springer |
| SourceType | Open Website Aggregation Database Index Database Publisher |
| StartPage | 95 |
| SubjectTerms | Accuracy Algorithms Cameras Communications Engineering Edge computing Emerging Technologies in Mobile Computing for IoT Connectivity and Edge Computing Engineering Information Systems Applications (incl.Internet) Internet of Things LSTM Machine learning Monitoring Monitoring systems Multi-instance learning Networks Neural networks Optimization Outdoor air quality Public safety Recognition Safety management Signal,Image and Speech Processing Substation Substations Surveillance Surveillance video Video Video anomaly recognition algorithm Wavelet transform Wavelet transforms |
| SummonAdditionalLinks | – databaseName: Open Access: DOAJ - Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQxQAD4ikKBXlgA6tJ7Cb2WBAVLBVDkbpZiR9SlxSlpVL_PXdxUlokxMKQKHIc63R3se_su-8IubORyiPlDWa3R0wM4oLlJiqYscYD4amInaiLTWTjsZxO1dtWqS-MCQvwwIFx_TiPU2cS5a0UwsPQ1uYwjFBwt5mrZ98oU60zFeZgjph7bYqMTPuLmIOeMSzdClci2XpnGarR-ndMzB-novViMzomR42VSIeBuhOy58pTcriFHXhGqiFFLEroVYZIboYLkqWzDcbmkgaYZgp2KV3ABBFO3eGxWjksNgTyppiGN6d5A01CcVuW4hYbNFn6Op_QFk8Cvjwn76PnydMLawooMMNlsmTg3XpjczWQhvvMW_AdwL9yQrhEuNQYTJ_mwnAnwc0rJE9lYorEe8SpU95JfkE65bx0l4Q6k7tMFlkK5oWwhUKcPiuc55kHk1CpLrlv-ak_Ak6Grv0LmerAfQ2c1zX39bpLHpHlm56IcV03gOR1I3n9l-S7pNcKTDc_3kJzMMcGAuHXu-ShFeL3699JuvoPkq7JQYJKhmGCqkc6y-rT3ZB9s1rOFtVtraJfNILvOQ priority: 102 providerName: Directory of Open Access Journals – databaseName: Advanced Technologies & Aerospace Database dbid: P5Z link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB6VLQd6gAKtuhQqH3oDaze2N7FPCBAruCAOVFpxsRI_EJcNJFsk_j0zebBdJHrhkChynMjSfB7PjD3fAPz2Y5OPTXSU3T7mapIUPHfjgjvvIg48VUlQTbGJ7OpKz2bmugu41d2xyl4nNoral45i5COJ6-xEEa_28cMjp6pRtLvaldBYg8_EkkClG64nt70mlsS8Rw5XihMpUZnok2Z0OqoTicjjVMwVL6H588rC1PD3rxidb_ZJm-VnuvXRgX-Fzc7wZCctUrbhU5jvwJd_6Ah3oTphRG-Jvebt4XBOa5xn96-0nQvWMj8zNHVZjTqn3cjHx-opUP0ihBCjzL6S5R3bCaNIL6OoHTZ5dlnesJ6iAr_8Bn-m5zdnF7yrycCd1GLB0WGOzudmop2MWfTojqDLFpQKQoXUOcrIlsrJoNFzLLRMtXCFiJGo70wMWn6Hwbychx_AgstDpossRYtF-cIQ9Z9XIcosopVpzBAOe4HYh5Z6wzYui05tKz6LorON-OzzEE5JZq89iTa7aSirO9vNQpvkSRqcMNFrpSLi1PscMakM3n0WxBD2exnabi7XdinAIRz1KFi-fn9Ie___20_YEIQ_OlNo9mGwqP6GA1h3T4v7uvrVIPkFu3j8xQ priority: 102 providerName: ProQuest |
| Title | A neural network-based intelligent system for substation surveillance video analysis with edge and IoT integration |
| URI | https://link.springer.com/article/10.1186/s13638-025-02528-y https://www.proquest.com/docview/3273542145 https://doaj.org/article/1a16ec29fd844fd09ddacfe49acfd7e2 |
| Volume | 2025 |
| WOSCitedRecordID | wos001618097000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1687-1499 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0033492 issn: 1687-1499 databaseCode: DOA dateStart: 20040101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 1687-1499 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0033492 issn: 1687-1499 databaseCode: P5Z dateStart: 20250101 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Computer Science Database customDbUrl: eissn: 1687-1499 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0033492 issn: 1687-1499 databaseCode: K7- dateStart: 20250101 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest – providerCode: PRVPQU databaseName: Proquest Central customDbUrl: eissn: 1687-1499 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0033492 issn: 1687-1499 databaseCode: BENPR dateStart: 20250101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 1687-1499 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0033492 issn: 1687-1499 databaseCode: PIMPY dateStart: 20250101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerOpen customDbUrl: eissn: 1687-1499 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0033492 issn: 1687-1499 databaseCode: C24 dateStart: 20041201 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB61Sw_toZTSqtvCygdurcUmdhL7uCAQCLGKEJUoFyvxA-1lt0q2SPz7zjgJLRUc6CFW5Ic08oztGXvmG4A9N9XVVAdL0e1TLrOk5pWd1tw6G5DwXCZexmQTxXyurq502QeFtYO3-_AkGXfquKxVvt8mAmWFU_pV_FLF717CRpYoTY58hxTj0O2_gvD2hvCYR8c9OIIiUv8D9fKfF9F40Bxv_h-J7-Btr1iyWScJW_DCL9_Dm7_gBrehmTGCr8Rey875m9MZ5tjiHpZzzTpkZ4aqLGtxT-ke6vG3ufWUnwhFhFHk3opVPZoJo5tcRrdyWOXY6eqSDRAUOPIDfD8-ujw84X3OBW6FStccDeJgXaUzZUUogkNzA00yL6VPpc-tpYhrIa3wCi3DWolcpbZOQyBoOx28Eh9htFwt_Sdg3la-UHWRo0YiXa0J2s9JH0QRUIvUegxfBzaYnx20hokmicpNN5MGZ9HEmTR3YzggTt33JFjsWLFqbky_ykxSJbm3qQ5OSRlQDp2rUOakxtIVPh3DzsBn06_V1gjU4DJJiO1j-Dbw9U_z0yR9fl73L_A6JdEgH0K9A6N188vvwit7u160zQQ2Do7m5cUkyvIkXg1geVZwLMvsGtvL0_Pyx29Pu_dH |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VggQceBZ1oYAPcAKrG9ub2AeEyqPqasuKwyL1ZhI_UC-bkmyL9k_xG5lJ4pYiwa0HDokix7Gc5JvxjO35BuCFH5tybKKj6PYxV5Os4qUbV9x5F7HjucqC6pJNFPO5PjoynzfgZ4qFoW2VSSd2itrXjubIdyWOsxNFvNpvT75zyhpFq6sphUYPi1lY_0CXrX0z_YD_96UQ-x8X7w_4kFWAO6nFiqPLF50vzUQ7GYvo0aBGpyMoFYQKuXMUUyyVk0Gj71NpmWvhKhEjkbeZGLTEdq_BdSV1QXI1K3jS_JKY_sjBy1FwM1WIFKSj8902k4h0Tslj8RCary8NhF2-gEtG7h_rst1wt3_3f_tQ9-DOYFizvV4S7sNGWD6A27_RLT6EZo8RfSfWWvab3zmN4Z4dn9OSrljPbM3QlGct6tR-owJeNmeB8jOhiDCKXKxZObC5MJrJZjQriUWeTesFSxQc-OQWfLmSl34Em8t6GbaBBVeGQldFjhaZ8pUhakOvQpRFRCvamBG8SgCwJz21iO1cMp3bHi4WoWI7uNj1CN4RRs5rEi14V1A33-ygZWxWZnlwwkSvlYooh96XKHPK4NkXQYxgJ2HGDrqqtReAGcHrhLqL23_v0uN_t_Ycbh4sPh3aw-l89gRuCcI-7Z80O7C5ak7DU7jhzlbHbfOskyIGX68ajb8AUt5YgQ |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VghAceBaxUMAHOIG1G9ub2AeECmXFqmi1hyJVXEziB-plU5KlaP8av46ZJG4pEtx64JAoysPK45uXM_MNwHM_MeXEREfV7ROuplnFSzepuPMu4o3nKguqazZRLBb66Mgst-BnqoWhtMqkEztF7WtHc-RjiXZ2qohXexyHtIjl_uzNyTdOHaToT2tqp9FD5CBsfmD41r6e7-O3fiHE7P3huw986DDAndRizTH8i86XZqqdjEX06FxjABKUCkKF3DmqL5bKyaAxDqq0zLVwlYiRiNxMDFriuFfgaoExJqUTLqefkxWQxPpHwV6OQpypQqSCHZ2P20wi6jk1ksVFaL65YBS73gEXHN4__tF2pm92-39-aXfg1uBws71eQu7CVljdg5u_0TDeh2aPEa0nnrXqk-I52XbPjs_oStesZ7xm6OKzFnVtn8CAm81poL5NKDqMKhprVg4sL4xmuBnNVuIuz-b1IUvUHHjlDny6lId-ANurehUeAguuDIWuihw9NeUrQ5SHXoUoi4jetTEjeJnAYE96yhHbhWo6tz10LMLGdtCxmxG8JbycnUl04d2OuvlqB-1jszLLgxMmeq1URPn0vkRZVAbXvghiBLsJP3bQYa09B88IXiUEnh_--y09-vdoz-A6gtB-nC8OHsMNQWJAaZVmF7bXzffwBK650_Vx2zztBIrBl8sG4y_NIGGl |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+neural+network-based+intelligent+system+for+substation+surveillance+video+analysis+with+edge+and+IoT+integration&rft.jtitle=EURASIP+journal+on+wireless+communications+and+networking&rft.au=Tong%2C+Bing&rft.au=Li%2C+Yuyao&rft.au=Chen%2C+Xin&rft.date=2025-11-19&rft.pub=Springer+International+Publishing&rft.eissn=1687-1499&rft.volume=2025&rft.issue=1&rft_id=info:doi/10.1186%2Fs13638-025-02528-y&rft.externalDocID=10_1186_s13638_025_02528_y |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1687-1499&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1687-1499&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1687-1499&client=summon |