Weak and strong convergence theorems for variational inequality problems
In this paper, we study the weak and strong convergence of two algorithms for solving Lipschitz continuous and monotone variational inequalities. The algorithms are inspired by Tseng’s extragradient method and the viscosity method with Armijo-like step size rule. The main advantages of our algorithm...
Uloženo v:
| Vydáno v: | Numerical algorithms Ročník 78; číslo 4; s. 1045 - 1060 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
Springer US
01.08.2018
Springer Nature B.V |
| Témata: | |
| ISSN: | 1017-1398, 1572-9265 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | In this paper, we study the weak and strong convergence of two algorithms for solving Lipschitz continuous and monotone variational inequalities. The algorithms are inspired by Tseng’s extragradient method and the viscosity method with Armijo-like step size rule. The main advantages of our algorithms are that the construction of solution approximations and the proof of convergence of the algorithms are performed without the prior knowledge of the Lipschitz constant of cost operators. Finally, we provide numerical experiments to show the efficiency and advantage of the proposed algorithms. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 1017-1398 1572-9265 |
| DOI: | 10.1007/s11075-017-0412-z |