Weak and strong convergence theorems for variational inequality problems

In this paper, we study the weak and strong convergence of two algorithms for solving Lipschitz continuous and monotone variational inequalities. The algorithms are inspired by Tseng’s extragradient method and the viscosity method with Armijo-like step size rule. The main advantages of our algorithm...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Numerical algorithms Ročník 78; číslo 4; s. 1045 - 1060
Hlavní autori: Thong, Duong Viet, Hieu, Dang Van
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York Springer US 01.08.2018
Springer Nature B.V
Predmet:
ISSN:1017-1398, 1572-9265
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:In this paper, we study the weak and strong convergence of two algorithms for solving Lipschitz continuous and monotone variational inequalities. The algorithms are inspired by Tseng’s extragradient method and the viscosity method with Armijo-like step size rule. The main advantages of our algorithms are that the construction of solution approximations and the proof of convergence of the algorithms are performed without the prior knowledge of the Lipschitz constant of cost operators. Finally, we provide numerical experiments to show the efficiency and advantage of the proposed algorithms.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1017-1398
1572-9265
DOI:10.1007/s11075-017-0412-z