HiCoS-Net: hierarchical cross-modal graph learning with dynamic attention for hard negative-aware image-text matching

Fine-grained image-text matching, which is pivotal to multimodal intelligence, has advanced semantic correspondence inference through inter-modal region-word aggregation. Despite the efficacy of this approach, it remains limited by its inability to accommodate the semantic associations of hard negat...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of King Saud University. Computer and information sciences Ročník 37; číslo 9; s. 281 - 30
Hlavní autoři: Feng, Dingcheng, Luo, Ning, Zhang, Shudong, Zhou, Lijuan, Wei, Bing
Médium: Journal Article
Jazyk:angličtina
Vydáno: Cham Springer International Publishing 01.11.2025
Springer Nature B.V
Springer
Témata:
ISSN:1319-1578, 2213-1248, 1319-1578
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Fine-grained image-text matching, which is pivotal to multimodal intelligence, has advanced semantic correspondence inference through inter-modal region-word aggregation. Despite the efficacy of this approach, it remains limited by its inability to accommodate the semantic associations of hard negative samples. To illustrate this point, consider the failure to leverage shared knowledge across multiple samples on analogous topics. This failure results in an inadequate capacity to differentiate hard negative samples. In this study, it is posited that the establishment of sample relationships facilitates the learning of semantic associations between different samples. This, in turn, enables the effective identification of subtle differences between hard negative samples, thereby enhancing the overall embedding process. The proposal of HiCoS-Net is the subject of this paper. The proposed model is a novel hierarchical inter-modal semantic network that learns robust embeddings through local-to-sample semantic interaction propagation. Specifically, at the local level, a dynamic graph attention mechanism is designed to achieve region-lexicon fine-grained interactions; at the sample level, an embedding similarity graph is constructed by combining the relational mapping matrix with the semantic matching matrix to explicitly model the topological associations and semantic coupling strengths of inter-modal samples. A substantial programme of experimentation is undertaken to validate the advantages of the proposed HiCoS-Net method. This has been demonstrated to achieve state-of-the-art image-text matching results on the public benchmark datasets Flickr30K and MS-COCO.
AbstractList Abstract Fine-grained image-text matching, which is pivotal to multimodal intelligence, has advanced semantic correspondence inference through inter-modal region-word aggregation. Despite the efficacy of this approach, it remains limited by its inability to accommodate the semantic associations of hard negative samples. To illustrate this point, consider the failure to leverage shared knowledge across multiple samples on analogous topics. This failure results in an inadequate capacity to differentiate hard negative samples. In this study, it is posited that the establishment of sample relationships facilitates the learning of semantic associations between different samples. This, in turn, enables the effective identification of subtle differences between hard negative samples, thereby enhancing the overall embedding process. The proposal of HiCoS-Net is the subject of this paper. The proposed model is a novel hierarchical inter-modal semantic network that learns robust embeddings through local-to-sample semantic interaction propagation. Specifically, at the local level, a dynamic graph attention mechanism is designed to achieve region-lexicon fine-grained interactions; at the sample level, an embedding similarity graph is constructed by combining the relational mapping matrix with the semantic matching matrix to explicitly model the topological associations and semantic coupling strengths of inter-modal samples. A substantial programme of experimentation is undertaken to validate the advantages of the proposed HiCoS-Net method. This has been demonstrated to achieve state-of-the-art image-text matching results on the public benchmark datasets Flickr30K and MS-COCO.
Fine-grained image-text matching, which is pivotal to multimodal intelligence, has advanced semantic correspondence inference through inter-modal region-word aggregation. Despite the efficacy of this approach, it remains limited by its inability to accommodate the semantic associations of hard negative samples. To illustrate this point, consider the failure to leverage shared knowledge across multiple samples on analogous topics. This failure results in an inadequate capacity to differentiate hard negative samples. In this study, it is posited that the establishment of sample relationships facilitates the learning of semantic associations between different samples. This, in turn, enables the effective identification of subtle differences between hard negative samples, thereby enhancing the overall embedding process. The proposal of HiCoS-Net is the subject of this paper. The proposed model is a novel hierarchical inter-modal semantic network that learns robust embeddings through local-to-sample semantic interaction propagation. Specifically, at the local level, a dynamic graph attention mechanism is designed to achieve region-lexicon fine-grained interactions; at the sample level, an embedding similarity graph is constructed by combining the relational mapping matrix with the semantic matching matrix to explicitly model the topological associations and semantic coupling strengths of inter-modal samples. A substantial programme of experimentation is undertaken to validate the advantages of the proposed HiCoS-Net method. This has been demonstrated to achieve state-of-the-art image-text matching results on the public benchmark datasets Flickr30K and MS-COCO.
ArticleNumber 281
Author Wei, Bing
Luo, Ning
Zhou, Lijuan
Zhang, Shudong
Feng, Dingcheng
Author_xml – sequence: 1
  givenname: Dingcheng
  surname: Feng
  fullname: Feng, Dingcheng
  organization: School of Cyberspace Security, Hainan University
– sequence: 2
  givenname: Ning
  surname: Luo
  fullname: Luo, Ning
  email: luoning@hainanu.edu.cn
  organization: School of Cyberspace Security, Hainan University
– sequence: 3
  givenname: Shudong
  surname: Zhang
  fullname: Zhang, Shudong
  organization: School of Cyberspace Security, Hainan University
– sequence: 4
  givenname: Lijuan
  surname: Zhou
  fullname: Zhou, Lijuan
  organization: School of Cyberspace Security, Hainan University
– sequence: 5
  givenname: Bing
  surname: Wei
  fullname: Wei, Bing
  organization: School of Cyberspace Security, Hainan University
BookMark eNp9kU9v1DAQxS1UJJbSL8DJEmeD_8SJww2toK1UwQE4WxN7kni1ay-Ol26_PWaD4MZcZmS99_No3ktyFVNEQl4L_lZw3r1bmlqKcakZ50oodn5GNlLWQcjGXJGNUKJnQnfmBblZlh3nXHStblS7Iae7sE1f2Wcs7-kcMEN2c3Cwpy6nZWGH5Os8ZTjOdI-QY4gTfQxlpv4pwiE4CqVgLCFFOqZMZ8ieRpyghJ_I4BEy0nCACVnBc6EHKBUfp1fk-Qj7BW_-9Gvy_dPHb9s79vDl9n774YE5ZWRhpuFG-AG596JrZDdKLp3WBjn2btSjcq3rB6Wl4oPoQRsF_aANdK5TjVZOXZP7lesT7Owx11Xyk00Q7OUh5clCLsHt0VYUauBaCF2vOXaD4V4J50FybYaxq6w3K-uY048TLsXu0inHur5Vsm1Fr1TbVJVcVZf7ZRz__iq4_Z2WXdOyNS17Scueq0mtpqWK44T5H_o_rl_5H5oI
Cites_doi 10.1109/CVPR42600.2020.01267
10.1109/TPAMI.2022.3148470
10.1007/978-3-031-43990-2_70
10.1109/TMM.2020.2972125
10.1016/j.inffus.2024.102344
10.1109/TNNLS.2021.3084827
10.1016/j.ijpe.2019.06.012
10.1016/j.bspc.2024.105943
10.1109/CVPR42600.2020.01095
10.1109/CVPR46437.2021.00881
10.4249/scholarpedia.5947
10.1109/CVPR46437.2021.01553
10.1007/978-3-030-58607-2_16
10.1109/CVPR.2004.1315142
10.1145/3474085.3475634
10.1016/j.neucom.2018.03.030
10.1109/CVPR42600.2020.01093
10.18653/v1/N16-1174
10.1109/ICCV.2015.303
10.3390/app10144913
10.1109/SIBGRAPI62404.2024.10716271
10.1109/ICCV.2019.00586
10.1609/aaai.v38i16.29752
10.1109/TCYB.2022.3179020
10.1109/CVPR52688.2022.01602
10.1109/ICCV.2019.00356
10.1109/ICCV.2015.279
10.24963/ijcai.2022/292
10.1016/j.neucom.2021.03.091
10.1007/s11263-022-01653-1
10.1145/3132847.3132892
10.1145/3451390
10.1109/CVPR.2019.01064
10.1109/TCSVT.2023.3254530
10.1109/TPAMI.2016.2587640
10.1007/978-3-030-01240-3_17
10.1109/TIFS.2024.3388949
10.1109/CVPR52688.2022.01521
10.1145/3219819.3220036
10.1109/CVPR.2017.173
10.24963/ijcai.2022/348
ContentType Journal Article
Copyright The Author(s) 2025
The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2025
– notice: The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
8FE
8FG
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
DOA
DOI 10.1007/s44443-025-00313-x
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest SciTech Premium Collection Technology Collection Advanced Technologies & Aerospace Collection
ProQuest Central Essentials - QC
ProQuest Central
ProQuest Technology Collection
ProQuest One
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Advanced Technologies & Aerospace Collection
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
Publicly Available Content Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: ProQuest Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2213-1248
1319-1578
EndPage 30
ExternalDocumentID oai_doaj_org_article_c6ce5a05115444f7b80d31cda2058bf7
10_1007_s44443_025_00313_x
GrantInformation_xml – fundername: National Key R&D Project
  grantid: 2023YFF0905404
GroupedDBID --K
0R~
4.4
457
5VS
AAEDT
AAEDW
AAIKJ
AAJSJ
AALRI
AASML
AAXUO
AAYWO
ABEEZ
ABMAC
ACGFS
ACULB
ADBBV
ADEZE
ADVLN
AEXQZ
AFFHD
AFGXO
AFJKZ
AFKRA
AFTJW
AGHFR
AITUG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
APXCP
ARAPS
BCNDV
BENPR
BGLVJ
C6C
CCPQU
EBS
FDB
GROUPED_DOAJ
HCIFZ
IXB
K7-
KQ8
O-L
O9-
OK1
PHGZM
PHGZT
PIMPY
PQGLB
ROL
SES
SOJ
SSZ
XH2
AAQXK
AAYXX
ABWVN
AGQPQ
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
FGOYB
HVGLF
HZ~
IPNFZ
M41
R2-
RIG
8FE
8FG
ABUWG
AZQEC
DWQXO
GNUQQ
JQ2
P62
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c382t-84081dbe0dd17427f202c558e0e9cf5f3c6c9b35230b19a583a9b58a7c73453c3
IEDL.DBID DOA
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001603362600002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1319-1578
IngestDate Mon Nov 24 19:21:12 EST 2025
Fri Nov 21 05:41:09 EST 2025
Thu Nov 27 00:53:16 EST 2025
Thu Nov 20 01:11:31 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords Hierarchical inter-modal semantic network
Hard negative samples
HiCoS-Net
Dynamic graph attention mechanism
Embedding similarity graph
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c382t-84081dbe0dd17427f202c558e0e9cf5f3c6c9b35230b19a583a9b58a7c73453c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://doaj.org/article/c6ce5a05115444f7b80d31cda2058bf7
PQID 3266193364
PQPubID 7424686
PageCount 30
ParticipantIDs doaj_primary_oai_doaj_org_article_c6ce5a05115444f7b80d31cda2058bf7
proquest_journals_3266193364
crossref_primary_10_1007_s44443_025_00313_x
springer_journals_10_1007_s44443_025_00313_x
PublicationCentury 2000
PublicationDate 2025-11-01
PublicationDateYYYYMMDD 2025-11-01
PublicationDate_xml – month: 11
  year: 2025
  text: 2025-11-01
  day: 01
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: Amsterdam
PublicationTitle Journal of King Saud University. Computer and information sciences
PublicationTitleAbbrev J. King Saud Univ. Comput. Inf. Sci
PublicationYear 2025
Publisher Springer International Publishing
Springer Nature B.V
Springer
Publisher_xml – name: Springer International Publishing
– name: Springer Nature B.V
– name: Springer
References 313_CR7
313_CR8
J Li (313_CR17) 2021; 34
313_CR5
313_CR6
313_CR3
313_CR4
313_CR1
313_CR2
313_CR27
313_CR28
313_CR25
313_CR24
313_CR21
313_CR22
313_CR20
MU Saeed (313_CR34) 2024; 91
313_CR61
313_CR60
K Zhou (313_CR62) 2022; 130
K Li (313_CR19) 2022; 45
X Sun (313_CR38) 2018; 299
T Kramberger (313_CR16) 2020; 10
Z Niu (313_CR30) 2021; 452
313_CR39
313_CR36
313_CR37
313_CR35
313_CR32
313_CR33
313_CR31
X Liu (313_CR23) 2022; 54
313_CR49
313_CR47
C Zhao (313_CR59) 2020; 22
313_CR48
313_CR46
313_CR44
F Locatello (313_CR26) 2020; 33
313_CR41
313_CR42
313_CR40
Y Wang (313_CR45) 2023; 33
Z Li (313_CR18) 2021; 33
313_CR58
J In (313_CR14) 2019; 218
313_CR15
313_CR12
313_CR56
313_CR13
O Vinyals (313_CR43) 2016; 39
313_CR57
313_CR9
313_CR10
S Xu (313_CR51) 2024; 107
313_CR54
313_CR11
313_CR55
313_CR52
313_CR53
N Messina (313_CR29) 2021; 17
313_CR50
References_xml – ident: 313_CR54
  doi: 10.1109/CVPR42600.2020.01267
– volume: 45
  start-page: 641
  issue: 1
  year: 2022
  ident: 313_CR19
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2022.3148470
– ident: 313_CR22
  doi: 10.1007/978-3-031-43990-2_70
– ident: 313_CR11
  doi: 10.1109/TMM.2020.2972125
– volume: 33
  start-page: 11525
  year: 2020
  ident: 313_CR26
  publication-title: Adv Neural Inf Process Syst
– volume: 107
  start-page: 102344
  year: 2024
  ident: 313_CR51
  publication-title: Inform Fus
  doi: 10.1016/j.inffus.2024.102344
– ident: 313_CR46
– ident: 313_CR9
  doi: 10.1109/TNNLS.2021.3084827
– volume: 218
  start-page: 297
  year: 2019
  ident: 313_CR14
  publication-title: Int J Prod Econ
  doi: 10.1016/j.ijpe.2019.06.012
– ident: 313_CR33
  doi: 10.1016/j.bspc.2024.105943
– ident: 313_CR57
  doi: 10.1109/CVPR42600.2020.01095
– ident: 313_CR12
– ident: 313_CR52
  doi: 10.1109/TPAMI.2022.3148470
– ident: 313_CR37
– ident: 313_CR21
  doi: 10.1109/CVPR46437.2021.00881
– ident: 313_CR20
  doi: 10.4249/scholarpedia.5947
– ident: 313_CR27
– ident: 313_CR58
  doi: 10.1109/CVPR46437.2021.01553
– ident: 313_CR15
  doi: 10.1007/978-3-030-58607-2_16
– ident: 313_CR44
  doi: 10.1109/CVPR.2004.1315142
– ident: 313_CR55
  doi: 10.1145/3474085.3475634
– ident: 313_CR42
  doi: 10.1016/j.neucom.2018.03.030
– ident: 313_CR60
  doi: 10.1109/CVPR42600.2020.01093
– ident: 313_CR36
  doi: 10.18653/v1/N16-1174
– volume: 22
  start-page: 3180
  issue: 12
  year: 2020
  ident: 313_CR59
  publication-title: IEEE Trans Multimedia
  doi: 10.1109/TMM.2020.2972125
– ident: 313_CR49
  doi: 10.1109/ICCV.2015.303
– volume: 10
  start-page: 4913
  issue: 14
  year: 2020
  ident: 313_CR16
  publication-title: Appl Sci
  doi: 10.3390/app10144913
– ident: 313_CR13
  doi: 10.1109/SIBGRAPI62404.2024.10716271
– ident: 313_CR53
  doi: 10.1109/ICCV.2019.00586
– ident: 313_CR32
  doi: 10.1609/aaai.v38i16.29752
– volume: 299
  start-page: 42
  year: 2018
  ident: 313_CR38
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2018.03.030
– ident: 313_CR5
  doi: 10.1109/TCYB.2022.3179020
– ident: 313_CR35
  doi: 10.1109/CVPR52688.2022.01602
– ident: 313_CR28
– volume: 91
  start-page: 105943
  year: 2024
  ident: 313_CR34
  publication-title: Biomed Sign Process Control
  doi: 10.1016/j.bspc.2024.105943
– ident: 313_CR39
  doi: 10.1109/ICCV.2019.00356
– ident: 313_CR2
  doi: 10.1109/ICCV.2015.279
– ident: 313_CR56
  doi: 10.24963/ijcai.2022/292
– volume: 452
  start-page: 48
  year: 2021
  ident: 313_CR30
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2021.03.091
– volume: 130
  start-page: 2337
  issue: 9
  year: 2022
  ident: 313_CR62
  publication-title: Int J Comput Vision
  doi: 10.1007/s11263-022-01653-1
– volume: 34
  start-page: 9694
  year: 2021
  ident: 313_CR17
  publication-title: Adv Neural Inf Process Syst
– ident: 313_CR40
  doi: 10.3390/app10144913
– ident: 313_CR6
  doi: 10.1016/j.neucom.2021.03.091
– ident: 313_CR7
  doi: 10.1145/3132847.3132892
– volume: 17
  start-page: 1
  issue: 4
  year: 2021
  ident: 313_CR29
  publication-title: ACM Trans Multimed Comput Commun Appl (TOMM)
  doi: 10.1145/3451390
– ident: 313_CR1
  doi: 10.1109/CVPR.2019.01064
– ident: 313_CR61
  doi: 10.1109/TCSVT.2023.3254530
– volume: 33
  start-page: 6999
  issue: 12
  year: 2021
  ident: 313_CR18
  publication-title: IEEE Trans Neural Netw Learn Syst
  doi: 10.1109/TNNLS.2021.3084827
– ident: 313_CR10
– ident: 313_CR48
  doi: 10.1109/TPAMI.2016.2587640
– ident: 313_CR24
  doi: 10.1007/978-3-030-01240-3_17
– ident: 313_CR41
  doi: 10.1109/TIFS.2024.3388949
– ident: 313_CR50
  doi: 10.1109/CVPR52688.2022.01521
– ident: 313_CR4
  doi: 10.1016/j.inffus.2024.102344
– volume: 39
  start-page: 652
  issue: 4
  year: 2016
  ident: 313_CR43
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2016.2587640
– volume: 33
  start-page: 6144
  issue: 10
  year: 2023
  ident: 313_CR45
  publication-title: IEEE Trans Circuits Syst Video Technol
  doi: 10.1109/TCSVT.2023.3254530
– ident: 313_CR25
– volume: 54
  start-page: 948
  issue: 2
  year: 2022
  ident: 313_CR23
  publication-title: IEEE Trans cybern
  doi: 10.1109/TCYB.2022.3179020
– ident: 313_CR3
  doi: 10.1145/3219819.3220036
– ident: 313_CR8
  doi: 10.1109/CVPR.2017.173
– ident: 313_CR31
– ident: 313_CR47
  doi: 10.24963/ijcai.2022/348
SSID ssj0001765436
Score 2.3211296
Snippet Fine-grained image-text matching, which is pivotal to multimodal intelligence, has advanced semantic correspondence inference through inter-modal region-word...
Abstract Fine-grained image-text matching, which is pivotal to multimodal intelligence, has advanced semantic correspondence inference through inter-modal...
SourceID doaj
proquest
crossref
springer
SourceType Open Website
Aggregation Database
Index Database
Publisher
StartPage 281
SubjectTerms Adaptation
Associations
Attention
Computer Imaging
Computer Science
Database Management
Dynamic graph attention mechanism
Effectiveness
Embedding
Embedding similarity graph
Hard negative samples
HiCoS-Net
Hierarchical inter-modal semantic network
Knowledge
Learning
Machine Learning
Matching
Neural networks
Original Paper
Pattern Recognition and Graphics
Semantics
Software Engineering/Programming and Operating Systems
Systems and Data Security
Theory of Computation
Vision
SummonAdditionalLinks – databaseName: Publicly Available Content Database
  dbid: PIMPY
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9NAEB6VlAMX-gDUQKn2wK2sanu9XpsLgqpVK5UoUotUTtY-oxwalySF_nxmNutGRYJTfbJsa7XWzM57vgH4UJZFQMXmuZJaUEuO4aYyOa986YLKjc5tBHG9UKNRfX3djFN79CKVVfYyMQrqFdoz1W2jED5ynaWI-ZEgvYK-eFV-vv3JaYYU5VrTQI1nsEnAW9kANsfn38Y_1jEXRZ2UVeqdiR10JV6UyJQ8ohjy-0f6KcL4P7I9_0qXRi10uvW0-9-Gl8kaZV9W7LMDG362C1v9pAeWDv4ruDubHneXfOSXnxgNz47pB6Quiz_BbzqH9xH7mqUxFBNGEV7mVgPvGaF4xrpKhkYyo04vNvOTCDrO9W8992x6g5KNUx0KQyM6Vni-hu-nJ1fHZzwNbOBW1MWSo7OI5q_xmXPo6BQqFFlhJXJC5hsbZBC2so0RFIg2eaNlLXRjZK2VVaKUwoo3MJh1M78HTLpSOpQ-RgaPK6FbKCrhpVF5cIRyOITDnkzt7QqXo31AYI5EbZGoEflUtPdD-EqUfPiSMLXjg24-adMRbXFzXmoUUgRQVAZl6syJ3DpdZLI2QQ1hv6dsmw76ol0Tcggfe95Yv_73lt7-f7V38KIgroxdj_swWM7v_Ht4bn8tp4v5QWLsP0PdB7Q
  priority: 102
  providerName: ProQuest
Title HiCoS-Net: hierarchical cross-modal graph learning with dynamic attention for hard negative-aware image-text matching
URI https://link.springer.com/article/10.1007/s44443-025-00313-x
https://www.proquest.com/docview/3266193364
https://doaj.org/article/c6ce5a05115444f7b80d31cda2058bf7
Volume 37
WOSCitedRecordID wos001603362600002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2213-1248
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001765436
  issn: 1319-1578
  databaseCode: DOA
  dateStart: 20250101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 2213-1248
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001765436
  issn: 1319-1578
  databaseCode: K7-
  dateStart: 20250301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2213-1248
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001765436
  issn: 1319-1578
  databaseCode: BENPR
  dateStart: 20250301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Publicly Available Content Database
  customDbUrl:
  eissn: 2213-1248
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001765436
  issn: 1319-1578
  databaseCode: PIMPY
  dateStart: 20250301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwEB5VtAcuLRRQt1DkQ2_FIonjOOkNEIiq7WpVQIJT5CfaA7vVshR-fmcmWV5SxaWXKEoix5oZ2zP2fN8AfC7LIuHCFqXRVhEkx0lXuVxWsQzJ5M7mnklcf5jhsD4_b0aPSn1RTlhHD9wJbtdXPmqLpkO0MWUyrs6Cyn2wRaZrlxhHnpnmUTDFuyuGMJMMLSKUTo522SNmGDeHLZV0fKklcxfKuyerEpP3P_E4nx2S8tpztAJve6dR7HWdXYVXcfIe3i0KMoh-fK7BzfH4YHoih3H-VVCNaz4lQCUI_qu8mga8Z4pq0VeLuBS0EStCV5deENkmpz8K9GUFAbLEJF4yN7i0t3YWxfgKJyBJ6SICfV1OxFyHs6PD04Nj2ddVkF7VxVxiTIdeqotZCBiPFCYVWeE1KiyLjU86KZR54xTtF7u8sbpWtnG6tsYbVWrl1QYsTaaT-AGEDqUOOEk4nSK2hNGbqlTUzuQpEBnhAL4s5Nr-7ugz2nuiZNZCi1pgglLV3g1gn0R__yVRX_MDNIi2N4j2JYMYwNZCcW0_Hq9bRX5Io1RVDmBnocyH1__u0sf_0aVNWC7I2BjCuAVL89lN_ARv_J_5-Hq2Da_3D4ejX9tswXj9biQ-G337Obr4Cy628p0
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VFAkuLU-RUmAPcIIVttfrdZAQgkKVqGkUiSKVk7svRznELklK2z_Fb2RmYzcqEtx6wCfLtla762_nsTvzDcDLNE1KVGyeK6kFpeQYbjIT88ynrlSx0bENJK5DNRrlx8e98Qb8anNhKKyylYlBULva0h75W0GaBL3vLP1w-oNT1Sg6XW1LaKxgceAvz9FlW7wffMb_-ypJ9r8c7fV5U1WAW5EnS44eDdpoxkfOoTWeqBLdfyuxu5Hv2VKWwma2ZwTtlpq4p2UudM_IXCurRCqFFdjuLdjEQcqoA5vjweH4-3pXR1GuZtZk54QcvRQvOiqVPPAk8otrGjAUCrhm3f5xIBv03P72_zZD92CrsajZx9USuA8bvnoA2221CtYIr4dw1p_u1V_5yC_fMSoAHo5QEKEsTBOf1Q7vA383a0ppTBjtUjN3WenZ1DJiIg2xoQwNfUbZaqzyk0CczvW5nns2naF05hRLw9ARCFGqj-DbjQz-MXSquvJPgEmXSocS1MjSY0vo2opMeGlUXDpiauzC6xYIxemKW6S4YpEOsCkQNoG9VRQXXfhEWLn6knjBw4N6PikaMVNg57zUKGiJZCktlckjJ2LrdBLJ3JSqC7stdopGWC2KNXC68KZF3_r137u08-_WXsCd_tHhsBgORgdP4W5CayBkce5CZzk_88_gtv25nC7mz5tlxODkpnH5G6i0V78
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=HiCoS-Net%3A+hierarchical+cross-modal+graph+learning+with+dynamic+attention+for+hard+negative-aware+image-text+matching&rft.jtitle=Journal+of+King+Saud+University.+Computer+and+information+sciences&rft.au=Dingcheng+Feng&rft.au=Ning+Luo&rft.au=Shudong+Zhang&rft.au=Lijuan+Zhou&rft.date=2025-11-01&rft.pub=Springer&rft.issn=1319-1578&rft.eissn=2213-1248&rft.volume=37&rft.issue=9&rft.spage=1&rft.epage=30&rft_id=info:doi/10.1007%2Fs44443-025-00313-x&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_c6ce5a05115444f7b80d31cda2058bf7
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1319-1578&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1319-1578&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1319-1578&client=summon