Multi-Population Optimization Framework Based on Plant Evolutionary Strategy and Its Application to Engineering Design Problems

Optimization problems are widespread across various fields, including industry, agriculture, and healthcare. Metaheuristic algorithms (MAs) are commonly employed to solve these problems due to their flexibility and robustness. However, despite their success, MAs inspired by plant evolutionary strate...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:International journal of computational intelligence systems Ročník 18; číslo 1; s. 117 - 22
Hlavní autori: Cheng, Hongwei, Li, Jun, Zhang, Xiaoming, Li, Tingjuan, Zhang, Panpan
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Dordrecht Springer Netherlands 15.05.2025
Springer Nature B.V
Springer
Predmet:
ISSN:1875-6883, 1875-6891, 1875-6883
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Optimization problems are widespread across various fields, including industry, agriculture, and healthcare. Metaheuristic algorithms (MAs) are commonly employed to solve these problems due to their flexibility and robustness. However, despite their success, MAs inspired by plant evolutionary strategies remain underexplored. This paper introduces a novel multi-population optimization framework based on the plant evolutionary strategy (PES_MPOF), which leverages plant evolutionary principles to improve optimization performance by maintaining population diversity and accelerating convergence in complex tasks. PES_MPOF integrates multiple subpopulations, each evolving according to different plant evolutionary models. These subpopulations mimic natural distribution and reproduction strategies, fostering solution diversity through both cooperation and competition. Additionally, PES_MPOF adapts population parameters based on the evolutionary performance of subpopulations, further enhancing its robustness and efficiency. The PES_MPOF algorithm was tested on the IEEE CEC 2020 benchmark suite and several classic engineering design problems. It outperforms other state-of-the-art optimization algorithms, demonstrating significant improvements in global optimization, solution accuracy, and convergence speed. PES_MPOF effectively addresses the challenges of premature convergence and loss of diversity, making it a robust and efficient optimization tool. Its innovative multi-population framework, inspired by plant evolutionary strategies, enhances both exploration and exploitation. Experimental results validate its effectiveness across a broad range of optimization problems, including those with constraints. The part of algorithm’s code will be made available upon the paper’s acceptance: https://github.com/ChengHongwei430/PES_MPOF .
AbstractList Optimization problems are widespread across various fields, including industry, agriculture, and healthcare. Metaheuristic algorithms (MAs) are commonly employed to solve these problems due to their flexibility and robustness. However, despite their success, MAs inspired by plant evolutionary strategies remain underexplored. This paper introduces a novel multi-population optimization framework based on the plant evolutionary strategy (PES_MPOF), which leverages plant evolutionary principles to improve optimization performance by maintaining population diversity and accelerating convergence in complex tasks. PES_MPOF integrates multiple subpopulations, each evolving according to different plant evolutionary models. These subpopulations mimic natural distribution and reproduction strategies, fostering solution diversity through both cooperation and competition. Additionally, PES_MPOF adapts population parameters based on the evolutionary performance of subpopulations, further enhancing its robustness and efficiency. The PES_MPOF algorithm was tested on the IEEE CEC 2020 benchmark suite and several classic engineering design problems. It outperforms other state-of-the-art optimization algorithms, demonstrating significant improvements in global optimization, solution accuracy, and convergence speed. PES_MPOF effectively addresses the challenges of premature convergence and loss of diversity, making it a robust and efficient optimization tool. Its innovative multi-population framework, inspired by plant evolutionary strategies, enhances both exploration and exploitation. Experimental results validate its effectiveness across a broad range of optimization problems, including those with constraints. The part of algorithm’s code will be made available upon the paper’s acceptance: https://github.com/ChengHongwei430/PES_MPOF.
Optimization problems are widespread across various fields, including industry, agriculture, and healthcare. Metaheuristic algorithms (MAs) are commonly employed to solve these problems due to their flexibility and robustness. However, despite their success, MAs inspired by plant evolutionary strategies remain underexplored. This paper introduces a novel multi-population optimization framework based on the plant evolutionary strategy (PES_MPOF), which leverages plant evolutionary principles to improve optimization performance by maintaining population diversity and accelerating convergence in complex tasks. PES_MPOF integrates multiple subpopulations, each evolving according to different plant evolutionary models. These subpopulations mimic natural distribution and reproduction strategies, fostering solution diversity through both cooperation and competition. Additionally, PES_MPOF adapts population parameters based on the evolutionary performance of subpopulations, further enhancing its robustness and efficiency. The PES_MPOF algorithm was tested on the IEEE CEC 2020 benchmark suite and several classic engineering design problems. It outperforms other state-of-the-art optimization algorithms, demonstrating significant improvements in global optimization, solution accuracy, and convergence speed. PES_MPOF effectively addresses the challenges of premature convergence and loss of diversity, making it a robust and efficient optimization tool. Its innovative multi-population framework, inspired by plant evolutionary strategies, enhances both exploration and exploitation. Experimental results validate its effectiveness across a broad range of optimization problems, including those with constraints. The part of algorithm’s code will be made available upon the paper’s acceptance: https://github.com/ChengHongwei430/PES_MPOF .
Abstract Optimization problems are widespread across various fields, including industry, agriculture, and healthcare. Metaheuristic algorithms (MAs) are commonly employed to solve these problems due to their flexibility and robustness. However, despite their success, MAs inspired by plant evolutionary strategies remain underexplored. This paper introduces a novel multi-population optimization framework based on the plant evolutionary strategy (PES_MPOF), which leverages plant evolutionary principles to improve optimization performance by maintaining population diversity and accelerating convergence in complex tasks. PES_MPOF integrates multiple subpopulations, each evolving according to different plant evolutionary models. These subpopulations mimic natural distribution and reproduction strategies, fostering solution diversity through both cooperation and competition. Additionally, PES_MPOF adapts population parameters based on the evolutionary performance of subpopulations, further enhancing its robustness and efficiency. The PES_MPOF algorithm was tested on the IEEE CEC 2020 benchmark suite and several classic engineering design problems. It outperforms other state-of-the-art optimization algorithms, demonstrating significant improvements in global optimization, solution accuracy, and convergence speed. PES_MPOF effectively addresses the challenges of premature convergence and loss of diversity, making it a robust and efficient optimization tool. Its innovative multi-population framework, inspired by plant evolutionary strategies, enhances both exploration and exploitation. Experimental results validate its effectiveness across a broad range of optimization problems, including those with constraints. The part of algorithm’s code will be made available upon the paper’s acceptance: https://github.com/ChengHongwei430/PES_MPOF .
ArticleNumber 117
Author Li, Jun
Zhang, Xiaoming
Cheng, Hongwei
Zhang, Panpan
Li, Tingjuan
Author_xml – sequence: 1
  givenname: Hongwei
  surname: Cheng
  fullname: Cheng, Hongwei
  organization: Institutes of Physical Science and Information Technology, Anhui University
– sequence: 2
  givenname: Jun
  surname: Li
  fullname: Li, Jun
  organization: Institutes of Physical Science and Information Technology, Anhui University
– sequence: 3
  givenname: Xiaoming
  surname: Zhang
  fullname: Zhang, Xiaoming
  email: iimzxm@gmail.com
  organization: Institutes of Physical Science and Information Technology, Anhui University
– sequence: 4
  givenname: Tingjuan
  surname: Li
  fullname: Li, Tingjuan
  organization: Qinghai Institute of Science and Technology Information
– sequence: 5
  givenname: Panpan
  surname: Zhang
  fullname: Zhang, Panpan
  organization: School of Electrical Engineering, Xi’an University of Technology
BookMark eNp9kUtv1DAUhSPUSpTSP8DKEuuAHb_iZSlTOlJRKxXWlh3fRB4ydrCdorLpX2-mQYUVq_vQOZ-vfN5URyEGqKp3BH8gGMuPmTGiRI0bXi-jVLV8VZ2QVvJatC09-qd_XZ3lvMMYN4RhzNhJ9fh1Houvb-M0j6b4GNDNVPze_16Hy2T28CumH-iTyeDQsrodTShocx_H-SAx6QHdlWQKDA_IBIe2JaPzaRp9tyJKRJsw-ACQfBjQZ8h-WCgp2hH2-W113Jsxw9mfelp9v9x8u7iqr2--bC_Or-uOtk2phbFGEdsRg4WVpKMdVwY7ZxsDvAPXEbCEg2q5bRQTjoumh573nHFClaL0tNquXBfNTk_J75fDdTRePy9iGrRJxXcjaGIcU4Q4xwlmklBrCEhrW-oAnJB8Yb1fWVOKP2fIRe_inMJyvqaNEJwpydSialZVl2LOCfqXVwnWh9z0mptectPPuWm5mOhqytPhtyD9Rf_H9QQJUp8Z
Cites_doi 10.1016/j.eswa.2021.115079
10.1111/j.1654-1103.2009.01065.x
10.1088/1402-4896/ad86f7
10.1038/scientificamerican0792-66
10.1109/MCI.2017.2742868
10.1016/j.advengsoft.2013.12.007
10.1088/1402-4896/ad91f2
10.1016/j.engappai.2006.03.003
10.1109/CEC48606.2020.9185577
10.1016/j.knosys.2011.07.001
10.4018/IJSI.312263
10.1109/ICNN.1995.488968
10.1890/07-2096.1
10.1016/j.advengsoft.2016.01.008
10.1016/j.eswa.2020.114107
10.1287/mnsc.27.11.1309
10.1016/j.cma.2004.09.007
10.1023/A:1008202821328
10.1007/978-3-642-30504-7_8
10.1109/CEC.2014.6900380
10.1007/s10845-017-1294-6
10.1126/science.220.4598.671
10.1007/s12065-024-00998-5
10.1016/j.ins.2009.03.004
10.1007/s00521-015-1870-7
10.1109/CEC48606.2020.9185901
10.1007/978-3-030-58930-1_7
10.1016/j.eswa.2022.116516
10.2991/ijcis.d.201109.001
10.1007/s12065-024-01011-9
10.1016/j.engappai.2019.06.017
10.1016/j.ins.2022.11.029
10.1016/B978-0-12-398364-0.00002-4
ContentType Journal Article
Copyright The Author(s) 2025
The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2025
– notice: The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
7SC
8FD
8FE
8FG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
L7M
L~C
L~D
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
DOA
DOI 10.1007/s44196-025-00779-7
DatabaseName Springer Nature OA Free Journals
CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Collection
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Computer Science Database


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1875-6883
EndPage 22
ExternalDocumentID oai_doaj_org_article_1ad4911dd5104713ba1e7bb83deed675
10_1007_s44196_025_00779_7
GrantInformation_xml – fundername: Foundation for Innovative Research Groups of the National Natural Science Foundation of China
  grantid: 62303013
  funderid: https://doi.org/10.13039/501100012659
– fundername: the Innovation Fund of Ministry of Education of China
  grantid: No. 2021ZYA06004
– fundername: the Natural Science Foundation of Anhui Province of China
  grantid: No. 2208085MF174
GroupedDBID 0R~
4.4
5GY
AAFWJ
AAJSJ
AAKKN
AASML
ABEEZ
ABFIM
ACACY
ACGFS
ACULB
ADBBV
ADCVX
AENEX
AFGXO
AFPKN
ALMA_UNASSIGNED_HOLDINGS
ARCSS
AVBZW
BCNDV
C24
C6C
CS3
DU5
EBLON
EBS
EJD
GROUPED_DOAJ
GTTXZ
HZ~
J~4
O9-
OK1
SOJ
TFW
TR2
AAYXX
AFFHD
AFKRA
ARAPS
BENPR
BGLVJ
CCPQU
CITATION
HCIFZ
K7-
PHGZM
PHGZT
PQGLB
7SC
8FD
8FE
8FG
AZQEC
DWQXO
GNUQQ
JQ2
L7M
L~C
L~D
P62
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c382t-6aba91bc1a06b71c3c59a0ddb2ae5cedc1eb15e985b2946d562fef5f545139933
IEDL.DBID DOA
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001489148300003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1875-6883
1875-6891
IngestDate Fri Oct 03 12:53:11 EDT 2025
Thu Oct 30 00:12:06 EDT 2025
Sat Nov 29 07:52:39 EST 2025
Fri May 16 03:50:33 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Multi-population evolution
Optimization algorithm framework
Plant population evolution
Metaheuristic algorithms
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c382t-6aba91bc1a06b71c3c59a0ddb2ae5cedc1eb15e985b2946d562fef5f545139933
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://doaj.org/article/1ad4911dd5104713ba1e7bb83deed675
PQID 3266549749
PQPubID 4869256
PageCount 22
ParticipantIDs doaj_primary_oai_doaj_org_article_1ad4911dd5104713ba1e7bb83deed675
proquest_journals_3266549749
crossref_primary_10_1007_s44196_025_00779_7
springer_journals_10_1007_s44196_025_00779_7
PublicationCentury 2000
PublicationDate 2025-05-15
PublicationDateYYYYMMDD 2025-05-15
PublicationDate_xml – month: 05
  year: 2025
  text: 2025-05-15
  day: 15
PublicationDecade 2020
PublicationPlace Dordrecht
PublicationPlace_xml – name: Dordrecht
– name: Abingdon
PublicationTitle International journal of computational intelligence systems
PublicationTitleAbbrev Int J Comput Intell Syst
PublicationYear 2025
Publisher Springer Netherlands
Springer Nature B.V
Springer
Publisher_xml – name: Springer Netherlands
– name: Springer Nature B.V
– name: Springer
References 779_CR12
779_CR13
E Rashedi (779_CR36) 2009; 179
I Ahmadianfar (779_CR2) 2021; 181
JH Holland (779_CR9) 1992; 267
779_CR30
W-T Pan (779_CR3) 2012; 26
M Aljaidi (779_CR33) 2025; 25
Y Tian (779_CR21) 2017; 12
EJ McIntire (779_CR22) 2009; 90
S Mirjalili (779_CR5) 2014; 69
J Koza (779_CR11) 1992; 5
R Storn (779_CR28) 1997; 11
S Mirjalili (779_CR39) 2016; 27
N Mashru (779_CR35) 2025; 18
X Zhang (779_CR24) 2021; 14
J Lai (779_CR23) 2009; 20
Z Zhang (779_CR34) 2019; 85
X Wang (779_CR19) 2025; 18
KS Lee (779_CR37) 2005; 194
AA Hadi (779_CR31) 2021; 8
X Wang (779_CR18) 2024; 99
MG Sahab (779_CR1) 2013; 8
C Yu (779_CR7) 2021; 8
779_CR20
AW Mohamed (779_CR41) 2018; 29
G Singh (779_CR8) 2022; 10
I Ahmadianfar (779_CR4) 2022; 195
779_CR29
779_CR27
A Seyyedabbasi (779_CR16) 2022; 8
D Połap (779_CR15) 2021; 166
779_CR26
S Kirkpatrick (779_CR6) 1983; 220
X Zhang (779_CR14) 2008; 21
Y Li (779_CR32) 2023; 619
M Alavi (779_CR10) 1981; 27
H Liu (779_CR25) 2021; 34
X Wang (779_CR17) 2024; 99
S Mirjalili (779_CR38) 2016; 95
Q He (779_CR40) 2007; 20
References_xml – volume: 181
  year: 2021
  ident: 779_CR2
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2021.115079
– volume: 20
  start-page: 415
  issue: 3
  year: 2009
  ident: 779_CR23
  publication-title: J. Veg. Sci.
  doi: 10.1111/j.1654-1103.2009.01065.x
– volume: 5
  start-page: 8
  year: 1992
  ident: 779_CR11
  publication-title: Genet. Progr.
– volume: 99
  issue: 11
  year: 2024
  ident: 779_CR17
  publication-title: Phys. Scr.
  doi: 10.1088/1402-4896/ad86f7
– volume: 267
  start-page: 66
  issue: 1
  year: 1992
  ident: 779_CR9
  publication-title: Sci. Am.
  doi: 10.1038/scientificamerican0792-66
– volume: 12
  start-page: 73
  issue: 4
  year: 2017
  ident: 779_CR21
  publication-title: IEEE Comput. Intell. Mag.
  doi: 10.1109/MCI.2017.2742868
– volume: 69
  start-page: 46
  year: 2014
  ident: 779_CR5
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2013.12.007
– volume: 34
  start-page: 581
  issue: 7
  year: 2021
  ident: 779_CR25
  publication-title: Pattern Recogn. Artif. Intell.
– volume: 99
  issue: 12
  year: 2024
  ident: 779_CR18
  publication-title: Phys. Scr.
  doi: 10.1088/1402-4896/ad91f2
– volume: 20
  start-page: 89
  issue: 1
  year: 2007
  ident: 779_CR40
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2006.03.003
– ident: 779_CR29
  doi: 10.1109/CEC48606.2020.9185577
– volume: 26
  start-page: 69
  year: 2012
  ident: 779_CR3
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2011.07.001
– volume: 10
  start-page: 1
  issue: 1
  year: 2022
  ident: 779_CR8
  publication-title: Int. J. Softw. Innov. (IJSI)
  doi: 10.4018/IJSI.312263
– ident: 779_CR27
– ident: 779_CR13
  doi: 10.1109/ICNN.1995.488968
– volume: 90
  start-page: 46
  issue: 1
  year: 2009
  ident: 779_CR22
  publication-title: Ecology
  doi: 10.1890/07-2096.1
– volume: 95
  start-page: 51
  year: 2016
  ident: 779_CR38
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2016.01.008
– volume: 166
  year: 2021
  ident: 779_CR15
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2020.114107
– volume: 27
  start-page: 1309
  issue: 11
  year: 1981
  ident: 779_CR10
  publication-title: Manage. Sci.
  doi: 10.1287/mnsc.27.11.1309
– volume: 194
  start-page: 3902
  issue: 36–38
  year: 2005
  ident: 779_CR37
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2004.09.007
– volume: 11
  start-page: 341
  year: 1997
  ident: 779_CR28
  publication-title: J. Global Optim.
  doi: 10.1023/A:1008202821328
– ident: 779_CR12
  doi: 10.1007/978-3-642-30504-7_8
– ident: 779_CR26
  doi: 10.1109/CEC.2014.6900380
– volume: 29
  start-page: 659
  year: 2018
  ident: 779_CR41
  publication-title: J. Intell. Manuf.
  doi: 10.1007/s10845-017-1294-6
– volume: 21
  start-page: 677
  issue: 5
  year: 2008
  ident: 779_CR14
  publication-title: Pattern Recogn. Artif. Intell.
– volume: 220
  start-page: 671
  issue: 4598
  year: 1983
  ident: 779_CR6
  publication-title: Science
  doi: 10.1126/science.220.4598.671
– volume: 8
  start-page: 1
  year: 2021
  ident: 779_CR7
  publication-title: Eng. Comput.
– volume: 18
  start-page: 1
  issue: 1
  year: 2025
  ident: 779_CR19
  publication-title: Evol. Intel.
  doi: 10.1007/s12065-024-00998-5
– volume: 179
  start-page: 2232
  issue: 13
  year: 2009
  ident: 779_CR36
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2009.03.004
– volume: 27
  start-page: 495
  year: 2016
  ident: 779_CR39
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-015-1870-7
– ident: 779_CR30
  doi: 10.1109/CEC48606.2020.9185901
– volume: 8
  start-page: 103
  year: 2021
  ident: 779_CR31
  publication-title: Heurist. Optim. Learn.
  doi: 10.1007/978-3-030-58930-1_7
– volume: 195
  year: 2022
  ident: 779_CR4
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2022.116516
– volume: 14
  start-page: 159
  issue: 1
  year: 2021
  ident: 779_CR24
  publication-title: Int. J. Comput. Intell. Syst.
  doi: 10.2991/ijcis.d.201109.001
– volume: 18
  start-page: 25
  issue: 1
  year: 2025
  ident: 779_CR35
  publication-title: Evol. Intel.
  doi: 10.1007/s12065-024-01011-9
– volume: 85
  start-page: 254
  year: 2019
  ident: 779_CR34
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2019.06.017
– volume: 619
  start-page: 439
  year: 2023
  ident: 779_CR32
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2022.11.029
– volume: 8
  start-page: 25
  year: 2013
  ident: 779_CR1
  publication-title: Metaheuristic Appl. Struct. Infrastruct.
  doi: 10.1016/B978-0-12-398364-0.00002-4
– ident: 779_CR20
– volume: 8
  start-page: 1
  year: 2022
  ident: 779_CR16
  publication-title: Eng. Comput.
– volume: 25
  year: 2025
  ident: 779_CR33
  publication-title: Res. Eng.
SSID ssj0002140044
ssib050732782
Score 2.3505926
Snippet Optimization problems are widespread across various fields, including industry, agriculture, and healthcare. Metaheuristic algorithms (MAs) are commonly...
Abstract Optimization problems are widespread across various fields, including industry, agriculture, and healthcare. Metaheuristic algorithms (MAs) are...
SourceID doaj
proquest
crossref
springer
SourceType Open Website
Aggregation Database
Index Database
Publisher
StartPage 117
SubjectTerms Adaptation
Algorithms
Artificial Intelligence
Computational Intelligence
Control
Convergence
Design
Design engineering
Design optimization
Engineering
Environmental conditions
Evolution
Exploitation
Global optimization
Heuristic methods
Mathematical Logic and Foundations
Mechatronics
Metaheuristic algorithms
Multi-population evolution
Optimization algorithm framework
Optimization algorithms
Performance evaluation
Plant population evolution
Plant populations
Research Article
Robotics
Robustness (mathematics)
Seeds
Strategy
Task complexity
SummonAdditionalLinks – databaseName: Computer Science Database
  dbid: K7-
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELagMLBQnqK85IENLGo7zmNCvCpYoANIbJZfQQy0pQlITPx1zq7TAhIsrI4TJbrPd59z5-8QOtAqo8pRRTRLHEkEgyVVGkZSALODW5zOVWg2kd3c5A8PRT_-cKtiWWXjE4OjtkPj_5EfA81IYS-TJcXJ6IX4rlE-uxpbaMyjBcrACfukbEYaPAHV4axRa_eemVGP2JBoBppO0ryg8RxNOE0HzCBU5AriRW4Kkn2LVUHS_xsP_ZE6DRGp1_7vt6yg5chF8ekEPKtozg3WULvp84Djsl9HH-GULulPe33hW3A0z_EEJ-419V34DEKixTDkWyHV-PIt4lqN33GUwX3HamDxdV3h01nqHNdD_EUYEV-EshLcnzS7qTbQfe_y7vyKxMYNxPCc1SRVWhVUG6q6qc6o4UYUqmutZsoJ46yhECGEK3KhWZGkFjhY6UpRApujnjDxTdQaDAduC2GvR5crzrmzZQITlQX8pKbspjnT3GYddNiYSI4m-hxyqsQcDCrBoDIYVMLsM2_F6UyvrR0GhuNHGZeqpMomEAKsFV7GgnKtqMu0zrkFPgH7qw7abawq44Kv5MykHXTU4GJ2-fdX2v77aTtoiQVECkLFLmrV41e3hxbNW_1UjfcD3D8BK2kGyg
  priority: 102
  providerName: ProQuest
– databaseName: SpringerOpen
  dbid: C24
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTxsxEB4V2gMcSnmJUKh84NZaiu31Po6BEtFLmgNI3Cy_FnEgQdklUk78dcaON4SKHtqrd6y17G8elme-ATgzumDaM00NzzzNJEeVqi2nOYLZ4xRvSh2bTRSjUXl7W41TUVjTZbt3T5LRUq-K3dBxx4RZSQMHTUWLDfgY6MRCItdFqnEI9pezgMssVci8P_WNF4pk_W8izD8eRaOvGe783yq_wOcUW5LBEgy78MFP9mCn69tAkhrvwfYaCeE-PMcaXDpedfIiv9GMPKT6TDLssrfIOTo8R3AoNDpqyeU8oVbPFiSR3C6Injjyq23I4PVhnLRTsvZH8jMmjZDxspVNcwA3w8vriyua2jJQK0re0lwbXTFjme7npmBWWFnpvnOGay-td5ah_Ze-KqXhVZY7jLBqX8saYzUWwiFxCJuT6cQfAQlsc6UWQnhXZyioHaIjt3U_L7kRrujB9-6Y1OOSfUOteJbjTivcaRV3WqH0eTjJlWRgzo4D09mdSoqomHYZGnjnZCCpYMJo5gtjSuEwWsDbUw9OOhyopM6Nwhg3x4t0kVU9-NGd--vnvy_p-N_Ev8IWj9CRlMkT2GxnT_4UPtl5e9_MvkWYvwBvvPt-
  priority: 102
  providerName: Springer Nature
Title Multi-Population Optimization Framework Based on Plant Evolutionary Strategy and Its Application to Engineering Design Problems
URI https://link.springer.com/article/10.1007/s44196-025-00779-7
https://www.proquest.com/docview/3266549749
https://doaj.org/article/1ad4911dd5104713ba1e7bb83deed675
Volume 18
WOSCitedRecordID wos001489148300003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1875-6883
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002140044
  issn: 1875-6883
  databaseCode: DOA
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1875-6883
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssib050732782
  issn: 1875-6883
  databaseCode: M~E
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 1875-6883
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002140044
  issn: 1875-6883
  databaseCode: K7-
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1875-6883
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002140044
  issn: 1875-6883
  databaseCode: BENPR
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerOpen
  customDbUrl:
  eissn: 1875-6883
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002140044
  issn: 1875-6883
  databaseCode: C24
  dateStart: 20211201
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LaxsxEB6aNIdc0jZtqNPU6NBbKmJJq9XuMU5tWgquKS3kJvRayCF2sLeBnPLXM9JqHacQeullD1oJhOabh9DMNwCfrFHMBGao5UWgheSoUo3jtEQwB1wSbGVSswk1m1WXl_V8q9VXzAnr6IG7gztjxheokN7LSCrAhDUsKGsr4dG6Y7Qbre9I1VuXqWiDOYvYLHKVTKqVQ7-f8m0ljRQ2NVVPPFEi7H8SZf71MJr8zfQ1HORAkZx3G3wDL8LiEF71TRhI1sm3cJ9KaOl804iL_EArcJ3LK8m0T74iY_RXnuBQ7FPUksltBp1Z3ZHMUXtHzMKTb-2anD--a5N2SbZYC8mXlPNB5l0nmvU7-D2d_Lr4SnNXBepExVtaGmtqZh0zo9Iq5oSTtRl5b7kJ0gXvGJpvGepKWl4XpccAqQmNbDDUYjGaEUewu1guwnsgkSyuMkKI4JsCJxqPwi1dMyorboVXAzjtT1jfdOQZekOTnOShUR46yUPj7HEUwmZmJL5OAwgHneGg_wWHAZz0ItRZG9caQ9QS78GqqAfwuRfr4-_nt3T8P7b0AfZ5gp2kTJ7Abrv6Ez7Cnrttr9arIbwcT2bzn0PYueDFMKEYv98VfQDnePbl
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbhMxFL0qKRLdUJ4iUMALWIFFbI_nsUCooYkatYQIFam7wa9BLJqUZCjKij_iG7l27IQiwa4Lth6PNZo59-HxvecAPNOqYMoxRTXPHM0kR5NqDKc5gtnhLU6XKohNFONxeXpaTbbgZ-qF8WWVyScGR21nxv8jf4VpRo57mSKr3px_pV41yp-uJgmNFSyO3PI7btkWr0cH-H2fcz4cnLw9pFFVgBpR8pbmSquKacNUL9cFM8LISvWs1Vw5aZw1DN2XdFUpNa-y3GKC0LhGNphqMB_NBa57DbYzkeWyA9v9wXjyISEYkyvBEz-8jwWceRsJR9u4MaB5WbHYuRP69zAXCTXAknpanYoWl6JjEBG4lPn-cVgbYuBw9397e7fgZsy2yf7KPG7Dlpvegd2kZEGiY7sLP0IfMp2s1czIe3SlZ7FHlQxTBRvpY9C3BIe82FNLBhfRctV8SSLR75KoqSWjdkH2N8UBpJ2R36gfyUEonCGTlZzP4h58vJLXcB8609nUPQDiGfdKJYRwtslworJoIblpennJtbBFF14kSNTnKwaSes01HQBUI4DqAKAaZ_c9atYzPXt4GJjNP9fRGdVM2QyDnLXSE3UwoRVzhdalsJgx4Q6yC3sJRXV0aYt6A6EuvEw43Fz--yM9_PdqT-HG4cm74_p4ND56BDs8WIOkTO5Bp51_c4_hurlovyzmT6KxEfh01Qj9BXfmZzA
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LTxsxEB7xqFB7gBaomgKtD9yKRWyv93FMClFRq5ADlbhZfm3VAxuUbJE49a937HhDQO2h4rbyjrUr-xvPWDPzDcCx0QXTnmlqeOZpJjmqVG05zRHMHqd4U-rYbKIYj8vr62qyUsUfs927kOSipiGwNDXt6a2rT5eFb2jEY_KspIGPpqLFOmxm4SmEa1O9QziLOQsYzVK1zN-nPrJIkbj_kbf5JEAa7c5o5_l__Bq2k89JBguQvIE13-zCTtfPgST13oVXK-SEe_A71ubSybLDF7nE4-Um1W2SUZfVRYZoCB3BodAAqSXndwnNenZPEvntPdGNIxftnAweAuaknZKVL5KzmExCJosWN_N9-D46v_r8haZ2DdSKkrc010ZXzFim-7kpmBVWVrrvnOHaS-udZWgXpK9KaXiV5Q49r9rXskYfjgU3SbyFjWba-HdAAgtdqYUQ3tUZCmqHqMlt3c9LboQrevCp2zJ1u2DlUEv-5bjSCldaxZVWKD0Mu7qUDIzacWA6-6GSgiqmXYYHv3MykFcwYTTzhTGlcOhF4K2qB4cdJlRS87lC3zfHC3aRVT046TDw8Prfv_T-_8Q_wtbkbKS-XYy_HsBLHlEkKZOHsNHOfvkjeGHv2p_z2YeI_j9vgwdW
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-Population+Optimization+Framework+Based+on+Plant+Evolutionary+Strategy+and+Its+Application+to+Engineering+Design+Problems&rft.jtitle=International+journal+of+computational+intelligence+systems&rft.au=Hongwei+Cheng&rft.au=Jun+Li&rft.au=Xiaoming+Zhang&rft.au=Tingjuan+Li&rft.date=2025-05-15&rft.pub=Springer&rft.eissn=1875-6883&rft.volume=18&rft.issue=1&rft.spage=1&rft.epage=22&rft_id=info:doi/10.1007%2Fs44196-025-00779-7&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_1ad4911dd5104713ba1e7bb83deed675
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1875-6883&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1875-6883&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1875-6883&client=summon