Multi-Population Optimization Framework Based on Plant Evolutionary Strategy and Its Application to Engineering Design Problems
Optimization problems are widespread across various fields, including industry, agriculture, and healthcare. Metaheuristic algorithms (MAs) are commonly employed to solve these problems due to their flexibility and robustness. However, despite their success, MAs inspired by plant evolutionary strate...
Uložené v:
| Vydané v: | International journal of computational intelligence systems Ročník 18; číslo 1; s. 117 - 22 |
|---|---|
| Hlavní autori: | , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Dordrecht
Springer Netherlands
15.05.2025
Springer Nature B.V Springer |
| Predmet: | |
| ISSN: | 1875-6883, 1875-6891, 1875-6883 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Optimization problems are widespread across various fields, including industry, agriculture, and healthcare. Metaheuristic algorithms (MAs) are commonly employed to solve these problems due to their flexibility and robustness. However, despite their success, MAs inspired by plant evolutionary strategies remain underexplored. This paper introduces a novel multi-population optimization framework based on the plant evolutionary strategy (PES_MPOF), which leverages plant evolutionary principles to improve optimization performance by maintaining population diversity and accelerating convergence in complex tasks. PES_MPOF integrates multiple subpopulations, each evolving according to different plant evolutionary models. These subpopulations mimic natural distribution and reproduction strategies, fostering solution diversity through both cooperation and competition. Additionally, PES_MPOF adapts population parameters based on the evolutionary performance of subpopulations, further enhancing its robustness and efficiency. The PES_MPOF algorithm was tested on the IEEE CEC 2020 benchmark suite and several classic engineering design problems. It outperforms other state-of-the-art optimization algorithms, demonstrating significant improvements in global optimization, solution accuracy, and convergence speed. PES_MPOF effectively addresses the challenges of premature convergence and loss of diversity, making it a robust and efficient optimization tool. Its innovative multi-population framework, inspired by plant evolutionary strategies, enhances both exploration and exploitation. Experimental results validate its effectiveness across a broad range of optimization problems, including those with constraints. The part of algorithm’s code will be made available upon the paper’s acceptance:
https://github.com/ChengHongwei430/PES_MPOF
. |
|---|---|
| AbstractList | Optimization problems are widespread across various fields, including industry, agriculture, and healthcare. Metaheuristic algorithms (MAs) are commonly employed to solve these problems due to their flexibility and robustness. However, despite their success, MAs inspired by plant evolutionary strategies remain underexplored. This paper introduces a novel multi-population optimization framework based on the plant evolutionary strategy (PES_MPOF), which leverages plant evolutionary principles to improve optimization performance by maintaining population diversity and accelerating convergence in complex tasks. PES_MPOF integrates multiple subpopulations, each evolving according to different plant evolutionary models. These subpopulations mimic natural distribution and reproduction strategies, fostering solution diversity through both cooperation and competition. Additionally, PES_MPOF adapts population parameters based on the evolutionary performance of subpopulations, further enhancing its robustness and efficiency. The PES_MPOF algorithm was tested on the IEEE CEC 2020 benchmark suite and several classic engineering design problems. It outperforms other state-of-the-art optimization algorithms, demonstrating significant improvements in global optimization, solution accuracy, and convergence speed. PES_MPOF effectively addresses the challenges of premature convergence and loss of diversity, making it a robust and efficient optimization tool. Its innovative multi-population framework, inspired by plant evolutionary strategies, enhances both exploration and exploitation. Experimental results validate its effectiveness across a broad range of optimization problems, including those with constraints. The part of algorithm’s code will be made available upon the paper’s acceptance: https://github.com/ChengHongwei430/PES_MPOF. Optimization problems are widespread across various fields, including industry, agriculture, and healthcare. Metaheuristic algorithms (MAs) are commonly employed to solve these problems due to their flexibility and robustness. However, despite their success, MAs inspired by plant evolutionary strategies remain underexplored. This paper introduces a novel multi-population optimization framework based on the plant evolutionary strategy (PES_MPOF), which leverages plant evolutionary principles to improve optimization performance by maintaining population diversity and accelerating convergence in complex tasks. PES_MPOF integrates multiple subpopulations, each evolving according to different plant evolutionary models. These subpopulations mimic natural distribution and reproduction strategies, fostering solution diversity through both cooperation and competition. Additionally, PES_MPOF adapts population parameters based on the evolutionary performance of subpopulations, further enhancing its robustness and efficiency. The PES_MPOF algorithm was tested on the IEEE CEC 2020 benchmark suite and several classic engineering design problems. It outperforms other state-of-the-art optimization algorithms, demonstrating significant improvements in global optimization, solution accuracy, and convergence speed. PES_MPOF effectively addresses the challenges of premature convergence and loss of diversity, making it a robust and efficient optimization tool. Its innovative multi-population framework, inspired by plant evolutionary strategies, enhances both exploration and exploitation. Experimental results validate its effectiveness across a broad range of optimization problems, including those with constraints. The part of algorithm’s code will be made available upon the paper’s acceptance: https://github.com/ChengHongwei430/PES_MPOF . Abstract Optimization problems are widespread across various fields, including industry, agriculture, and healthcare. Metaheuristic algorithms (MAs) are commonly employed to solve these problems due to their flexibility and robustness. However, despite their success, MAs inspired by plant evolutionary strategies remain underexplored. This paper introduces a novel multi-population optimization framework based on the plant evolutionary strategy (PES_MPOF), which leverages plant evolutionary principles to improve optimization performance by maintaining population diversity and accelerating convergence in complex tasks. PES_MPOF integrates multiple subpopulations, each evolving according to different plant evolutionary models. These subpopulations mimic natural distribution and reproduction strategies, fostering solution diversity through both cooperation and competition. Additionally, PES_MPOF adapts population parameters based on the evolutionary performance of subpopulations, further enhancing its robustness and efficiency. The PES_MPOF algorithm was tested on the IEEE CEC 2020 benchmark suite and several classic engineering design problems. It outperforms other state-of-the-art optimization algorithms, demonstrating significant improvements in global optimization, solution accuracy, and convergence speed. PES_MPOF effectively addresses the challenges of premature convergence and loss of diversity, making it a robust and efficient optimization tool. Its innovative multi-population framework, inspired by plant evolutionary strategies, enhances both exploration and exploitation. Experimental results validate its effectiveness across a broad range of optimization problems, including those with constraints. The part of algorithm’s code will be made available upon the paper’s acceptance: https://github.com/ChengHongwei430/PES_MPOF . |
| ArticleNumber | 117 |
| Author | Li, Jun Zhang, Xiaoming Cheng, Hongwei Zhang, Panpan Li, Tingjuan |
| Author_xml | – sequence: 1 givenname: Hongwei surname: Cheng fullname: Cheng, Hongwei organization: Institutes of Physical Science and Information Technology, Anhui University – sequence: 2 givenname: Jun surname: Li fullname: Li, Jun organization: Institutes of Physical Science and Information Technology, Anhui University – sequence: 3 givenname: Xiaoming surname: Zhang fullname: Zhang, Xiaoming email: iimzxm@gmail.com organization: Institutes of Physical Science and Information Technology, Anhui University – sequence: 4 givenname: Tingjuan surname: Li fullname: Li, Tingjuan organization: Qinghai Institute of Science and Technology Information – sequence: 5 givenname: Panpan surname: Zhang fullname: Zhang, Panpan organization: School of Electrical Engineering, Xi’an University of Technology |
| BookMark | eNp9kUtv1DAUhSPUSpTSP8DKEuuAHb_iZSlTOlJRKxXWlh3fRB4ydrCdorLpX2-mQYUVq_vQOZ-vfN5URyEGqKp3BH8gGMuPmTGiRI0bXi-jVLV8VZ2QVvJatC09-qd_XZ3lvMMYN4RhzNhJ9fh1Houvb-M0j6b4GNDNVPze_16Hy2T28CumH-iTyeDQsrodTShocx_H-SAx6QHdlWQKDA_IBIe2JaPzaRp9tyJKRJsw-ACQfBjQZ8h-WCgp2hH2-W113Jsxw9mfelp9v9x8u7iqr2--bC_Or-uOtk2phbFGEdsRg4WVpKMdVwY7ZxsDvAPXEbCEg2q5bRQTjoumh573nHFClaL0tNquXBfNTk_J75fDdTRePy9iGrRJxXcjaGIcU4Q4xwlmklBrCEhrW-oAnJB8Yb1fWVOKP2fIRe_inMJyvqaNEJwpydSialZVl2LOCfqXVwnWh9z0mptectPPuWm5mOhqytPhtyD9Rf_H9QQJUp8Z |
| Cites_doi | 10.1016/j.eswa.2021.115079 10.1111/j.1654-1103.2009.01065.x 10.1088/1402-4896/ad86f7 10.1038/scientificamerican0792-66 10.1109/MCI.2017.2742868 10.1016/j.advengsoft.2013.12.007 10.1088/1402-4896/ad91f2 10.1016/j.engappai.2006.03.003 10.1109/CEC48606.2020.9185577 10.1016/j.knosys.2011.07.001 10.4018/IJSI.312263 10.1109/ICNN.1995.488968 10.1890/07-2096.1 10.1016/j.advengsoft.2016.01.008 10.1016/j.eswa.2020.114107 10.1287/mnsc.27.11.1309 10.1016/j.cma.2004.09.007 10.1023/A:1008202821328 10.1007/978-3-642-30504-7_8 10.1109/CEC.2014.6900380 10.1007/s10845-017-1294-6 10.1126/science.220.4598.671 10.1007/s12065-024-00998-5 10.1016/j.ins.2009.03.004 10.1007/s00521-015-1870-7 10.1109/CEC48606.2020.9185901 10.1007/978-3-030-58930-1_7 10.1016/j.eswa.2022.116516 10.2991/ijcis.d.201109.001 10.1007/s12065-024-01011-9 10.1016/j.engappai.2019.06.017 10.1016/j.ins.2022.11.029 10.1016/B978-0-12-398364-0.00002-4 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2025 The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: The Author(s) 2025 – notice: The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | C6C AAYXX CITATION 7SC 8FD 8FE 8FG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- L7M L~C L~D P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS DOA |
| DOI | 10.1007/s44196-025-00779-7 |
| DatabaseName | Springer Nature OA Free Journals CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Collection ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | Computer Science Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science |
| EISSN | 1875-6883 |
| EndPage | 22 |
| ExternalDocumentID | oai_doaj_org_article_1ad4911dd5104713ba1e7bb83deed675 10_1007_s44196_025_00779_7 |
| GrantInformation_xml | – fundername: Foundation for Innovative Research Groups of the National Natural Science Foundation of China grantid: 62303013 funderid: https://doi.org/10.13039/501100012659 – fundername: the Innovation Fund of Ministry of Education of China grantid: No. 2021ZYA06004 – fundername: the Natural Science Foundation of Anhui Province of China grantid: No. 2208085MF174 |
| GroupedDBID | 0R~ 4.4 5GY AAFWJ AAJSJ AAKKN AASML ABEEZ ABFIM ACACY ACGFS ACULB ADBBV ADCVX AENEX AFGXO AFPKN ALMA_UNASSIGNED_HOLDINGS ARCSS AVBZW BCNDV C24 C6C CS3 DU5 EBLON EBS EJD GROUPED_DOAJ GTTXZ HZ~ J~4 O9- OK1 SOJ TFW TR2 AAYXX AFFHD AFKRA ARAPS BENPR BGLVJ CCPQU CITATION HCIFZ K7- PHGZM PHGZT PQGLB 7SC 8FD 8FE 8FG AZQEC DWQXO GNUQQ JQ2 L7M L~C L~D P62 PKEHL PQEST PQQKQ PQUKI PRINS |
| ID | FETCH-LOGICAL-c382t-6aba91bc1a06b71c3c59a0ddb2ae5cedc1eb15e985b2946d562fef5f545139933 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001489148300003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1875-6883 1875-6891 |
| IngestDate | Fri Oct 03 12:53:11 EDT 2025 Thu Oct 30 00:12:06 EDT 2025 Sat Nov 29 07:52:39 EST 2025 Fri May 16 03:50:33 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Multi-population evolution Optimization algorithm framework Plant population evolution Metaheuristic algorithms |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c382t-6aba91bc1a06b71c3c59a0ddb2ae5cedc1eb15e985b2946d562fef5f545139933 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| OpenAccessLink | https://doaj.org/article/1ad4911dd5104713ba1e7bb83deed675 |
| PQID | 3266549749 |
| PQPubID | 4869256 |
| PageCount | 22 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_1ad4911dd5104713ba1e7bb83deed675 proquest_journals_3266549749 crossref_primary_10_1007_s44196_025_00779_7 springer_journals_10_1007_s44196_025_00779_7 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-05-15 |
| PublicationDateYYYYMMDD | 2025-05-15 |
| PublicationDate_xml | – month: 05 year: 2025 text: 2025-05-15 day: 15 |
| PublicationDecade | 2020 |
| PublicationPlace | Dordrecht |
| PublicationPlace_xml | – name: Dordrecht – name: Abingdon |
| PublicationTitle | International journal of computational intelligence systems |
| PublicationTitleAbbrev | Int J Comput Intell Syst |
| PublicationYear | 2025 |
| Publisher | Springer Netherlands Springer Nature B.V Springer |
| Publisher_xml | – name: Springer Netherlands – name: Springer Nature B.V – name: Springer |
| References | 779_CR12 779_CR13 E Rashedi (779_CR36) 2009; 179 I Ahmadianfar (779_CR2) 2021; 181 JH Holland (779_CR9) 1992; 267 779_CR30 W-T Pan (779_CR3) 2012; 26 M Aljaidi (779_CR33) 2025; 25 Y Tian (779_CR21) 2017; 12 EJ McIntire (779_CR22) 2009; 90 S Mirjalili (779_CR5) 2014; 69 J Koza (779_CR11) 1992; 5 R Storn (779_CR28) 1997; 11 S Mirjalili (779_CR39) 2016; 27 N Mashru (779_CR35) 2025; 18 X Zhang (779_CR24) 2021; 14 J Lai (779_CR23) 2009; 20 Z Zhang (779_CR34) 2019; 85 X Wang (779_CR19) 2025; 18 KS Lee (779_CR37) 2005; 194 AA Hadi (779_CR31) 2021; 8 X Wang (779_CR18) 2024; 99 MG Sahab (779_CR1) 2013; 8 C Yu (779_CR7) 2021; 8 779_CR20 AW Mohamed (779_CR41) 2018; 29 G Singh (779_CR8) 2022; 10 I Ahmadianfar (779_CR4) 2022; 195 779_CR29 779_CR27 A Seyyedabbasi (779_CR16) 2022; 8 D Połap (779_CR15) 2021; 166 779_CR26 S Kirkpatrick (779_CR6) 1983; 220 X Zhang (779_CR14) 2008; 21 Y Li (779_CR32) 2023; 619 M Alavi (779_CR10) 1981; 27 H Liu (779_CR25) 2021; 34 X Wang (779_CR17) 2024; 99 S Mirjalili (779_CR38) 2016; 95 Q He (779_CR40) 2007; 20 |
| References_xml | – volume: 181 year: 2021 ident: 779_CR2 publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2021.115079 – volume: 20 start-page: 415 issue: 3 year: 2009 ident: 779_CR23 publication-title: J. Veg. Sci. doi: 10.1111/j.1654-1103.2009.01065.x – volume: 5 start-page: 8 year: 1992 ident: 779_CR11 publication-title: Genet. Progr. – volume: 99 issue: 11 year: 2024 ident: 779_CR17 publication-title: Phys. Scr. doi: 10.1088/1402-4896/ad86f7 – volume: 267 start-page: 66 issue: 1 year: 1992 ident: 779_CR9 publication-title: Sci. Am. doi: 10.1038/scientificamerican0792-66 – volume: 12 start-page: 73 issue: 4 year: 2017 ident: 779_CR21 publication-title: IEEE Comput. Intell. Mag. doi: 10.1109/MCI.2017.2742868 – volume: 69 start-page: 46 year: 2014 ident: 779_CR5 publication-title: Adv. Eng. Softw. doi: 10.1016/j.advengsoft.2013.12.007 – volume: 34 start-page: 581 issue: 7 year: 2021 ident: 779_CR25 publication-title: Pattern Recogn. Artif. Intell. – volume: 99 issue: 12 year: 2024 ident: 779_CR18 publication-title: Phys. Scr. doi: 10.1088/1402-4896/ad91f2 – volume: 20 start-page: 89 issue: 1 year: 2007 ident: 779_CR40 publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2006.03.003 – ident: 779_CR29 doi: 10.1109/CEC48606.2020.9185577 – volume: 26 start-page: 69 year: 2012 ident: 779_CR3 publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2011.07.001 – volume: 10 start-page: 1 issue: 1 year: 2022 ident: 779_CR8 publication-title: Int. J. Softw. Innov. (IJSI) doi: 10.4018/IJSI.312263 – ident: 779_CR27 – ident: 779_CR13 doi: 10.1109/ICNN.1995.488968 – volume: 90 start-page: 46 issue: 1 year: 2009 ident: 779_CR22 publication-title: Ecology doi: 10.1890/07-2096.1 – volume: 95 start-page: 51 year: 2016 ident: 779_CR38 publication-title: Adv. Eng. Softw. doi: 10.1016/j.advengsoft.2016.01.008 – volume: 166 year: 2021 ident: 779_CR15 publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2020.114107 – volume: 27 start-page: 1309 issue: 11 year: 1981 ident: 779_CR10 publication-title: Manage. Sci. doi: 10.1287/mnsc.27.11.1309 – volume: 194 start-page: 3902 issue: 36–38 year: 2005 ident: 779_CR37 publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2004.09.007 – volume: 11 start-page: 341 year: 1997 ident: 779_CR28 publication-title: J. Global Optim. doi: 10.1023/A:1008202821328 – ident: 779_CR12 doi: 10.1007/978-3-642-30504-7_8 – ident: 779_CR26 doi: 10.1109/CEC.2014.6900380 – volume: 29 start-page: 659 year: 2018 ident: 779_CR41 publication-title: J. Intell. Manuf. doi: 10.1007/s10845-017-1294-6 – volume: 21 start-page: 677 issue: 5 year: 2008 ident: 779_CR14 publication-title: Pattern Recogn. Artif. Intell. – volume: 220 start-page: 671 issue: 4598 year: 1983 ident: 779_CR6 publication-title: Science doi: 10.1126/science.220.4598.671 – volume: 8 start-page: 1 year: 2021 ident: 779_CR7 publication-title: Eng. Comput. – volume: 18 start-page: 1 issue: 1 year: 2025 ident: 779_CR19 publication-title: Evol. Intel. doi: 10.1007/s12065-024-00998-5 – volume: 179 start-page: 2232 issue: 13 year: 2009 ident: 779_CR36 publication-title: Inf. Sci. doi: 10.1016/j.ins.2009.03.004 – volume: 27 start-page: 495 year: 2016 ident: 779_CR39 publication-title: Neural Comput. Appl. doi: 10.1007/s00521-015-1870-7 – ident: 779_CR30 doi: 10.1109/CEC48606.2020.9185901 – volume: 8 start-page: 103 year: 2021 ident: 779_CR31 publication-title: Heurist. Optim. Learn. doi: 10.1007/978-3-030-58930-1_7 – volume: 195 year: 2022 ident: 779_CR4 publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2022.116516 – volume: 14 start-page: 159 issue: 1 year: 2021 ident: 779_CR24 publication-title: Int. J. Comput. Intell. Syst. doi: 10.2991/ijcis.d.201109.001 – volume: 18 start-page: 25 issue: 1 year: 2025 ident: 779_CR35 publication-title: Evol. Intel. doi: 10.1007/s12065-024-01011-9 – volume: 85 start-page: 254 year: 2019 ident: 779_CR34 publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2019.06.017 – volume: 619 start-page: 439 year: 2023 ident: 779_CR32 publication-title: Inf. Sci. doi: 10.1016/j.ins.2022.11.029 – volume: 8 start-page: 25 year: 2013 ident: 779_CR1 publication-title: Metaheuristic Appl. Struct. Infrastruct. doi: 10.1016/B978-0-12-398364-0.00002-4 – ident: 779_CR20 – volume: 8 start-page: 1 year: 2022 ident: 779_CR16 publication-title: Eng. Comput. – volume: 25 year: 2025 ident: 779_CR33 publication-title: Res. Eng. |
| SSID | ssj0002140044 ssib050732782 |
| Score | 2.3505926 |
| Snippet | Optimization problems are widespread across various fields, including industry, agriculture, and healthcare. Metaheuristic algorithms (MAs) are commonly... Abstract Optimization problems are widespread across various fields, including industry, agriculture, and healthcare. Metaheuristic algorithms (MAs) are... |
| SourceID | doaj proquest crossref springer |
| SourceType | Open Website Aggregation Database Index Database Publisher |
| StartPage | 117 |
| SubjectTerms | Adaptation Algorithms Artificial Intelligence Computational Intelligence Control Convergence Design Design engineering Design optimization Engineering Environmental conditions Evolution Exploitation Global optimization Heuristic methods Mathematical Logic and Foundations Mechatronics Metaheuristic algorithms Multi-population evolution Optimization algorithm framework Optimization algorithms Performance evaluation Plant population evolution Plant populations Research Article Robotics Robustness (mathematics) Seeds Strategy Task complexity |
| SummonAdditionalLinks | – databaseName: Computer Science Database dbid: K7- link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELagMLBQnqK85IENLGo7zmNCvCpYoANIbJZfQQy0pQlITPx1zq7TAhIsrI4TJbrPd59z5-8QOtAqo8pRRTRLHEkEgyVVGkZSALODW5zOVWg2kd3c5A8PRT_-cKtiWWXjE4OjtkPj_5EfA81IYS-TJcXJ6IX4rlE-uxpbaMyjBcrACfukbEYaPAHV4axRa_eemVGP2JBoBppO0ryg8RxNOE0HzCBU5AriRW4Kkn2LVUHS_xsP_ZE6DRGp1_7vt6yg5chF8ekEPKtozg3WULvp84Djsl9HH-GULulPe33hW3A0z_EEJ-419V34DEKixTDkWyHV-PIt4lqN33GUwX3HamDxdV3h01nqHNdD_EUYEV-EshLcnzS7qTbQfe_y7vyKxMYNxPCc1SRVWhVUG6q6qc6o4UYUqmutZsoJ46yhECGEK3KhWZGkFjhY6UpRApujnjDxTdQaDAduC2GvR5crzrmzZQITlQX8pKbspjnT3GYddNiYSI4m-hxyqsQcDCrBoDIYVMLsM2_F6UyvrR0GhuNHGZeqpMomEAKsFV7GgnKtqMu0zrkFPgH7qw7abawq44Kv5MykHXTU4GJ2-fdX2v77aTtoiQVECkLFLmrV41e3hxbNW_1UjfcD3D8BK2kGyg priority: 102 providerName: ProQuest – databaseName: SpringerOpen dbid: C24 link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTxsxEB4V2gMcSnmJUKh84NZaiu31Po6BEtFLmgNI3Cy_FnEgQdklUk78dcaON4SKHtqrd6y17G8elme-ATgzumDaM00NzzzNJEeVqi2nOYLZ4xRvSh2bTRSjUXl7W41TUVjTZbt3T5LRUq-K3dBxx4RZSQMHTUWLDfgY6MRCItdFqnEI9pezgMssVci8P_WNF4pk_W8izD8eRaOvGe783yq_wOcUW5LBEgy78MFP9mCn69tAkhrvwfYaCeE-PMcaXDpedfIiv9GMPKT6TDLssrfIOTo8R3AoNDpqyeU8oVbPFiSR3C6Injjyq23I4PVhnLRTsvZH8jMmjZDxspVNcwA3w8vriyua2jJQK0re0lwbXTFjme7npmBWWFnpvnOGay-td5ah_Ze-KqXhVZY7jLBqX8saYzUWwiFxCJuT6cQfAQlsc6UWQnhXZyioHaIjt3U_L7kRrujB9-6Y1OOSfUOteJbjTivcaRV3WqH0eTjJlWRgzo4D09mdSoqomHYZGnjnZCCpYMJo5gtjSuEwWsDbUw9OOhyopM6Nwhg3x4t0kVU9-NGd--vnvy_p-N_Ev8IWj9CRlMkT2GxnT_4UPtl5e9_MvkWYvwBvvPt- priority: 102 providerName: Springer Nature |
| Title | Multi-Population Optimization Framework Based on Plant Evolutionary Strategy and Its Application to Engineering Design Problems |
| URI | https://link.springer.com/article/10.1007/s44196-025-00779-7 https://www.proquest.com/docview/3266549749 https://doaj.org/article/1ad4911dd5104713ba1e7bb83deed675 |
| Volume | 18 |
| WOSCitedRecordID | wos001489148300003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1875-6883 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002140044 issn: 1875-6883 databaseCode: DOA dateStart: 20080101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1875-6883 dateEnd: 99991231 omitProxy: false ssIdentifier: ssib050732782 issn: 1875-6883 databaseCode: M~E dateStart: 20120101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Computer Science Database customDbUrl: eissn: 1875-6883 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002140044 issn: 1875-6883 databaseCode: K7- dateStart: 20140101 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1875-6883 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002140044 issn: 1875-6883 databaseCode: BENPR dateStart: 20140101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerOpen customDbUrl: eissn: 1875-6883 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002140044 issn: 1875-6883 databaseCode: C24 dateStart: 20211201 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LaxsxEB6aNIdc0jZtqNPU6NBbKmJJq9XuMU5tWgquKS3kJvRayCF2sLeBnPLXM9JqHacQeullD1oJhOabh9DMNwCfrFHMBGao5UWgheSoUo3jtEQwB1wSbGVSswk1m1WXl_V8q9VXzAnr6IG7gztjxheokN7LSCrAhDUsKGsr4dG6Y7Qbre9I1VuXqWiDOYvYLHKVTKqVQ7-f8m0ljRQ2NVVPPFEi7H8SZf71MJr8zfQ1HORAkZx3G3wDL8LiEF71TRhI1sm3cJ9KaOl804iL_EArcJ3LK8m0T74iY_RXnuBQ7FPUksltBp1Z3ZHMUXtHzMKTb-2anD--a5N2SbZYC8mXlPNB5l0nmvU7-D2d_Lr4SnNXBepExVtaGmtqZh0zo9Iq5oSTtRl5b7kJ0gXvGJpvGepKWl4XpccAqQmNbDDUYjGaEUewu1guwnsgkSyuMkKI4JsCJxqPwi1dMyorboVXAzjtT1jfdOQZekOTnOShUR46yUPj7HEUwmZmJL5OAwgHneGg_wWHAZz0ItRZG9caQ9QS78GqqAfwuRfr4-_nt3T8P7b0AfZ5gp2kTJ7Abrv6Ez7Cnrttr9arIbwcT2bzn0PYueDFMKEYv98VfQDnePbl |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbhMxFL0qKRLdUJ4iUMALWIFFbI_nsUCooYkatYQIFam7wa9BLJqUZCjKij_iG7l27IQiwa4Lth6PNZo59-HxvecAPNOqYMoxRTXPHM0kR5NqDKc5gtnhLU6XKohNFONxeXpaTbbgZ-qF8WWVyScGR21nxv8jf4VpRo57mSKr3px_pV41yp-uJgmNFSyO3PI7btkWr0cH-H2fcz4cnLw9pFFVgBpR8pbmSquKacNUL9cFM8LISvWs1Vw5aZw1DN2XdFUpNa-y3GKC0LhGNphqMB_NBa57DbYzkeWyA9v9wXjyISEYkyvBEz-8jwWceRsJR9u4MaB5WbHYuRP69zAXCTXAknpanYoWl6JjEBG4lPn-cVgbYuBw9397e7fgZsy2yf7KPG7Dlpvegd2kZEGiY7sLP0IfMp2s1czIe3SlZ7FHlQxTBRvpY9C3BIe82FNLBhfRctV8SSLR75KoqSWjdkH2N8UBpJ2R36gfyUEonCGTlZzP4h58vJLXcB8609nUPQDiGfdKJYRwtslworJoIblpennJtbBFF14kSNTnKwaSes01HQBUI4DqAKAaZ_c9atYzPXt4GJjNP9fRGdVM2QyDnLXSE3UwoRVzhdalsJgx4Q6yC3sJRXV0aYt6A6EuvEw43Fz--yM9_PdqT-HG4cm74_p4ND56BDs8WIOkTO5Bp51_c4_hurlovyzmT6KxEfh01Qj9BXfmZzA |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LTxsxEB7xqFB7gBaomgKtD9yKRWyv93FMClFRq5ADlbhZfm3VAxuUbJE49a937HhDQO2h4rbyjrUr-xvPWDPzDcCx0QXTnmlqeOZpJjmqVG05zRHMHqd4U-rYbKIYj8vr62qyUsUfs927kOSipiGwNDXt6a2rT5eFb2jEY_KspIGPpqLFOmxm4SmEa1O9QziLOQsYzVK1zN-nPrJIkbj_kbf5JEAa7c5o5_l__Bq2k89JBguQvIE13-zCTtfPgST13oVXK-SEe_A71ubSybLDF7nE4-Um1W2SUZfVRYZoCB3BodAAqSXndwnNenZPEvntPdGNIxftnAweAuaknZKVL5KzmExCJosWN_N9-D46v_r8haZ2DdSKkrc010ZXzFim-7kpmBVWVrrvnOHaS-udZWgXpK9KaXiV5Q49r9rXskYfjgU3SbyFjWba-HdAAgtdqYUQ3tUZCmqHqMlt3c9LboQrevCp2zJ1u2DlUEv-5bjSCldaxZVWKD0Mu7qUDIzacWA6-6GSgiqmXYYHv3MykFcwYTTzhTGlcOhF4K2qB4cdJlRS87lC3zfHC3aRVT046TDw8Prfv_T-_8Q_wtbkbKS-XYy_HsBLHlEkKZOHsNHOfvkjeGHv2p_z2YeI_j9vgwdW |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-Population+Optimization+Framework+Based+on+Plant+Evolutionary+Strategy+and+Its+Application+to+Engineering+Design+Problems&rft.jtitle=International+journal+of+computational+intelligence+systems&rft.au=Hongwei+Cheng&rft.au=Jun+Li&rft.au=Xiaoming+Zhang&rft.au=Tingjuan+Li&rft.date=2025-05-15&rft.pub=Springer&rft.eissn=1875-6883&rft.volume=18&rft.issue=1&rft.spage=1&rft.epage=22&rft_id=info:doi/10.1007%2Fs44196-025-00779-7&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_1ad4911dd5104713ba1e7bb83deed675 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1875-6883&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1875-6883&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1875-6883&client=summon |