Finding influential communities in massive networks

Community search is a problem of finding densely connected subgraphs that satisfy the query conditions in a network, which has attracted much attention in recent years. However, all the previous studies on community search do not consider the influence of a community. In this paper, we introduce a n...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:The VLDB journal Ročník 26; číslo 6; s. 751 - 776
Hlavní autori: Li, Rong-Hua, Qin, Lu, Yu, Jeffrey Xu, Mao, Rui
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Berlin/Heidelberg Springer Berlin Heidelberg 01.12.2017
Springer Nature B.V
Predmet:
ISSN:1066-8888, 0949-877X
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Community search is a problem of finding densely connected subgraphs that satisfy the query conditions in a network, which has attracted much attention in recent years. However, all the previous studies on community search do not consider the influence of a community. In this paper, we introduce a novel community model called k -influential community based on the concept of k -core to capture the influence of a community. Based on this community model, we propose a linear time online search algorithm to find the top- r k -influential communities in a network. To further speed up the influential community search algorithm, we devise a linear space data structure which supports efficient search of the top- r k -influential communities in optimal time. We also propose an efficient algorithm to maintain the data structure when the network is frequently updated. Additionally, we propose a novel I/O-efficient algorithm to find the top- r k -influential communities in a disk-resident graph under the assumption of U = O ( n ) , where U and n denote the size of the main memory and the number of nodes, respectively. Finally, we conduct extensive experiments on six real-world massive networks, and the results demonstrate the efficiency and effectiveness of the proposed methods.
AbstractList Community search is a problem of finding densely connected subgraphs that satisfy the query conditions in a network, which has attracted much attention in recent years. However, all the previous studies on community search do not consider the influence of a community. In this paper, we introduce a novel community model called k-influential community based on the concept of k-core to capture the influence of a community. Based on this community model, we propose a linear time online search algorithm to find the top-rk-influential communities in a network. To further speed up the influential community search algorithm, we devise a linear space data structure which supports efficient search of the top-rk-influential communities in optimal time. We also propose an efficient algorithm to maintain the data structure when the network is frequently updated. Additionally, we propose a novel I/O-efficient algorithm to find the top-rk-influential communities in a disk-resident graph under the assumption of U = O ( n ) , where U and n denote the size of the main memory and the number of nodes, respectively. Finally, we conduct extensive experiments on six real-world massive networks, and the results demonstrate the efficiency and effectiveness of the proposed methods.
Community search is a problem of finding densely connected subgraphs that satisfy the query conditions in a network, which has attracted much attention in recent years. However, all the previous studies on community search do not consider the influence of a community. In this paper, we introduce a novel community model called k -influential community based on the concept of k -core to capture the influence of a community. Based on this community model, we propose a linear time online search algorithm to find the top- r k -influential communities in a network. To further speed up the influential community search algorithm, we devise a linear space data structure which supports efficient search of the top- r k -influential communities in optimal time. We also propose an efficient algorithm to maintain the data structure when the network is frequently updated. Additionally, we propose a novel I/O-efficient algorithm to find the top- r k -influential communities in a disk-resident graph under the assumption of U = O ( n ) , where U and n denote the size of the main memory and the number of nodes, respectively. Finally, we conduct extensive experiments on six real-world massive networks, and the results demonstrate the efficiency and effectiveness of the proposed methods.
Author Qin, Lu
Yu, Jeffrey Xu
Mao, Rui
Li, Rong-Hua
Author_xml – sequence: 1
  givenname: Rong-Hua
  surname: Li
  fullname: Li, Rong-Hua
  organization: College of Computer Science and Software Engineering, Shenzhen University
– sequence: 2
  givenname: Lu
  surname: Qin
  fullname: Qin, Lu
  organization: Centre for QCIS, FEIT, University of Technology
– sequence: 3
  givenname: Jeffrey Xu
  surname: Yu
  fullname: Yu, Jeffrey Xu
  email: yu@se.cuhk.edu.cn
  organization: The Chinese University of Hong Kong
– sequence: 4
  givenname: Rui
  surname: Mao
  fullname: Mao, Rui
  email: mao@szu.edu.cn
  organization: College of Computer Science and Software Engineering, Shenzhen University
BookMark eNp9kE1LAzEQhoNUsK3-AG8LnqP52GySoxRrhYIXBW9hu52U1N1sTbKK_96U9SCCDsMMDPPMvLwzNPG9B4QuKbmmhMibmItUmFCJSVlJXJ6gKdGlxkrKlwmaUlJVWOU4Q7MY94QQxpiYIr50fuv8rnDetgP45Oq2aPquG7xLDmKeF10do3uHwkP66MNrPEentm4jXHz3OXpe3j0tVnj9eP-wuF3jhiuWsOBbZjnjfANik0VuSkH0FjStK1sKsAJEYzVVuqpKqpRVErRVVtuKCUEJ8Dm6Gu8eQv82QExm3w_B55eGaqGkojznHMlxqwl9jAGsaVyqk-t9CrVrDSXm6JAZHTLZIXN0yJSZpL_IQ3BdHT7_ZdjIxLzrdxB-aPoT-gJ-fXma
CitedBy_id crossref_primary_10_1109_ACCESS_2021_3063317
crossref_primary_10_1007_s00778_020_00615_8
crossref_primary_10_1007_s00778_020_00618_5
crossref_primary_10_1109_ACCESS_2020_3038791
crossref_primary_10_1109_TKDE_2020_3021484
crossref_primary_10_1016_j_cosrev_2020_100247
crossref_primary_10_1016_j_ins_2020_10_011
crossref_primary_10_1109_MNET_2017_1700213
crossref_primary_10_1016_j_neucom_2025_130173
crossref_primary_10_1016_j_jksuci_2020_08_004
crossref_primary_10_1007_s00778_022_00750_4
crossref_primary_10_3390_info13100462
crossref_primary_10_1007_s41019_021_00163_3
crossref_primary_10_1109_ACCESS_2020_2985327
crossref_primary_10_1007_s00778_019_00556_x
crossref_primary_10_1016_j_jocs_2025_102530
crossref_primary_10_1038_s41598_019_53942_4
crossref_primary_10_1007_s11390_022_2367_3
crossref_primary_10_1016_j_neunet_2024_106328
crossref_primary_10_1016_j_eswa_2025_128234
crossref_primary_10_1016_j_ins_2022_06_023
crossref_primary_10_1007_s11227_024_06679_5
crossref_primary_10_1016_j_eswa_2025_128457
crossref_primary_10_1109_ACCESS_2021_3109862
crossref_primary_10_1109_ACCESS_2022_3168361
crossref_primary_10_3390_e22020242
Cites_doi 10.1137/0214017
10.1145/2463676.2463704
10.1109/ICDE.2011.5767911
10.2307/3088904
10.1016/0378-8733(83)90028-X
10.1109/ICDMW.2006.76
10.1145/2339530.2339724
10.1145/2043652.2043654
10.1109/ICDE.2012.35
10.1145/2588555.2612179
10.1109/TKDE.2013.158
10.1145/2463676.2465323
10.1145/2505515.2505751
10.1073/pnas.1116502109
10.1145/2247596.2247652
10.1109/ICDE.2016.7498235
10.1145/2588555.2610495
10.1016/j.tcs.2011.12.006
10.1016/j.physrep.2009.11.002
10.1145/2463676.2463722
10.1145/2723372.2723740
10.1016/j.comnet.2012.09.011
10.1007/s11634-010-0079-y
10.1145/2463676.2463703
10.1145/1835804.1835923
ContentType Journal Article
Copyright Springer-Verlag Berlin Heidelberg 2017
Copyright Springer Science & Business Media 2017
Copyright_xml – notice: Springer-Verlag Berlin Heidelberg 2017
– notice: Copyright Springer Science & Business Media 2017
DBID AAYXX
CITATION
JQ2
DOI 10.1007/s00778-017-0467-4
DatabaseName CrossRef
ProQuest Computer Science Collection
DatabaseTitle CrossRef
ProQuest Computer Science Collection
DatabaseTitleList ProQuest Computer Science Collection

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 0949-877X
EndPage 776
ExternalDocumentID 10_1007_s00778_017_0467_4
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
-~X
.4S
.86
.DC
.VR
06D
0R~
123
1N0
1SB
2.D
203
29R
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
3-Y
30V
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AAKMM
AALFJ
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAWTV
AAYFX
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACM
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADL
ADQRH
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEBYY
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AENSD
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFLOW
AFQWF
AFWIH
AFWTZ
AFWXC
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BBWZM
BDATZ
BGNMA
BSONS
CAG
CCLIF
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EDO
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GUFHI
GXS
H13
HF~
HG5
HG6
HGAVV
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I07
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAS
LHSKQ
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P0-
P19
P2P
P9O
PF0
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VXZ
W23
W48
W7O
WK8
YLTOR
YZZ
Z45
Z7R
Z7X
Z83
Z88
Z8M
Z8R
Z8W
Z92
ZMTXR
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEFXT
AEJOY
AEZWR
AFDZB
AFFHD
AFHIU
AFKRA
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AKRVB
ARAPS
ATHPR
AYFIA
BENPR
BGLVJ
CCPQU
CITATION
HCIFZ
K7-
PHGZM
PHGZT
PQGLB
JQ2
ID FETCH-LOGICAL-c382t-53d2f3233be5b100b4509de91a6f45ef5e5cf9189664188f87e9f8f9f625510e3
IEDL.DBID RSV
ISICitedReferencesCount 40
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000414364000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1066-8888
IngestDate Thu Sep 25 01:03:59 EDT 2025
Sat Nov 29 03:17:17 EST 2025
Tue Nov 18 22:20:54 EST 2025
Fri Feb 21 02:37:44 EST 2025
IsPeerReviewed false
IsScholarly true
Issue 6
Keywords Core decomposition
Tree-shape data structure
Influential community
Dynamic graph
I/O-efficient algorithm
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c382t-53d2f3233be5b100b4509de91a6f45ef5e5cf9189664188f87e9f8f9f625510e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 1958781381
PQPubID 2043708
PageCount 26
ParticipantIDs proquest_journals_1958781381
crossref_citationtrail_10_1007_s00778_017_0467_4
crossref_primary_10_1007_s00778_017_0467_4
springer_journals_10_1007_s00778_017_0467_4
PublicationCentury 2000
PublicationDate 2017-12-01
PublicationDateYYYYMMDD 2017-12-01
PublicationDate_xml – month: 12
  year: 2017
  text: 2017-12-01
  day: 01
PublicationDecade 2010
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: New York
PublicationSubtitle The International Journal on Very Large Data Bases
PublicationTitle The VLDB journal
PublicationTitleAbbrev The VLDB Journal
PublicationYear 2017
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References Cheng, J., Zhu, L., Ke, Y., Chu, S.: Fast algorithms for maximal clique enumeration with limited memory. In: KDD (2012)
WangJChengJTruss decomposition in massive networksPVLDB201259812823
Akiba, T., Iwata, Y., Yoshida, Y.: Linear-time enumeration of maximal k-edge-connected subgraphs in large networks by random contraction. In: CIKM (2013)
Saito, K., Yamada, T.: Extracting communities from complex networks by the k-dense method. In: ICDM Workshops (2006)
Ugander, J., Backstrom, L., Marlow, C., Kleinberg, J.: Structural diversity in social contagion. PNAS (2011)
Zhang, Z., Yu, J.X., Qin, L., Shang, Z.: Divide & conquer: I/O efficient depth-first search. In: SIGMOD (2015)
Batagelj, V., Zaversnik, M.: An O(m) algorithm for cores decomposition of networks. CoRR cs.DS/0310049 (2003)
CormenTHLeisersonCERivestRLSteinCIntroduction to Algorithms20093CambridgeMIT Press1187.68679
Zhang, Z., Yu, J.X., Qin, L., Chang, L., Lin, X.: I/O efficient: computing sccs in massive graphs. In: SIGMOD (2013)
Cui, W., Xiao, Y., Wang, H., Wang, W.: Local search of communities in large graphs. In: SIGMOD (2014)
JensenTRToftBGraph Coloring Problems1995HobokenWiley0855.05054
SariyüceAEGedikBJacques-SilvaGWuKLÇatalyürekÜVStreaming algorithms for k-core decompositionPVLDB201366433444
Zhou, R., Liu, C., Yu, J.X., Liang, W., Chen, B., Li, J.: Finding maximal k-edge-connected subgraphs from a large graph. In: EDBT (2012)
Cheng, J., Ke, Y., Chu, S., Özsu, M.T.: Efficient core decomposition in massive networks. In: ICDE (2011)
ZhaoFTungAKHLarge scale cohesive subgraphs discovery for social network visual analysisPVLDB2012628596
BatageljVZaversnikMFast algorithms for determining (generalized) core groups in social networksAdv. Data Anal. Classif.20115212914510.1007/s11634-010-0079-y28048861284.05252
GregoriELenziniLOrsiniCk-dense communities in the internet as-level topology graphComput. Netw.201357121322710.1016/j.comnet.2012.09.011
Wen, D., Qin, L., Zhang, Y., Lin, X., Yu, J.X.: I/o efficient core graph decomposition at web scale. In: ICDE (2016)
Zhang, Y., Parthasarathy, S.: Extracting, analyzing and visualizing triangle k-core motifs within networks. In: ICDE (2012)
MoodyJWhiteDRStructural cohesion and embeddedness: a hierarchical concept of social groupsAm. Sociol. Rev.20036810312710.2307/3088904
LinMCSoulignacFJSzwarcfiterJLArboricity, h-index, and dynamic algorithmsTheor. Comput. Sci.2012426759010.1016/j.tcs.2011.12.00628915741243.68228
Chang, L., Yu, J.X., Qin, L., Lin, X., Liu, C., Liang, W.: Efficiently computing k-edge connected components via graph decomposition. In: SIGMOD (2013)
Cohen, J.: Trusses: Cohesive subgraphs for social network analysis. Technique report (2005)
Hu, X., Tao, Y., Chung, C.W.: Massive graph triangulation. In: SIGMOD (2013)
SeidmanSBNetwork structure and minimum degreeSoc. Netw.19835326928710.1016/0378-8733(83)90028-X721295
XieJKelleySSzymanskiBKOverlapping community detection in networks: the state-of-the-art and comparative studyACM Comput. Surv.20134544310.1145/2501654.25016571288.68191
LiRQinLYuJXMaoRInfluential community search in large networksPVLDB201585509520
FortunatoSCommunity detection in graphsPhys. Rep.20104863–57517410.1016/j.physrep.2009.11.0022580414
ChibaNNishizekiTArboricity and subgraph listing algorithmsSIAM J. Comput.198514121022310.1137/02140177749400572.68053
Cui, W., Xiao, Y., Wang, H., Lu, Y., Wang, W.: Online search of overlapping communities. In: SIGMOD (2013)
Huang, X., Cheng, H., Qin, L., Tian, W., Yu, J.X.: Querying k-truss community in large and dynamic graphs. SIGMOD (2014)
WangNZhangJTanKLTungAKHOn triangulation-based dense neighborhood graphs discoveryPVLDB2010425868
LiRYuJXMaoREfficient core maintenance in large dynamic graphsIEEE Trans. Knowl. Data Eng.201426102453246510.1109/TKDE.2013.158
ChengJKeYFuAWCYuJXZhuLFinding maximal cliques in massive networksACM Trans. Database Syst.20113642110.1145/2043652.2043654
Sozio, M., Gionis, A.: The community-search problem and how to plan a successful cocktail party. In: KDD (2010)
467_CR5
467_CR7
TR Jensen (467_CR17) 1995
467_CR29
467_CR1
R Li (467_CR18) 2015; 8
467_CR2
J Wang (467_CR27) 2012; 5
467_CR4
J Cheng (467_CR6) 2011; 36
SB Seidman (467_CR24) 1983; 5
467_CR31
N Wang (467_CR28) 2010; 4
467_CR12
MC Lin (467_CR20) 2012; 426
467_CR35
467_CR32
467_CR11
467_CR33
467_CR16
V Batagelj (467_CR3) 2011; 5
467_CR15
AE Sariyüce (467_CR23) 2013; 6
R Li (467_CR19) 2014; 26
F Zhao (467_CR34) 2012; 6
E Gregori (467_CR14) 2013; 57
TH Cormen (467_CR10) 2009
S Fortunato (467_CR13) 2010; 486
J Moody (467_CR21) 2003; 68
467_CR22
J Xie (467_CR30) 2013; 45
467_CR9
N Chiba (467_CR8) 1985; 14
467_CR25
467_CR26
References_xml – reference: Hu, X., Tao, Y., Chung, C.W.: Massive graph triangulation. In: SIGMOD (2013)
– reference: Cui, W., Xiao, Y., Wang, H., Wang, W.: Local search of communities in large graphs. In: SIGMOD (2014)
– reference: Cohen, J.: Trusses: Cohesive subgraphs for social network analysis. Technique report (2005)
– reference: LinMCSoulignacFJSzwarcfiterJLArboricity, h-index, and dynamic algorithmsTheor. Comput. Sci.2012426759010.1016/j.tcs.2011.12.00628915741243.68228
– reference: Zhang, Y., Parthasarathy, S.: Extracting, analyzing and visualizing triangle k-core motifs within networks. In: ICDE (2012)
– reference: Cheng, J., Zhu, L., Ke, Y., Chu, S.: Fast algorithms for maximal clique enumeration with limited memory. In: KDD (2012)
– reference: Cui, W., Xiao, Y., Wang, H., Lu, Y., Wang, W.: Online search of overlapping communities. In: SIGMOD (2013)
– reference: SeidmanSBNetwork structure and minimum degreeSoc. Netw.19835326928710.1016/0378-8733(83)90028-X721295
– reference: ChengJKeYFuAWCYuJXZhuLFinding maximal cliques in massive networksACM Trans. Database Syst.20113642110.1145/2043652.2043654
– reference: Saito, K., Yamada, T.: Extracting communities from complex networks by the k-dense method. In: ICDM Workshops (2006)
– reference: LiRYuJXMaoREfficient core maintenance in large dynamic graphsIEEE Trans. Knowl. Data Eng.201426102453246510.1109/TKDE.2013.158
– reference: WangNZhangJTanKLTungAKHOn triangulation-based dense neighborhood graphs discoveryPVLDB2010425868
– reference: ZhaoFTungAKHLarge scale cohesive subgraphs discovery for social network visual analysisPVLDB2012628596
– reference: BatageljVZaversnikMFast algorithms for determining (generalized) core groups in social networksAdv. Data Anal. Classif.20115212914510.1007/s11634-010-0079-y28048861284.05252
– reference: Chang, L., Yu, J.X., Qin, L., Lin, X., Liu, C., Liang, W.: Efficiently computing k-edge connected components via graph decomposition. In: SIGMOD (2013)
– reference: JensenTRToftBGraph Coloring Problems1995HobokenWiley0855.05054
– reference: FortunatoSCommunity detection in graphsPhys. Rep.20104863–57517410.1016/j.physrep.2009.11.0022580414
– reference: Zhou, R., Liu, C., Yu, J.X., Liang, W., Chen, B., Li, J.: Finding maximal k-edge-connected subgraphs from a large graph. In: EDBT (2012)
– reference: SariyüceAEGedikBJacques-SilvaGWuKLÇatalyürekÜVStreaming algorithms for k-core decompositionPVLDB201366433444
– reference: MoodyJWhiteDRStructural cohesion and embeddedness: a hierarchical concept of social groupsAm. Sociol. Rev.20036810312710.2307/3088904
– reference: CormenTHLeisersonCERivestRLSteinCIntroduction to Algorithms20093CambridgeMIT Press1187.68679
– reference: Zhang, Z., Yu, J.X., Qin, L., Shang, Z.: Divide & conquer: I/O efficient depth-first search. In: SIGMOD (2015)
– reference: Batagelj, V., Zaversnik, M.: An O(m) algorithm for cores decomposition of networks. CoRR cs.DS/0310049 (2003)
– reference: WangJChengJTruss decomposition in massive networksPVLDB201259812823
– reference: Cheng, J., Ke, Y., Chu, S., Özsu, M.T.: Efficient core decomposition in massive networks. In: ICDE (2011)
– reference: Huang, X., Cheng, H., Qin, L., Tian, W., Yu, J.X.: Querying k-truss community in large and dynamic graphs. SIGMOD (2014)
– reference: Sozio, M., Gionis, A.: The community-search problem and how to plan a successful cocktail party. In: KDD (2010)
– reference: ChibaNNishizekiTArboricity and subgraph listing algorithmsSIAM J. Comput.198514121022310.1137/02140177749400572.68053
– reference: XieJKelleySSzymanskiBKOverlapping community detection in networks: the state-of-the-art and comparative studyACM Comput. Surv.20134544310.1145/2501654.25016571288.68191
– reference: Wen, D., Qin, L., Zhang, Y., Lin, X., Yu, J.X.: I/o efficient core graph decomposition at web scale. In: ICDE (2016)
– reference: Zhang, Z., Yu, J.X., Qin, L., Chang, L., Lin, X.: I/O efficient: computing sccs in massive graphs. In: SIGMOD (2013)
– reference: Ugander, J., Backstrom, L., Marlow, C., Kleinberg, J.: Structural diversity in social contagion. PNAS (2011)
– reference: Akiba, T., Iwata, Y., Yoshida, Y.: Linear-time enumeration of maximal k-edge-connected subgraphs in large networks by random contraction. In: CIKM (2013)
– reference: GregoriELenziniLOrsiniCk-dense communities in the internet as-level topology graphComput. Netw.201357121322710.1016/j.comnet.2012.09.011
– reference: LiRQinLYuJXMaoRInfluential community search in large networksPVLDB201585509520
– volume: 14
  start-page: 210
  issue: 1
  year: 1985
  ident: 467_CR8
  publication-title: SIAM J. Comput.
  doi: 10.1137/0214017
– ident: 467_CR2
– volume: 4
  start-page: 58
  issue: 2
  year: 2010
  ident: 467_CR28
  publication-title: PVLDB
– ident: 467_CR15
  doi: 10.1145/2463676.2463704
– volume-title: Graph Coloring Problems
  year: 1995
  ident: 467_CR17
– volume: 5
  start-page: 812
  issue: 9
  year: 2012
  ident: 467_CR27
  publication-title: PVLDB
– ident: 467_CR5
  doi: 10.1109/ICDE.2011.5767911
– volume: 68
  start-page: 103
  year: 2003
  ident: 467_CR21
  publication-title: Am. Sociol. Rev.
  doi: 10.2307/3088904
– volume: 5
  start-page: 269
  issue: 3
  year: 1983
  ident: 467_CR24
  publication-title: Soc. Netw.
  doi: 10.1016/0378-8733(83)90028-X
– ident: 467_CR22
  doi: 10.1109/ICDMW.2006.76
– ident: 467_CR7
  doi: 10.1145/2339530.2339724
– volume: 36
  start-page: 21
  issue: 4
  year: 2011
  ident: 467_CR6
  publication-title: ACM Trans. Database Syst.
  doi: 10.1145/2043652.2043654
– ident: 467_CR9
– ident: 467_CR31
  doi: 10.1109/ICDE.2012.35
– ident: 467_CR12
  doi: 10.1145/2588555.2612179
– volume: 6
  start-page: 85
  issue: 2
  year: 2012
  ident: 467_CR34
  publication-title: PVLDB
– volume: 26
  start-page: 2453
  issue: 10
  year: 2014
  ident: 467_CR19
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2013.158
– ident: 467_CR4
  doi: 10.1145/2463676.2465323
– ident: 467_CR1
  doi: 10.1145/2505515.2505751
– ident: 467_CR26
  doi: 10.1073/pnas.1116502109
– ident: 467_CR35
  doi: 10.1145/2247596.2247652
– ident: 467_CR29
  doi: 10.1109/ICDE.2016.7498235
– ident: 467_CR16
  doi: 10.1145/2588555.2610495
– volume: 45
  start-page: 43
  issue: 4
  year: 2013
  ident: 467_CR30
  publication-title: ACM Comput. Surv.
– volume: 426
  start-page: 75
  year: 2012
  ident: 467_CR20
  publication-title: Theor. Comput. Sci.
  doi: 10.1016/j.tcs.2011.12.006
– volume: 486
  start-page: 75
  issue: 3–5
  year: 2010
  ident: 467_CR13
  publication-title: Phys. Rep.
  doi: 10.1016/j.physrep.2009.11.002
– ident: 467_CR11
  doi: 10.1145/2463676.2463722
– ident: 467_CR33
  doi: 10.1145/2723372.2723740
– volume: 57
  start-page: 213
  issue: 1
  year: 2013
  ident: 467_CR14
  publication-title: Comput. Netw.
  doi: 10.1016/j.comnet.2012.09.011
– volume: 5
  start-page: 129
  issue: 2
  year: 2011
  ident: 467_CR3
  publication-title: Adv. Data Anal. Classif.
  doi: 10.1007/s11634-010-0079-y
– volume: 6
  start-page: 433
  issue: 6
  year: 2013
  ident: 467_CR23
  publication-title: PVLDB
– ident: 467_CR32
  doi: 10.1145/2463676.2463703
– volume-title: Introduction to Algorithms
  year: 2009
  ident: 467_CR10
– volume: 8
  start-page: 509
  issue: 5
  year: 2015
  ident: 467_CR18
  publication-title: PVLDB
– ident: 467_CR25
  doi: 10.1145/1835804.1835923
SSID ssj0002225
Score 2.4162264
Snippet Community search is a problem of finding densely connected subgraphs that satisfy the query conditions in a network, which has attracted much attention in...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 751
SubjectTerms Algorithms
Communities
Computer Science
Data structures
Database Management
Regular Paper
Search algorithms
Supports
Title Finding influential communities in massive networks
URI https://link.springer.com/article/10.1007/s00778-017-0467-4
https://www.proquest.com/docview/1958781381
Volume 26
WOSCitedRecordID wos000414364000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLink Contemporary Journals
  customDbUrl:
  eissn: 0949-877X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002225
  issn: 1066-8888
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JS8QwFH7o6MGL44qjo-TgSQm0SdokRxEHDzKIG3MLbZrAwFhlOvr7TdLFBRX02iYhvJe38b0F4FhKUsiIWGw5s5jJmOGMaobzWEdZriOR6VAofMXHYzGZyOumjrtqs91bSDJo6q7YzXee8YlX3KcjcsyWYcVZO-HnNdzcPnTq1wcwAeJMU-zCO9FCmd8d8dkYvXuYX0DRYGtG_X_dcgPWG9cSndVvYROWTLkF_XZsA2qkeBvoaBpKWdC0HlDiZHyGdF0o4turuu_o0fnUTg-iss4Sr3bgfnRxd36Jm9kJWFNBFjihBbGUUJqbJHc3y5mjVWFknKWWJcYmJtFWxsJFOywWwgpupBVWWhcPOTE1dBd65VNp9gBxaj16KHmcacZ1mnHCaOoRVFIU0pgBRC0RlW4ai_v5FjPVtUQORFGOKMoTRbEBnHRbnuuuGr8tHracUY2AVcr3yOEidv7GAE5bTnz4_dNh-39afQBrxLMypK8MobeYv5hDWNWvi2k1Pwrv7g1nrtAm
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwED90Cvri_MTp1D74pATaJG2SRxHHxDlEp-yttGkCg1llnf79JumHH6igr20Swl3ui7v7HcCxEDgTPtZIM6oRFQFFCZEUpYH0k1T6PJGuUXjAhkM-Houbqo-7qKvd65Sk09RNs5tFnrGFV8yWIzJEF2GJGoNlAfNv7x4a9WsDGJfijCJkwjtepzK_O-KzMXr3ML8kRZ2t6bX_dct1WKtcS--sfAsbsKDyTWjXYxu8Soq3gPQmrpXFm5QDSoyMTz1ZNopYeFXz3Xs0PrXRg15eVokX23Dfuxid91E1OwFJwvEchSTDmmBCUhWm5mYpNZ5BpkSQRJqGSocqlFoE3EQ7NOBcc6aE5lpoEw8ZMVVkB1r5U652wWNE2-yhYEEiKZNRwjAlkc2g4iwTSnXAr4kYywpY3M63mMYNJLIjSmyIEluixLQDJ82W5xJV47fF3ZozcSVgRWwxchgPjL_RgdOaEx9-_3TY3p9WH8FKf3Q9iAeXw6t9WMWWra6UpQut-exFHcCyfJ1Pitmhe4NvMwnTCg
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB50FfHi-sTVVXvwpATbJG2So6hFcVkWfLC30qYJLKx12VZ_v0lfPlBBvLZJCDOZZIb55huAYyFwKlyskWZUIyo8imIiKUo86caJdHksy0LhARsO-XgsRnWf07xBuzcpyaqmwbI0ZcXZLNVnbeGbZaGxICxmoYkM0UVYohZHb8P1u8f2KrbBTJnuDAJkQj3epDW_W-Lzw_TubX5JkJbvTtj9947XYa12OZ3z6oxswILKNqHbtHNwauveAhJOyhIXZ1I1LjG2P3VkVUBiaVfNd-fJ-NrmfnSyCj2eb8NDeHV_cY3qngpIEo4L5JMUa4IJSZSfmJ0l1HgMqRJeHGjqK-0rX2rhcRMFUY9zzZkSmmuhTZxkzFeRHehkz5naBYcRbbOKgnmxpEwGMcOUBDazitNUKNUDtxFoJGvCcdv3Yhq1VMmlUCIjlMgKJaI9OGmnzCq2jd8G9xstRbXh5ZHlzmHcM35ID04brXz4_dNie38afQQro8swGtwMb_dhFVutlgiXPnSK-Ys6gGX5Wkzy-WF5HN8Aaunb7g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Finding+influential+communities+in+massive+networks&rft.jtitle=The+VLDB+journal&rft.au=Rong-Hua%2C+Li&rft.au=Lu%2C+Qin&rft.au=Jeffrey+Xu+Yu&rft.au=Mao%2C+Rui&rft.date=2017-12-01&rft.pub=Springer+Nature+B.V&rft.issn=1066-8888&rft.eissn=0949-877X&rft.volume=26&rft.issue=6&rft.spage=751&rft.epage=776&rft_id=info:doi/10.1007%2Fs00778-017-0467-4&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1066-8888&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1066-8888&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1066-8888&client=summon