Finding influential communities in massive networks
Community search is a problem of finding densely connected subgraphs that satisfy the query conditions in a network, which has attracted much attention in recent years. However, all the previous studies on community search do not consider the influence of a community. In this paper, we introduce a n...
Uložené v:
| Vydané v: | The VLDB journal Ročník 26; číslo 6; s. 751 - 776 |
|---|---|
| Hlavní autori: | , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.12.2017
Springer Nature B.V |
| Predmet: | |
| ISSN: | 1066-8888, 0949-877X |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Community search is a problem of finding densely connected subgraphs that satisfy the query conditions in a network, which has attracted much attention in recent years. However, all the previous studies on community search do not consider the influence of a community. In this paper, we introduce a novel community model called
k
-influential community based on the concept of
k
-core to capture the influence of a community. Based on this community model, we propose a linear time online search algorithm to find the top-
r
k
-influential communities in a network. To further speed up the influential community search algorithm, we devise a linear space data structure which supports efficient search of the top-
r
k
-influential communities in optimal time. We also propose an efficient algorithm to maintain the data structure when the network is frequently updated. Additionally, we propose a novel I/O-efficient algorithm to find the top-
r
k
-influential communities in a disk-resident graph under the assumption of
U
=
O
(
n
)
, where
U
and
n
denote the size of the main memory and the number of nodes, respectively. Finally, we conduct extensive experiments on six real-world massive networks, and the results demonstrate the efficiency and effectiveness of the proposed methods. |
|---|---|
| AbstractList | Community search is a problem of finding densely connected subgraphs that satisfy the query conditions in a network, which has attracted much attention in recent years. However, all the previous studies on community search do not consider the influence of a community. In this paper, we introduce a novel community model called k-influential community based on the concept of k-core to capture the influence of a community. Based on this community model, we propose a linear time online search algorithm to find the top-rk-influential communities in a network. To further speed up the influential community search algorithm, we devise a linear space data structure which supports efficient search of the top-rk-influential communities in optimal time. We also propose an efficient algorithm to maintain the data structure when the network is frequently updated. Additionally, we propose a novel I/O-efficient algorithm to find the top-rk-influential communities in a disk-resident graph under the assumption of U = O ( n ) , where U and n denote the size of the main memory and the number of nodes, respectively. Finally, we conduct extensive experiments on six real-world massive networks, and the results demonstrate the efficiency and effectiveness of the proposed methods. Community search is a problem of finding densely connected subgraphs that satisfy the query conditions in a network, which has attracted much attention in recent years. However, all the previous studies on community search do not consider the influence of a community. In this paper, we introduce a novel community model called k -influential community based on the concept of k -core to capture the influence of a community. Based on this community model, we propose a linear time online search algorithm to find the top- r k -influential communities in a network. To further speed up the influential community search algorithm, we devise a linear space data structure which supports efficient search of the top- r k -influential communities in optimal time. We also propose an efficient algorithm to maintain the data structure when the network is frequently updated. Additionally, we propose a novel I/O-efficient algorithm to find the top- r k -influential communities in a disk-resident graph under the assumption of U = O ( n ) , where U and n denote the size of the main memory and the number of nodes, respectively. Finally, we conduct extensive experiments on six real-world massive networks, and the results demonstrate the efficiency and effectiveness of the proposed methods. |
| Author | Qin, Lu Yu, Jeffrey Xu Mao, Rui Li, Rong-Hua |
| Author_xml | – sequence: 1 givenname: Rong-Hua surname: Li fullname: Li, Rong-Hua organization: College of Computer Science and Software Engineering, Shenzhen University – sequence: 2 givenname: Lu surname: Qin fullname: Qin, Lu organization: Centre for QCIS, FEIT, University of Technology – sequence: 3 givenname: Jeffrey Xu surname: Yu fullname: Yu, Jeffrey Xu email: yu@se.cuhk.edu.cn organization: The Chinese University of Hong Kong – sequence: 4 givenname: Rui surname: Mao fullname: Mao, Rui email: mao@szu.edu.cn organization: College of Computer Science and Software Engineering, Shenzhen University |
| BookMark | eNp9kE1LAzEQhoNUsK3-AG8LnqP52GySoxRrhYIXBW9hu52U1N1sTbKK_96U9SCCDsMMDPPMvLwzNPG9B4QuKbmmhMibmItUmFCJSVlJXJ6gKdGlxkrKlwmaUlJVWOU4Q7MY94QQxpiYIr50fuv8rnDetgP45Oq2aPquG7xLDmKeF10do3uHwkP66MNrPEentm4jXHz3OXpe3j0tVnj9eP-wuF3jhiuWsOBbZjnjfANik0VuSkH0FjStK1sKsAJEYzVVuqpKqpRVErRVVtuKCUEJ8Dm6Gu8eQv82QExm3w_B55eGaqGkojznHMlxqwl9jAGsaVyqk-t9CrVrDSXm6JAZHTLZIXN0yJSZpL_IQ3BdHT7_ZdjIxLzrdxB-aPoT-gJ-fXma |
| CitedBy_id | crossref_primary_10_1109_ACCESS_2021_3063317 crossref_primary_10_1007_s00778_020_00615_8 crossref_primary_10_1007_s00778_020_00618_5 crossref_primary_10_1109_ACCESS_2020_3038791 crossref_primary_10_1109_TKDE_2020_3021484 crossref_primary_10_1016_j_cosrev_2020_100247 crossref_primary_10_1016_j_ins_2020_10_011 crossref_primary_10_1109_MNET_2017_1700213 crossref_primary_10_1016_j_neucom_2025_130173 crossref_primary_10_1016_j_jksuci_2020_08_004 crossref_primary_10_1007_s00778_022_00750_4 crossref_primary_10_3390_info13100462 crossref_primary_10_1007_s41019_021_00163_3 crossref_primary_10_1109_ACCESS_2020_2985327 crossref_primary_10_1007_s00778_019_00556_x crossref_primary_10_1016_j_jocs_2025_102530 crossref_primary_10_1038_s41598_019_53942_4 crossref_primary_10_1007_s11390_022_2367_3 crossref_primary_10_1016_j_neunet_2024_106328 crossref_primary_10_1016_j_eswa_2025_128234 crossref_primary_10_1016_j_ins_2022_06_023 crossref_primary_10_1007_s11227_024_06679_5 crossref_primary_10_1016_j_eswa_2025_128457 crossref_primary_10_1109_ACCESS_2021_3109862 crossref_primary_10_1109_ACCESS_2022_3168361 crossref_primary_10_3390_e22020242 |
| Cites_doi | 10.1137/0214017 10.1145/2463676.2463704 10.1109/ICDE.2011.5767911 10.2307/3088904 10.1016/0378-8733(83)90028-X 10.1109/ICDMW.2006.76 10.1145/2339530.2339724 10.1145/2043652.2043654 10.1109/ICDE.2012.35 10.1145/2588555.2612179 10.1109/TKDE.2013.158 10.1145/2463676.2465323 10.1145/2505515.2505751 10.1073/pnas.1116502109 10.1145/2247596.2247652 10.1109/ICDE.2016.7498235 10.1145/2588555.2610495 10.1016/j.tcs.2011.12.006 10.1016/j.physrep.2009.11.002 10.1145/2463676.2463722 10.1145/2723372.2723740 10.1016/j.comnet.2012.09.011 10.1007/s11634-010-0079-y 10.1145/2463676.2463703 10.1145/1835804.1835923 |
| ContentType | Journal Article |
| Copyright | Springer-Verlag Berlin Heidelberg 2017 Copyright Springer Science & Business Media 2017 |
| Copyright_xml | – notice: Springer-Verlag Berlin Heidelberg 2017 – notice: Copyright Springer Science & Business Media 2017 |
| DBID | AAYXX CITATION JQ2 |
| DOI | 10.1007/s00778-017-0467-4 |
| DatabaseName | CrossRef ProQuest Computer Science Collection |
| DatabaseTitle | CrossRef ProQuest Computer Science Collection |
| DatabaseTitleList | ProQuest Computer Science Collection |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 0949-877X |
| EndPage | 776 |
| ExternalDocumentID | 10_1007_s00778_017_0467_4 |
| GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C -~X .4S .86 .DC .VR 06D 0R~ 123 1N0 1SB 2.D 203 29R 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 3-Y 30V 4.4 406 408 409 40D 40E 5QI 5VS 67Z 6NX 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AAKMM AALFJ AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAWTV AAYFX AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACM ACMDZ ACMLO ACOKC ACOMO ACPIV ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADL ADQRH ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEBYY AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AENSD AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFLOW AFQWF AFWIH AFWTZ AFWXC AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGWIL AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BBWZM BDATZ BGNMA BSONS CAG CCLIF COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EDO EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GUFHI GXS H13 HF~ HG5 HG6 HGAVV HMJXF HQYDN HRMNR HVGLF HZ~ I07 I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW LAS LHSKQ LLZTM M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P0- P19 P2P P9O PF0 PT4 PT5 QOK QOS R4E R89 R9I RHV RIG RNI RNS ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW VXZ W23 W48 W7O WK8 YLTOR YZZ Z45 Z7R Z7X Z83 Z88 Z8M Z8R Z8W Z92 ZMTXR ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG AEFXT AEJOY AEZWR AFDZB AFFHD AFHIU AFKRA AFOHR AGQPQ AHPBZ AHWEU AIXLP AKRVB ARAPS ATHPR AYFIA BENPR BGLVJ CCPQU CITATION HCIFZ K7- PHGZM PHGZT PQGLB JQ2 |
| ID | FETCH-LOGICAL-c382t-53d2f3233be5b100b4509de91a6f45ef5e5cf9189664188f87e9f8f9f625510e3 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 40 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000414364000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1066-8888 |
| IngestDate | Thu Sep 25 01:03:59 EDT 2025 Sat Nov 29 03:17:17 EST 2025 Tue Nov 18 22:20:54 EST 2025 Fri Feb 21 02:37:44 EST 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Issue | 6 |
| Keywords | Core decomposition Tree-shape data structure Influential community Dynamic graph I/O-efficient algorithm |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c382t-53d2f3233be5b100b4509de91a6f45ef5e5cf9189664188f87e9f8f9f625510e3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 1958781381 |
| PQPubID | 2043708 |
| PageCount | 26 |
| ParticipantIDs | proquest_journals_1958781381 crossref_citationtrail_10_1007_s00778_017_0467_4 crossref_primary_10_1007_s00778_017_0467_4 springer_journals_10_1007_s00778_017_0467_4 |
| PublicationCentury | 2000 |
| PublicationDate | 2017-12-01 |
| PublicationDateYYYYMMDD | 2017-12-01 |
| PublicationDate_xml | – month: 12 year: 2017 text: 2017-12-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | Berlin/Heidelberg |
| PublicationPlace_xml | – name: Berlin/Heidelberg – name: New York |
| PublicationSubtitle | The International Journal on Very Large Data Bases |
| PublicationTitle | The VLDB journal |
| PublicationTitleAbbrev | The VLDB Journal |
| PublicationYear | 2017 |
| Publisher | Springer Berlin Heidelberg Springer Nature B.V |
| Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
| References | Cheng, J., Zhu, L., Ke, Y., Chu, S.: Fast algorithms for maximal clique enumeration with limited memory. In: KDD (2012) WangJChengJTruss decomposition in massive networksPVLDB201259812823 Akiba, T., Iwata, Y., Yoshida, Y.: Linear-time enumeration of maximal k-edge-connected subgraphs in large networks by random contraction. In: CIKM (2013) Saito, K., Yamada, T.: Extracting communities from complex networks by the k-dense method. In: ICDM Workshops (2006) Ugander, J., Backstrom, L., Marlow, C., Kleinberg, J.: Structural diversity in social contagion. PNAS (2011) Zhang, Z., Yu, J.X., Qin, L., Shang, Z.: Divide & conquer: I/O efficient depth-first search. In: SIGMOD (2015) Batagelj, V., Zaversnik, M.: An O(m) algorithm for cores decomposition of networks. CoRR cs.DS/0310049 (2003) CormenTHLeisersonCERivestRLSteinCIntroduction to Algorithms20093CambridgeMIT Press1187.68679 Zhang, Z., Yu, J.X., Qin, L., Chang, L., Lin, X.: I/O efficient: computing sccs in massive graphs. In: SIGMOD (2013) Cui, W., Xiao, Y., Wang, H., Wang, W.: Local search of communities in large graphs. In: SIGMOD (2014) JensenTRToftBGraph Coloring Problems1995HobokenWiley0855.05054 SariyüceAEGedikBJacques-SilvaGWuKLÇatalyürekÜVStreaming algorithms for k-core decompositionPVLDB201366433444 Zhou, R., Liu, C., Yu, J.X., Liang, W., Chen, B., Li, J.: Finding maximal k-edge-connected subgraphs from a large graph. In: EDBT (2012) Cheng, J., Ke, Y., Chu, S., Özsu, M.T.: Efficient core decomposition in massive networks. In: ICDE (2011) ZhaoFTungAKHLarge scale cohesive subgraphs discovery for social network visual analysisPVLDB2012628596 BatageljVZaversnikMFast algorithms for determining (generalized) core groups in social networksAdv. Data Anal. Classif.20115212914510.1007/s11634-010-0079-y28048861284.05252 GregoriELenziniLOrsiniCk-dense communities in the internet as-level topology graphComput. Netw.201357121322710.1016/j.comnet.2012.09.011 Wen, D., Qin, L., Zhang, Y., Lin, X., Yu, J.X.: I/o efficient core graph decomposition at web scale. In: ICDE (2016) Zhang, Y., Parthasarathy, S.: Extracting, analyzing and visualizing triangle k-core motifs within networks. In: ICDE (2012) MoodyJWhiteDRStructural cohesion and embeddedness: a hierarchical concept of social groupsAm. Sociol. Rev.20036810312710.2307/3088904 LinMCSoulignacFJSzwarcfiterJLArboricity, h-index, and dynamic algorithmsTheor. Comput. Sci.2012426759010.1016/j.tcs.2011.12.00628915741243.68228 Chang, L., Yu, J.X., Qin, L., Lin, X., Liu, C., Liang, W.: Efficiently computing k-edge connected components via graph decomposition. In: SIGMOD (2013) Cohen, J.: Trusses: Cohesive subgraphs for social network analysis. Technique report (2005) Hu, X., Tao, Y., Chung, C.W.: Massive graph triangulation. In: SIGMOD (2013) SeidmanSBNetwork structure and minimum degreeSoc. Netw.19835326928710.1016/0378-8733(83)90028-X721295 XieJKelleySSzymanskiBKOverlapping community detection in networks: the state-of-the-art and comparative studyACM Comput. Surv.20134544310.1145/2501654.25016571288.68191 LiRQinLYuJXMaoRInfluential community search in large networksPVLDB201585509520 FortunatoSCommunity detection in graphsPhys. Rep.20104863–57517410.1016/j.physrep.2009.11.0022580414 ChibaNNishizekiTArboricity and subgraph listing algorithmsSIAM J. Comput.198514121022310.1137/02140177749400572.68053 Cui, W., Xiao, Y., Wang, H., Lu, Y., Wang, W.: Online search of overlapping communities. In: SIGMOD (2013) Huang, X., Cheng, H., Qin, L., Tian, W., Yu, J.X.: Querying k-truss community in large and dynamic graphs. SIGMOD (2014) WangNZhangJTanKLTungAKHOn triangulation-based dense neighborhood graphs discoveryPVLDB2010425868 LiRYuJXMaoREfficient core maintenance in large dynamic graphsIEEE Trans. Knowl. Data Eng.201426102453246510.1109/TKDE.2013.158 ChengJKeYFuAWCYuJXZhuLFinding maximal cliques in massive networksACM Trans. Database Syst.20113642110.1145/2043652.2043654 Sozio, M., Gionis, A.: The community-search problem and how to plan a successful cocktail party. In: KDD (2010) 467_CR5 467_CR7 TR Jensen (467_CR17) 1995 467_CR29 467_CR1 R Li (467_CR18) 2015; 8 467_CR2 J Wang (467_CR27) 2012; 5 467_CR4 J Cheng (467_CR6) 2011; 36 SB Seidman (467_CR24) 1983; 5 467_CR31 N Wang (467_CR28) 2010; 4 467_CR12 MC Lin (467_CR20) 2012; 426 467_CR35 467_CR32 467_CR11 467_CR33 467_CR16 V Batagelj (467_CR3) 2011; 5 467_CR15 AE Sariyüce (467_CR23) 2013; 6 R Li (467_CR19) 2014; 26 F Zhao (467_CR34) 2012; 6 E Gregori (467_CR14) 2013; 57 TH Cormen (467_CR10) 2009 S Fortunato (467_CR13) 2010; 486 J Moody (467_CR21) 2003; 68 467_CR22 J Xie (467_CR30) 2013; 45 467_CR9 N Chiba (467_CR8) 1985; 14 467_CR25 467_CR26 |
| References_xml | – reference: Hu, X., Tao, Y., Chung, C.W.: Massive graph triangulation. In: SIGMOD (2013) – reference: Cui, W., Xiao, Y., Wang, H., Wang, W.: Local search of communities in large graphs. In: SIGMOD (2014) – reference: Cohen, J.: Trusses: Cohesive subgraphs for social network analysis. Technique report (2005) – reference: LinMCSoulignacFJSzwarcfiterJLArboricity, h-index, and dynamic algorithmsTheor. Comput. Sci.2012426759010.1016/j.tcs.2011.12.00628915741243.68228 – reference: Zhang, Y., Parthasarathy, S.: Extracting, analyzing and visualizing triangle k-core motifs within networks. In: ICDE (2012) – reference: Cheng, J., Zhu, L., Ke, Y., Chu, S.: Fast algorithms for maximal clique enumeration with limited memory. In: KDD (2012) – reference: Cui, W., Xiao, Y., Wang, H., Lu, Y., Wang, W.: Online search of overlapping communities. In: SIGMOD (2013) – reference: SeidmanSBNetwork structure and minimum degreeSoc. Netw.19835326928710.1016/0378-8733(83)90028-X721295 – reference: ChengJKeYFuAWCYuJXZhuLFinding maximal cliques in massive networksACM Trans. Database Syst.20113642110.1145/2043652.2043654 – reference: Saito, K., Yamada, T.: Extracting communities from complex networks by the k-dense method. In: ICDM Workshops (2006) – reference: LiRYuJXMaoREfficient core maintenance in large dynamic graphsIEEE Trans. Knowl. Data Eng.201426102453246510.1109/TKDE.2013.158 – reference: WangNZhangJTanKLTungAKHOn triangulation-based dense neighborhood graphs discoveryPVLDB2010425868 – reference: ZhaoFTungAKHLarge scale cohesive subgraphs discovery for social network visual analysisPVLDB2012628596 – reference: BatageljVZaversnikMFast algorithms for determining (generalized) core groups in social networksAdv. Data Anal. Classif.20115212914510.1007/s11634-010-0079-y28048861284.05252 – reference: Chang, L., Yu, J.X., Qin, L., Lin, X., Liu, C., Liang, W.: Efficiently computing k-edge connected components via graph decomposition. In: SIGMOD (2013) – reference: JensenTRToftBGraph Coloring Problems1995HobokenWiley0855.05054 – reference: FortunatoSCommunity detection in graphsPhys. Rep.20104863–57517410.1016/j.physrep.2009.11.0022580414 – reference: Zhou, R., Liu, C., Yu, J.X., Liang, W., Chen, B., Li, J.: Finding maximal k-edge-connected subgraphs from a large graph. In: EDBT (2012) – reference: SariyüceAEGedikBJacques-SilvaGWuKLÇatalyürekÜVStreaming algorithms for k-core decompositionPVLDB201366433444 – reference: MoodyJWhiteDRStructural cohesion and embeddedness: a hierarchical concept of social groupsAm. Sociol. Rev.20036810312710.2307/3088904 – reference: CormenTHLeisersonCERivestRLSteinCIntroduction to Algorithms20093CambridgeMIT Press1187.68679 – reference: Zhang, Z., Yu, J.X., Qin, L., Shang, Z.: Divide & conquer: I/O efficient depth-first search. In: SIGMOD (2015) – reference: Batagelj, V., Zaversnik, M.: An O(m) algorithm for cores decomposition of networks. CoRR cs.DS/0310049 (2003) – reference: WangJChengJTruss decomposition in massive networksPVLDB201259812823 – reference: Cheng, J., Ke, Y., Chu, S., Özsu, M.T.: Efficient core decomposition in massive networks. In: ICDE (2011) – reference: Huang, X., Cheng, H., Qin, L., Tian, W., Yu, J.X.: Querying k-truss community in large and dynamic graphs. SIGMOD (2014) – reference: Sozio, M., Gionis, A.: The community-search problem and how to plan a successful cocktail party. In: KDD (2010) – reference: ChibaNNishizekiTArboricity and subgraph listing algorithmsSIAM J. Comput.198514121022310.1137/02140177749400572.68053 – reference: XieJKelleySSzymanskiBKOverlapping community detection in networks: the state-of-the-art and comparative studyACM Comput. Surv.20134544310.1145/2501654.25016571288.68191 – reference: Wen, D., Qin, L., Zhang, Y., Lin, X., Yu, J.X.: I/o efficient core graph decomposition at web scale. In: ICDE (2016) – reference: Zhang, Z., Yu, J.X., Qin, L., Chang, L., Lin, X.: I/O efficient: computing sccs in massive graphs. In: SIGMOD (2013) – reference: Ugander, J., Backstrom, L., Marlow, C., Kleinberg, J.: Structural diversity in social contagion. PNAS (2011) – reference: Akiba, T., Iwata, Y., Yoshida, Y.: Linear-time enumeration of maximal k-edge-connected subgraphs in large networks by random contraction. In: CIKM (2013) – reference: GregoriELenziniLOrsiniCk-dense communities in the internet as-level topology graphComput. Netw.201357121322710.1016/j.comnet.2012.09.011 – reference: LiRQinLYuJXMaoRInfluential community search in large networksPVLDB201585509520 – volume: 14 start-page: 210 issue: 1 year: 1985 ident: 467_CR8 publication-title: SIAM J. Comput. doi: 10.1137/0214017 – ident: 467_CR2 – volume: 4 start-page: 58 issue: 2 year: 2010 ident: 467_CR28 publication-title: PVLDB – ident: 467_CR15 doi: 10.1145/2463676.2463704 – volume-title: Graph Coloring Problems year: 1995 ident: 467_CR17 – volume: 5 start-page: 812 issue: 9 year: 2012 ident: 467_CR27 publication-title: PVLDB – ident: 467_CR5 doi: 10.1109/ICDE.2011.5767911 – volume: 68 start-page: 103 year: 2003 ident: 467_CR21 publication-title: Am. Sociol. Rev. doi: 10.2307/3088904 – volume: 5 start-page: 269 issue: 3 year: 1983 ident: 467_CR24 publication-title: Soc. Netw. doi: 10.1016/0378-8733(83)90028-X – ident: 467_CR22 doi: 10.1109/ICDMW.2006.76 – ident: 467_CR7 doi: 10.1145/2339530.2339724 – volume: 36 start-page: 21 issue: 4 year: 2011 ident: 467_CR6 publication-title: ACM Trans. Database Syst. doi: 10.1145/2043652.2043654 – ident: 467_CR9 – ident: 467_CR31 doi: 10.1109/ICDE.2012.35 – ident: 467_CR12 doi: 10.1145/2588555.2612179 – volume: 6 start-page: 85 issue: 2 year: 2012 ident: 467_CR34 publication-title: PVLDB – volume: 26 start-page: 2453 issue: 10 year: 2014 ident: 467_CR19 publication-title: IEEE Trans. Knowl. Data Eng. doi: 10.1109/TKDE.2013.158 – ident: 467_CR4 doi: 10.1145/2463676.2465323 – ident: 467_CR1 doi: 10.1145/2505515.2505751 – ident: 467_CR26 doi: 10.1073/pnas.1116502109 – ident: 467_CR35 doi: 10.1145/2247596.2247652 – ident: 467_CR29 doi: 10.1109/ICDE.2016.7498235 – ident: 467_CR16 doi: 10.1145/2588555.2610495 – volume: 45 start-page: 43 issue: 4 year: 2013 ident: 467_CR30 publication-title: ACM Comput. Surv. – volume: 426 start-page: 75 year: 2012 ident: 467_CR20 publication-title: Theor. Comput. Sci. doi: 10.1016/j.tcs.2011.12.006 – volume: 486 start-page: 75 issue: 3–5 year: 2010 ident: 467_CR13 publication-title: Phys. Rep. doi: 10.1016/j.physrep.2009.11.002 – ident: 467_CR11 doi: 10.1145/2463676.2463722 – ident: 467_CR33 doi: 10.1145/2723372.2723740 – volume: 57 start-page: 213 issue: 1 year: 2013 ident: 467_CR14 publication-title: Comput. Netw. doi: 10.1016/j.comnet.2012.09.011 – volume: 5 start-page: 129 issue: 2 year: 2011 ident: 467_CR3 publication-title: Adv. Data Anal. Classif. doi: 10.1007/s11634-010-0079-y – volume: 6 start-page: 433 issue: 6 year: 2013 ident: 467_CR23 publication-title: PVLDB – ident: 467_CR32 doi: 10.1145/2463676.2463703 – volume-title: Introduction to Algorithms year: 2009 ident: 467_CR10 – volume: 8 start-page: 509 issue: 5 year: 2015 ident: 467_CR18 publication-title: PVLDB – ident: 467_CR25 doi: 10.1145/1835804.1835923 |
| SSID | ssj0002225 |
| Score | 2.4162264 |
| Snippet | Community search is a problem of finding densely connected subgraphs that satisfy the query conditions in a network, which has attracted much attention in... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 751 |
| SubjectTerms | Algorithms Communities Computer Science Data structures Database Management Regular Paper Search algorithms Supports |
| Title | Finding influential communities in massive networks |
| URI | https://link.springer.com/article/10.1007/s00778-017-0467-4 https://www.proquest.com/docview/1958781381 |
| Volume | 26 |
| WOSCitedRecordID | wos000414364000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLink Contemporary Journals customDbUrl: eissn: 0949-877X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002225 issn: 1066-8888 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JS8QwFH7o6MGL44qjo-TgSQm0SdokRxEHDzKIG3MLbZrAwFhlOvr7TdLFBRX02iYhvJe38b0F4FhKUsiIWGw5s5jJmOGMaobzWEdZriOR6VAofMXHYzGZyOumjrtqs91bSDJo6q7YzXee8YlX3KcjcsyWYcVZO-HnNdzcPnTq1wcwAeJMU-zCO9FCmd8d8dkYvXuYX0DRYGtG_X_dcgPWG9cSndVvYROWTLkF_XZsA2qkeBvoaBpKWdC0HlDiZHyGdF0o4turuu_o0fnUTg-iss4Sr3bgfnRxd36Jm9kJWFNBFjihBbGUUJqbJHc3y5mjVWFknKWWJcYmJtFWxsJFOywWwgpupBVWWhcPOTE1dBd65VNp9gBxaj16KHmcacZ1mnHCaOoRVFIU0pgBRC0RlW4ai_v5FjPVtUQORFGOKMoTRbEBnHRbnuuuGr8tHracUY2AVcr3yOEidv7GAE5bTnz4_dNh-39afQBrxLMypK8MobeYv5hDWNWvi2k1Pwrv7g1nrtAm |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwED90Cvri_MTp1D74pATaJG2SRxHHxDlEp-yttGkCg1llnf79JumHH6igr20Swl3ui7v7HcCxEDgTPtZIM6oRFQFFCZEUpYH0k1T6PJGuUXjAhkM-Houbqo-7qKvd65Sk09RNs5tFnrGFV8yWIzJEF2GJGoNlAfNv7x4a9WsDGJfijCJkwjtepzK_O-KzMXr3ML8kRZ2t6bX_dct1WKtcS--sfAsbsKDyTWjXYxu8Soq3gPQmrpXFm5QDSoyMTz1ZNopYeFXz3Xs0PrXRg15eVokX23Dfuxid91E1OwFJwvEchSTDmmBCUhWm5mYpNZ5BpkSQRJqGSocqlFoE3EQ7NOBcc6aE5lpoEw8ZMVVkB1r5U652wWNE2-yhYEEiKZNRwjAlkc2g4iwTSnXAr4kYywpY3M63mMYNJLIjSmyIEluixLQDJ82W5xJV47fF3ZozcSVgRWwxchgPjL_RgdOaEx9-_3TY3p9WH8FKf3Q9iAeXw6t9WMWWra6UpQut-exFHcCyfJ1Pitmhe4NvMwnTCg |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB50FfHi-sTVVXvwpATbJG2So6hFcVkWfLC30qYJLKx12VZ_v0lfPlBBvLZJCDOZZIb55huAYyFwKlyskWZUIyo8imIiKUo86caJdHksy0LhARsO-XgsRnWf07xBuzcpyaqmwbI0ZcXZLNVnbeGbZaGxICxmoYkM0UVYohZHb8P1u8f2KrbBTJnuDAJkQj3epDW_W-Lzw_TubX5JkJbvTtj9947XYa12OZ3z6oxswILKNqHbtHNwauveAhJOyhIXZ1I1LjG2P3VkVUBiaVfNd-fJ-NrmfnSyCj2eb8NDeHV_cY3qngpIEo4L5JMUa4IJSZSfmJ0l1HgMqRJeHGjqK-0rX2rhcRMFUY9zzZkSmmuhTZxkzFeRHehkz5naBYcRbbOKgnmxpEwGMcOUBDazitNUKNUDtxFoJGvCcdv3Yhq1VMmlUCIjlMgKJaI9OGmnzCq2jd8G9xstRbXh5ZHlzmHcM35ID04brXz4_dNie38afQQro8swGtwMb_dhFVutlgiXPnSK-Ys6gGX5Wkzy-WF5HN8Aaunb7g |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Finding+influential+communities+in+massive+networks&rft.jtitle=The+VLDB+journal&rft.au=Rong-Hua%2C+Li&rft.au=Lu%2C+Qin&rft.au=Jeffrey+Xu+Yu&rft.au=Mao%2C+Rui&rft.date=2017-12-01&rft.pub=Springer+Nature+B.V&rft.issn=1066-8888&rft.eissn=0949-877X&rft.volume=26&rft.issue=6&rft.spage=751&rft.epage=776&rft_id=info:doi/10.1007%2Fs00778-017-0467-4&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1066-8888&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1066-8888&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1066-8888&client=summon |