A robot process automation based mobile application for early prediction of chronic kidney disease using machine learning
Chronic kidney disease (CKD) is characterized by persistent abnormalities in urinary biomarkers or reduced renal function, posing risks not only of progression to end-stage kidney disease but also of accelerated cardiovascular complications and mortality. The use of computer-aided automated diagnost...
Saved in:
| Published in: | Discover applied sciences Vol. 7; no. 6; pp. 528 - 34 |
|---|---|
| Main Authors: | , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Cham
Springer International Publishing
23.05.2025
Springer Nature B.V Springer |
| Subjects: | |
| ISSN: | 3004-9261, 2523-3963, 3004-9261, 2523-3971 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Chronic kidney disease (CKD) is characterized by persistent abnormalities in urinary biomarkers or reduced renal function, posing risks not only of progression to end-stage kidney disease but also of accelerated cardiovascular complications and mortality. The use of computer-aided automated diagnostics can assist nephrologists in early detection and accurate classification, which are essential for improving patient outcomes. This study utilized clinical features of CKD to develop and evaluate six base machine learning classifiers (logistic regression, K-nearest neighbors, AdaBoost, decision tree classifier, random forest, and multilayer perceptron) alongside two novel ensemble models (MKR Stacking and MKR Voting) for CKD prediction and classification. The proposed models were trained on five pre-processed CKD datasets using four robust feature selection techniques, including Lasso, Fisher score, Information Gain, and Relief. The models’ performance was assessed using accuracy, precision, recall, F1-Score, error rate, AUC, and computational time. Among the tested algorithms, MKR Stacking achieved the highest accuracy of 99.50%, outperforming Random Forest (98.75%) and MKR Voting (98%). The XAI technique SHAP and model validation on another CKD dataset highlight the superior prediction capabilities of the proposed ensemble methods compared to traditional classification algorithms. The study further advocates for integrating high-performing models into the Internet of Medical Things and Robotic Process Automation frameworks, enabling real-time monitoring, predictive analytics, and efficient CKD diagnosis. Such integration has the potential to transform CKD management, facilitating early interventions and personalized treatment plans through advanced machine-learning applications. |
|---|---|
| AbstractList | Abstract Chronic kidney disease (CKD) is characterized by persistent abnormalities in urinary biomarkers or reduced renal function, posing risks not only of progression to end-stage kidney disease but also of accelerated cardiovascular complications and mortality. The use of computer-aided automated diagnostics can assist nephrologists in early detection and accurate classification, which are essential for improving patient outcomes. This study utilized clinical features of CKD to develop and evaluate six base machine learning classifiers (logistic regression, K-nearest neighbors, AdaBoost, decision tree classifier, random forest, and multilayer perceptron) alongside two novel ensemble models (MKR Stacking and MKR Voting) for CKD prediction and classification. The proposed models were trained on five pre-processed CKD datasets using four robust feature selection techniques, including Lasso, Fisher score, Information Gain, and Relief. The models’ performance was assessed using accuracy, precision, recall, F1-Score, error rate, AUC, and computational time. Among the tested algorithms, MKR Stacking achieved the highest accuracy of 99.50%, outperforming Random Forest (98.75%) and MKR Voting (98%). The XAI technique SHAP and model validation on another CKD dataset highlight the superior prediction capabilities of the proposed ensemble methods compared to traditional classification algorithms. The study further advocates for integrating high-performing models into the Internet of Medical Things and Robotic Process Automation frameworks, enabling real-time monitoring, predictive analytics, and efficient CKD diagnosis. Such integration has the potential to transform CKD management, facilitating early interventions and personalized treatment plans through advanced machine-learning applications. Chronic kidney disease (CKD) is characterized by persistent abnormalities in urinary biomarkers or reduced renal function, posing risks not only of progression to end-stage kidney disease but also of accelerated cardiovascular complications and mortality. The use of computer-aided automated diagnostics can assist nephrologists in early detection and accurate classification, which are essential for improving patient outcomes. This study utilized clinical features of CKD to develop and evaluate six base machine learning classifiers (logistic regression, K-nearest neighbors, AdaBoost, decision tree classifier, random forest, and multilayer perceptron) alongside two novel ensemble models (MKR Stacking and MKR Voting) for CKD prediction and classification. The proposed models were trained on five pre-processed CKD datasets using four robust feature selection techniques, including Lasso, Fisher score, Information Gain, and Relief. The models’ performance was assessed using accuracy, precision, recall, F1-Score, error rate, AUC, and computational time. Among the tested algorithms, MKR Stacking achieved the highest accuracy of 99.50%, outperforming Random Forest (98.75%) and MKR Voting (98%). The XAI technique SHAP and model validation on another CKD dataset highlight the superior prediction capabilities of the proposed ensemble methods compared to traditional classification algorithms. The study further advocates for integrating high-performing models into the Internet of Medical Things and Robotic Process Automation frameworks, enabling real-time monitoring, predictive analytics, and efficient CKD diagnosis. Such integration has the potential to transform CKD management, facilitating early interventions and personalized treatment plans through advanced machine-learning applications. |
| ArticleNumber | 528 |
| Author | Bijoy, Md. Hasan Imam Arefin, Mohammad Shamsul Mia, Md. Jueal Rahman, Md. Mahbubur Shimamura, Tetsuya Dhar, Pranab Kumar |
| Author_xml | – sequence: 1 givenname: Md. Hasan Imam surname: Bijoy fullname: Bijoy, Md. Hasan Imam email: hasan15-11743@diu.edu.bd organization: Department of Computer Science and Engineering, Daffodil International University – sequence: 2 givenname: Md. Jueal surname: Mia fullname: Mia, Md. Jueal organization: Department of Computer Science and Engineering, Daffodil International University – sequence: 3 givenname: Md. Mahbubur surname: Rahman fullname: Rahman, Md. Mahbubur organization: Department of Computer Science and Engineering, Daffodil International University – sequence: 4 givenname: Mohammad Shamsul surname: Arefin fullname: Arefin, Mohammad Shamsul email: sarefin@cuet.ac.bd organization: Department of Computer Science and Engineering, Chittagong University of Engineering and Technology – sequence: 5 givenname: Pranab Kumar surname: Dhar fullname: Dhar, Pranab Kumar organization: Department of Computer Science and Engineering, Chittagong University of Engineering and Technology, Faculty of Science and Engineering, Waseda University – sequence: 6 givenname: Tetsuya surname: Shimamura fullname: Shimamura, Tetsuya organization: Faculty of Science and Engineering, Waseda University, Department of Information and Computer Sciences, Saitama University |
| BookMark | eNp9kc1uHCEQhFHkSLEdv0BOSDmP08PPMBwty44tWcolOSMGmjXrWVjD7GHf3mQninPKCVRdX4G6LshZygkJ-dLDdQ-gvlXBhGQdMNnBoEfo9AdyzgFEp9nQn_1z_0Suat0CAOeglNTn5HhDS57yQvclO6yV2sOSd3aJOdHJVvR0l6c4I7X7_RzdOgi5ULRlPjYKfXQnMQfqnktO0dGX6BMeqY8VWwQ91Jg2dGfdc0xI50amJnwmH4OdK179OS_Jr_u7n7cP3dOP74-3N0-d4yNbOqEZegWOOcFCLy0L0gvvrQ8SB9RyEnoAp90ofO_lwGToFQ6CMcchKCX4JXlcc322W7MvcWfL0WQbzUnIZWNsWaKb0XiBk1Ua-eSDYL3WjrNRcGE5t1qAa1lf16y2rdcD1sVs86Gk9n3DGYxMKj6MzcVWlyu51oLh76s9mN-NmbUx0xozp8aMbhBfodrMaYPlPfo_1BvqdZwE |
| Cites_doi | 10.1038/s41598-024-63292-5 10.1038/s41598-019-46074-2 10.1155/2021/1004767 10.1109/ACCESS.2020.2995310 10.1186/S40537-024-01050-0 10.1109/ACCESS.2020.2971208 10.3390/bdcc7030144 10.2147/RMHP.S319405 10.1007/S42454-022-00040-Y 10.12720/jait.14.2.384-391 10.1016/j.artmed.2022.102431 10.1016/J.KISU.2021.11.003 10.1109/JTEHM.2021.3073629 10.1155/2022/9898831 10.1186/S12882-018-1072-5/TABLES/5 10.3390/ELECTRONICS12010212 10.1038/s41598-022-12316-z 10.3390/diagnostics12010116 10.1038/s41598-024-78498-w 10.1109/JTEHM.2023.3234207 10.1136/BMJDRC-2021-002364 10.1016/j.xkme.2024.100804 10.1007/s12325-020-01568-8 10.1016/j.ijcce.2023.12.002 10.2196/18585 10.1016/j.jclinepi.2020.03.002 10.24432/C5G020 10.3390/bioengineering9080350 10.1007/s10489-021-02550-9 10.4108/eai.13-8-2021.170671 10.1007/s44174-022-00027-y 10.1007/S40620-022-01302-3/TABLES/9 10.1109/ACCESS.2021.3129491 10.1038/s41581-024-00828-y 10.1016/j.dajour.2023.100169 10.1186/S12882-021-02474-Z/FIGURES/5 10.1038/s41581-024-00820-6 10.1016/j.imu.2021.100631 10.1016/J.IRBM.2020.07.002 10.1007/S11255-024-04281-5/METRICS 10.53730/ijhs.v6nS2.5579 10.1007/978-3-031-11570-7_17 10.3390/healthcare9050546 10.1016/j.iswa.2022.200144 10.2147/RMHP.S346856 10.1016/S2589-7500(20)30063-7 10.1504/IJMEI.2019.104981 10.1016/j.eswa.2023.119851 10.1007/s11192-009-0008-z 10.1007/978-3-031-11570-7_26 10.1038/s41598-022-26160-8 10.1007/S11042-023-15188-1/TABLES/3 10.1016/j.jobcr.2021.11.010 10.1016/S2214-109X(23)00570-3 10.1080/10255842.2023.2181660 10.1007/978-981-16-7597-3_38 10.1007/978-3-030-01560-2_5 10.4103/jmss.JMSS_13_20 10.1007/s11042-024-20205-y 10.1038/s41598-024-74993-2 10.1007/s10479-018-2818-y 10.1080/1206212X.2023.2262786 10.3390/info14100542 10.1186/S12882-020-02151-7/FIGURES/4 10.1109/JSEN.2020.3034904 10.1016/j.bspc.2023.105368 10.1038/s41581-022-00671-z 10.1038/s41581-019-0191-y 10.1007/978-3-030-04061-1_18 10.3390/s22072625 10.3390/ijerph19010226 10.1177/20552076231224225 10.1155/2021/2487759 10.1016/j.cmpb.2021.106329 10.1002/IMA.70016 10.1109/LSENS.2019.2942145 10.1007/978-981-16-6636-0_1 10.1155/2023/9266889 10.3390/app12073673 10.1111/COIN.12696 10.1088/1742-6596/2020/1/012047 10.1016/j.bbrc.2022.02.099 10.1109/ACCESS.2021.3133700 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2025 Copyright Springer Nature B.V. Jun 2025 |
| Copyright_xml | – notice: The Author(s) 2025 – notice: Copyright Springer Nature B.V. Jun 2025 |
| DBID | C6C AAYXX CITATION 3V. 7XB 88I 8FE 8FG 8FK ABJCF ABUWG AEUYN AFKRA ATCPS AZQEC BENPR BGLVJ BHPHI BKSAR CCPQU COVID D1I DWQXO GNUQQ HCIFZ KB. L6V M2P M7S PATMY PCBAR PDBOC PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PTHSS PYCSY Q9U DOA |
| DOI | 10.1007/s42452-025-06980-9 |
| DatabaseName | Springer Nature OA Free Journals CrossRef ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials - QC ProQuest Central ProQuest Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection ProQuest One Coronavirus Research Database ProQuest Materials Science Collection ProQuest Central Korea ProQuest Central Student SciTech Premium Collection Materials Science Database ProQuest Engineering Collection Science Database Engineering Database Environmental Science Database Earth, Atmospheric & Aquatic Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition Engineering Collection Environmental Science Collection ProQuest Central Basic DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Central Essentials Materials Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central Earth, Atmospheric & Aquatic Science Collection ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Engineering Collection Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection Materials Science Database ProQuest Central (New) Engineering Collection ProQuest Materials Science Collection Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database Coronavirus Research Database ProQuest Technology Collection ProQuest SciTech Collection Environmental Science Collection ProQuest One Academic UKI Edition Materials Science & Engineering Collection Environmental Science Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) |
| DatabaseTitleList | Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: KB. name: Materials Science Database url: http://search.proquest.com/materialsscijournals sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 3004-9261 2523-3971 |
| EndPage | 34 |
| ExternalDocumentID | oai_doaj_org_article_d4eba79e3bdf42199c328434a33a940c 10_1007_s42452_025_06980_9 |
| GeographicLocations | South Asia |
| GeographicLocations_xml | – name: South Asia |
| GroupedDBID | AAJSJ AASML ADMLS ALMA_UNASSIGNED_HOLDINGS C6C GROUPED_DOAJ M~E SOJ AAYXX BGNMA CITATION EBLON M4Y NU0 0R~ 3V. 7XB 88I 8FE 8FG 8FK AAHNG AAKKN ABDZT ABECU ABEEZ ABFTV ABHQN ABJCF ABKCH ABMQK ABTMW ABUWG ABXPI ACACY ACMLO ACOKC ACSTC ACULB ADKNI ADURQ ADYFF AEJRE AEUYN AFGXO AFKRA AFQWF AGDGC AGJBK AILAN AITGF AJZVZ AMKLP ATCPS AXYYD AZQEC BAPOH BENPR BGLVJ BHPHI BKSAR C24 CCPQU COVID D1I DWQXO EBS FNLPD GNUQQ GNWQR HCIFZ J-C KB. KOV L6V M2P M7S NQJWS OK1 PATMY PCBAR PDBOC PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PTHSS PYCSY Q9U STPWE TSG UOJIU UTJUX VEKWB VFIZW ZMTXR |
| ID | FETCH-LOGICAL-c382t-492ed70c2c42f15a2f5d4ddadf5e6e95b4960c9c84d1d5625f17e6422c30f7743 |
| IEDL.DBID | M2P |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001493470000006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 3004-9261 2523-3963 |
| IngestDate | Tue Oct 14 18:45:31 EDT 2025 Wed Oct 08 14:21:02 EDT 2025 Sat Nov 29 07:55:21 EST 2025 Sat May 24 01:16:16 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Keywords | RPA Chronic kidney disease MKR Voting MKR stacking Machine learning IoMT |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c382t-492ed70c2c42f15a2f5d4ddadf5e6e95b4960c9c84d1d5625f17e6422c30f7743 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| OpenAccessLink | https://www.proquest.com/docview/3208257368?pq-origsite=%requestingapplication% |
| PQID | 3208257368 |
| PQPubID | 5758472 |
| PageCount | 34 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_d4eba79e3bdf42199c328434a33a940c proquest_journals_3208257368 crossref_primary_10_1007_s42452_025_06980_9 springer_journals_10_1007_s42452_025_06980_9 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-05-23 |
| PublicationDateYYYYMMDD | 2025-05-23 |
| PublicationDate_xml | – month: 05 year: 2025 text: 2025-05-23 day: 23 |
| PublicationDecade | 2020 |
| PublicationPlace | Cham |
| PublicationPlace_xml | – name: Cham – name: London |
| PublicationTitle | Discover applied sciences |
| PublicationTitleAbbrev | Discov Appl Sci |
| PublicationYear | 2025 |
| Publisher | Springer International Publishing Springer Nature B.V Springer |
| Publisher_xml | – name: Springer International Publishing – name: Springer Nature B.V – name: Springer |
| References | 6980_CR22 M Dadkhah (6980_CR64) 2021; 11 E Sivasankar (6980_CR33) 2019; 11 N Bhaskar (6980_CR19) 2021; 42 S Bhadra (6980_CR62) 2024 P Gogoi (6980_CR36) 2024 A Motwani (6980_CR79) 2022; 134 J-X Zheng (6980_CR83) 2024 G Chen (6980_CR27) 2020; 8 WS da Silva (6980_CR80) 2022; 273 6980_CR28 CP Kovesdy (6980_CR4) 2011; 12 SJ Maisha (6980_CR23) 2022; 348 MF Khan (6980_CR70) 2021; 20 D Swain (6980_CR35) 2023; 12 M Elhoseny (6980_CR18) 2019; 9 C Sabanayagam (6980_CR20) 2020; 2 UK Lilhore (6980_CR57) 2024; 40 A Bilal (6980_CR84) 2024; 14 H Khalid (6980_CR48) 2023 S Chitra (6980_CR66) 2022 Q Bai (6980_CR58) 2022; 12 6980_CR61 C Zoccali (6980_CR3) 2024; 20 A Bilal (6980_CR85) 2025; 12 J Janani (6980_CR26) 2021; 12 CS Yu (6980_CR78) 2020; 22 R Dwivedi (6980_CR69) 2022; 12 A Chagnac (6980_CR8) 2024; 6 6980_CR15 A Bin Sawad (6980_CR65) 2022; 22 Md Mustafizur Rahman (6980_CR77) 2024; 87 MOF Goni (6980_CR43) 2022; 95 C Kaur (6980_CR24) 2023; 14 M Murton (6980_CR14) 2021; 38 MC Groccia (6980_CR60) 2023; 14 YL Chiu (6980_CR56) 2021; 14 M Hasan (6980_CR2) 2018; 19 H Kriplani (6980_CR31) 2019; 31 V Chaurasia (6980_CR52) 2022; 4 SA Ebiaredoh-Mienye (6980_CR73) 2022; 9 S Krishnamurthy (6980_CR30) 2021; 9 S Bhadra (6980_CR63) 2024; 27 P Ventrella (6980_CR40) 2021; 209 X Cao (6980_CR55) 2022; 15 S Pal (6980_CR49) 2023; 82 A Abdelaziz (6980_CR16) 2019; 1404 JI Garaycoechea (6980_CR6) 2023; 19 MA Abdel-Fattah (6980_CR41) 2022; 2022 SD Bass (6980_CR59) 2010; 82 SI Ali (6980_CR75) 2021; 19 D Chicco (6980_CR71) 2021; 9 AK Bello (6980_CR7) 2024; 12 L Luo (6980_CR37) 2024; 14 KM Almustafa (6980_CR51) 2021; 24 M Nishat (6980_CR21) 2018 MS Arif (6980_CR50) 2023; 7 S Pal (6980_CR25) 2023; 1 FP Schena (6980_CR47) 2022; 35 M Sajid (6980_CR86) 2025; 35 R Thakur (6980_CR12) 2021; 21 K Hema (6980_CR72) 2024; 5 S Nusinovici (6980_CR42) 2020; 122 A Francis (6980_CR5) 2024; 20 S Akter (6980_CR53) 2023; 223 R Sawhney (6980_CR82) 2023; 6 S Akter (6980_CR74) 2021; 9 NJ Subashini (6980_CR39) 2023; 45 AC Silveira (6980_CR44) 2022; 12 Y Zhou (6980_CR46) 2022; 603 P Dhal (6980_CR81) 2022; 52 W Fan (6980_CR9) 2020; 294 A Sobrinho (6980_CR10) 2020; 8 A Haratian (6980_CR34) 2022; 12 HAU Rehman (6980_CR29) 2021; 2020 V Pandey (6980_CR67) 2024; 14 AS Levey (6980_CR11) 2019; 16 Md Rashed-Al-Mahfuz (6980_CR76) 2021; 9 W-H Hsieh (6980_CR68) 2023; 11 SK Dey (6980_CR32) 2022; 16 EM Senan (6980_CR13) 2021; 2021 N Bhaskar (6980_CR17) 2019; 3 V Singh (6980_CR38) 2022; 12 CC Lim (6980_CR1) 2021; 9 H Ilyas (6980_CR45) 2021; 22 M Weldegiorgis (6980_CR54) 2020; 21 |
| References_xml | – volume: 14 start-page: 1 issue: 1 year: 2024 ident: 6980_CR84 publication-title: Sci Rep doi: 10.1038/s41598-024-63292-5 – ident: 6980_CR22 – volume: 9 start-page: 1 issue: 1 year: 2019 ident: 6980_CR18 publication-title: Sci Rep doi: 10.1038/s41598-019-46074-2 – volume: 2021 start-page: 1004767 year: 2021 ident: 6980_CR13 publication-title: J Healthc Eng doi: 10.1155/2021/1004767 – volume: 8 start-page: 100497 year: 2020 ident: 6980_CR27 publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2995310 – volume: 12 start-page: 1 issue: 1 year: 2025 ident: 6980_CR85 publication-title: J Big Data doi: 10.1186/S40537-024-01050-0 – volume: 8 start-page: 25407 year: 2020 ident: 6980_CR10 publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2971208 – volume: 7 start-page: 144 year: 2023 ident: 6980_CR50 publication-title: Big Data Cognit Comput doi: 10.3390/bdcc7030144 – volume: 14 start-page: 4401 year: 2021 ident: 6980_CR56 publication-title: Risk Manag Healthc Policy doi: 10.2147/RMHP.S319405 – volume: 4 start-page: 1 issue: 1 year: 2022 ident: 6980_CR52 publication-title: Human-Intell Syst Integr doi: 10.1007/S42454-022-00040-Y – volume: 14 start-page: 384 year: 2023 ident: 6980_CR24 publication-title: J Adv Inf Technol doi: 10.12720/jait.14.2.384-391 – volume: 134 year: 2022 ident: 6980_CR79 publication-title: Artif Intell Med doi: 10.1016/j.artmed.2022.102431 – volume: 12 start-page: 7 issue: 2022 year: 2011 ident: 6980_CR4 publication-title: Kidney Int Suppl doi: 10.1016/J.KISU.2021.11.003 – volume: 9 start-page: 1 year: 2021 ident: 6980_CR76 publication-title: IEEE J Transl Eng Health Med doi: 10.1109/JTEHM.2021.3073629 – volume: 2022 start-page: 1 year: 2022 ident: 6980_CR41 publication-title: Comput Intell Neurosci doi: 10.1155/2022/9898831 – volume: 12 start-page: 4251 year: 2021 ident: 6980_CR26 publication-title: Turk J Comput Math Educ – volume: 19 start-page: 1 year: 2018 ident: 6980_CR2 publication-title: BMC Nephrol doi: 10.1186/S12882-018-1072-5/TABLES/5 – volume: 12 start-page: 212 year: 2023 ident: 6980_CR35 publication-title: Electronics doi: 10.3390/ELECTRONICS12010212 – volume: 12 start-page: 1 issue: 1 year: 2022 ident: 6980_CR58 publication-title: Sci Rep doi: 10.1038/s41598-022-12316-z – volume: 12 start-page: 116 year: 2022 ident: 6980_CR38 publication-title: Diagnostics doi: 10.3390/diagnostics12010116 – volume: 14 start-page: 1 issue: 1 year: 2024 ident: 6980_CR37 publication-title: Sci Rep doi: 10.1038/s41598-024-78498-w – volume: 11 start-page: 375 year: 2023 ident: 6980_CR68 publication-title: IEEE J Transl Eng Health Med doi: 10.1109/JTEHM.2023.3234207 – volume: 9 year: 2021 ident: 6980_CR1 publication-title: BMJ Open Diabetes Res Care doi: 10.1136/BMJDRC-2021-002364 – volume: 6 start-page: 100804 year: 2024 ident: 6980_CR8 publication-title: Kidney Med doi: 10.1016/j.xkme.2024.100804 – volume: 38 start-page: 180 year: 2021 ident: 6980_CR14 publication-title: Adv Ther doi: 10.1007/s12325-020-01568-8 – volume: 5 start-page: 66 year: 2024 ident: 6980_CR72 publication-title: Int J Cognit Comput Eng doi: 10.1016/j.ijcce.2023.12.002 – volume: 22 year: 2020 ident: 6980_CR78 publication-title: J Med Internet Res doi: 10.2196/18585 – volume: 122 start-page: 56 year: 2020 ident: 6980_CR42 publication-title: J Clin Epidemiol doi: 10.1016/j.jclinepi.2020.03.002 – ident: 6980_CR15 doi: 10.24432/C5G020 – volume: 9 start-page: 350 year: 2022 ident: 6980_CR73 publication-title: Bioengineering doi: 10.3390/bioengineering9080350 – volume: 52 start-page: 4543 year: 2022 ident: 6980_CR81 publication-title: Appl Intell doi: 10.1007/s10489-021-02550-9 – year: 2018 ident: 6980_CR21 publication-title: EAI Endorsed Trans Pervasive Health Technol doi: 10.4108/eai.13-8-2021.170671 – volume: 1 start-page: 534 year: 2023 ident: 6980_CR25 publication-title: Biomed Mater Devices doi: 10.1007/s44174-022-00027-y – volume: 35 start-page: 1953 year: 2022 ident: 6980_CR47 publication-title: J Nephrol doi: 10.1007/S40620-022-01302-3/TABLES/9 – volume: 9 start-page: 165184 year: 2021 ident: 6980_CR74 publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3129491 – volume: 20 start-page: 460 issue: 7 year: 2024 ident: 6980_CR3 publication-title: Nat Rev Nephrol doi: 10.1038/s41581-024-00828-y – volume: 6 year: 2023 ident: 6980_CR82 publication-title: Decis Anal J doi: 10.1016/j.dajour.2023.100169 – volume: 22 start-page: 1 year: 2021 ident: 6980_CR45 publication-title: BMC Nephrol doi: 10.1186/S12882-021-02474-Z/FIGURES/5 – volume: 20 start-page: 473 issue: 7 year: 2024 ident: 6980_CR5 publication-title: Nat Rev Nephrol doi: 10.1038/s41581-024-00820-6 – volume: 24 year: 2021 ident: 6980_CR51 publication-title: Inform Med Unlocked doi: 10.1016/j.imu.2021.100631 – volume: 42 start-page: 268 year: 2021 ident: 6980_CR19 publication-title: IRBM doi: 10.1016/J.IRBM.2020.07.002 – year: 2024 ident: 6980_CR36 publication-title: Int Urol Nephrol doi: 10.1007/S11255-024-04281-5/METRICS – year: 2022 ident: 6980_CR66 publication-title: Int J Health Sci (Qassim) doi: 10.53730/ijhs.v6nS2.5579 – volume: 273 start-page: 281 year: 2022 ident: 6980_CR80 publication-title: Innov Nephrol Breakthr Technol Kidney Dis Care doi: 10.1007/978-3-031-11570-7_17 – volume: 9 start-page: 546 year: 2021 ident: 6980_CR30 publication-title: Healthcare doi: 10.3390/healthcare9050546 – volume: 16 year: 2022 ident: 6980_CR32 publication-title: Intell Syst Appl doi: 10.1016/j.iswa.2022.200144 – volume: 15 start-page: 817 year: 2022 ident: 6980_CR55 publication-title: Risk Manag Healthc Policy doi: 10.2147/RMHP.S346856 – volume: 2 start-page: e295 year: 2020 ident: 6980_CR20 publication-title: Lancet Digit Health doi: 10.1016/S2589-7500(20)30063-7 – volume: 11 start-page: 368 year: 2019 ident: 6980_CR33 publication-title: Int J Med Eng Inform doi: 10.1504/IJMEI.2019.104981 – volume: 223 year: 2023 ident: 6980_CR53 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2023.119851 – volume: 82 start-page: 217 year: 2010 ident: 6980_CR59 publication-title: Scientometrics doi: 10.1007/s11192-009-0008-z – ident: 6980_CR61 doi: 10.1007/978-3-031-11570-7_26 – volume: 12 start-page: 1 issue: 1 year: 2022 ident: 6980_CR34 publication-title: Sci Rep doi: 10.1038/s41598-022-26160-8 – volume: 82 start-page: 41253 year: 2023 ident: 6980_CR49 publication-title: Multimed Tools Appl doi: 10.1007/S11042-023-15188-1/TABLES/3 – volume: 12 start-page: 302 year: 2022 ident: 6980_CR69 publication-title: J Oral Biol Craniofac Res doi: 10.1016/j.jobcr.2021.11.010 – volume: 12 start-page: e382 year: 2024 ident: 6980_CR7 publication-title: Lancet Glob Health doi: 10.1016/S2214-109X(23)00570-3 – volume: 27 start-page: 222 year: 2024 ident: 6980_CR63 publication-title: Comput Methods Biomech Biomed Engin doi: 10.1080/10255842.2023.2181660 – volume: 348 start-page: 457 year: 2022 ident: 6980_CR23 publication-title: Lect Notes Netw Syst doi: 10.1007/978-981-16-7597-3_38 – volume: 1404 start-page: 93 year: 2019 ident: 6980_CR16 publication-title: Lect Notes Intell Transp Infrastruct Part F doi: 10.1007/978-3-030-01560-2_5 – volume: 11 start-page: 138 year: 2021 ident: 6980_CR64 publication-title: J Med Signals Sens doi: 10.4103/jmss.JMSS_13_20 – year: 2024 ident: 6980_CR62 publication-title: Multimed Tools Appl doi: 10.1007/s11042-024-20205-y – volume: 14 start-page: 1 issue: 1 year: 2024 ident: 6980_CR67 publication-title: Sci Rep doi: 10.1038/s41598-024-74993-2 – volume: 294 start-page: 567 year: 2020 ident: 6980_CR9 publication-title: Ann Oper Res doi: 10.1007/s10479-018-2818-y – volume: 45 start-page: 647 year: 2023 ident: 6980_CR39 publication-title: Int J Comput Appl doi: 10.1080/1206212X.2023.2262786 – volume: 14 start-page: 542 year: 2023 ident: 6980_CR60 publication-title: Information doi: 10.3390/info14100542 – volume: 21 start-page: 1 year: 2020 ident: 6980_CR54 publication-title: BMC Nephrol doi: 10.1186/S12882-020-02151-7/FIGURES/4 – volume: 21 start-page: 14011 year: 2021 ident: 6980_CR12 publication-title: IEEE Sens J doi: 10.1109/JSEN.2020.3034904 – volume: 87 start-page: 105368 year: 2024 ident: 6980_CR77 publication-title: Biomed Signal Process Control doi: 10.1016/j.bspc.2023.105368 – volume: 19 start-page: 229 issue: 4 year: 2023 ident: 6980_CR6 publication-title: Nat Rev Nephrol doi: 10.1038/s41581-022-00671-z – volume: 16 start-page: 51 issue: 1 year: 2019 ident: 6980_CR11 publication-title: Nat Rev Nephrol doi: 10.1038/s41581-019-0191-y – volume: 31 start-page: 179 year: 2019 ident: 6980_CR31 publication-title: Lect Notes Comput Vis Biomech doi: 10.1007/978-3-030-04061-1_18 – volume: 22 start-page: 2625 year: 2022 ident: 6980_CR65 publication-title: Sensors doi: 10.3390/s22072625 – volume: 19 start-page: 226 year: 2021 ident: 6980_CR75 publication-title: Int J Environ Res Public Health doi: 10.3390/ijerph19010226 – year: 2024 ident: 6980_CR83 publication-title: Digit Health doi: 10.1177/20552076231224225 – volume: 20 start-page: 21 year: 2021 ident: 6980_CR70 publication-title: Comput Intell Neurosci doi: 10.1155/2021/2487759 – volume: 209 year: 2021 ident: 6980_CR40 publication-title: Comput Methods Programs Biomed doi: 10.1016/j.cmpb.2021.106329 – volume: 35 year: 2025 ident: 6980_CR86 publication-title: Int J Imaging Syst Technol doi: 10.1002/IMA.70016 – volume: 3 start-page: 1 year: 2019 ident: 6980_CR17 publication-title: IEEE Sens Lett doi: 10.1109/LSENS.2019.2942145 – volume: 95 start-page: 3 year: 2022 ident: 6980_CR43 publication-title: Lect Notes Data Eng Commun Technol doi: 10.1007/978-981-16-6636-0_1 – ident: 6980_CR28 – year: 2023 ident: 6980_CR48 publication-title: Comput Intell Neurosci doi: 10.1155/2023/9266889 – volume: 12 start-page: 3673 year: 2022 ident: 6980_CR44 publication-title: Appl Sci doi: 10.3390/app12073673 – volume: 40 start-page: e12696 year: 2024 ident: 6980_CR57 publication-title: Comput Intell doi: 10.1111/COIN.12696 – volume: 2020 year: 2021 ident: 6980_CR29 publication-title: J Phys Conf Ser doi: 10.1088/1742-6596/2020/1/012047 – volume: 603 start-page: 21 year: 2022 ident: 6980_CR46 publication-title: Biochem Biophys Res Commun doi: 10.1016/j.bbrc.2022.02.099 – volume: 9 start-page: 165132 year: 2021 ident: 6980_CR71 publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3133700 |
| SSID | ssj0003307759 ssj0002793483 ssib051670015 |
| Score | 2.2923286 |
| Snippet | Chronic kidney disease (CKD) is characterized by persistent abnormalities in urinary biomarkers or reduced renal function, posing risks not only of progression... Abstract Chronic kidney disease (CKD) is characterized by persistent abnormalities in urinary biomarkers or reduced renal function, posing risks not only of... |
| SourceID | doaj proquest crossref springer |
| SourceType | Open Website Aggregation Database Index Database Publisher |
| StartPage | 528 |
| SubjectTerms | Abnormalities Accuracy Algorithms Applications programs Applied and Technical Physics Automation Biomarkers Cardiovascular diseases Chemistry/Food Science Chronic kidney disease Classification Computing time Datasets Decision trees Deep learning Earth Sciences End-stage renal disease Engineering Ensemble learning Environment Feature selection Internet of medical things IoMT Kidney diseases Kidneys Learning algorithms Machine learning Materials Science MKR stacking MKR Voting Mobile communications networks Mobile computing Multilayer perceptrons Neural networks Predictions R&D Real time Renal function Research & development Robot learning RPA |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA4iHryIomJ1lRy8aTBN0qZzVHHxJB4UvIW8KovYylqF_fcmaXfdFcSL17SBYSbzYma-QejU5NSHwACIDf6NiCrPiabUkdLKshTaBeKrtGxC3t1VT09wv7TqK_aE9fDAPeMunPBGS_DcuFoE9QLLg0XlQnOuQVAbrS-VsJRMRRscsnQpCximZNKsXCzxMRK3t9ISKkpgxRMlwP6VKPNHYTT5m_E22hoCRXzZE7iD1nyzi2aXeNqatsNvfX8_1h9d2w8f4uiPHH5tTdBzvFSXxiEsxT7iGIdbsSyTDtsa2x4XF79MXONneCjV4NgJ_4xfU5Olx8NWiec99Di-ebi-JcPyBGJ5xToigHknqWVWsDovNKsLJ5zTri586aEwIuQuFmwlXO5iFlTn0odkhFlO6xAT8n203rSNP0A4zuoaByEWAhAgCl36iChs6kKb3DCRobM5I9Vbj5GhFmjIie0qsF0ltivI0FXk9eLPiG-dDoLU1SB19ZfUMzSaS0oNSveuOIv5ruRllaHzufS-P_9O0uF_kHSENll6XQVhfITWu-mHP0Yb9rObvE9P0vP8Ar2l6Ek priority: 102 providerName: Directory of Open Access Journals |
| Title | A robot process automation based mobile application for early prediction of chronic kidney disease using machine learning |
| URI | https://link.springer.com/article/10.1007/s42452-025-06980-9 https://www.proquest.com/docview/3208257368 https://doaj.org/article/d4eba79e3bdf42199c328434a33a940c |
| Volume | 7 |
| WOSCitedRecordID | wos001493470000006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 3004-9261 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0003307759 issn: 3004-9261 databaseCode: DOA dateStart: 20240101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 3004-9261 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0003307759 issn: 3004-9261 databaseCode: M~E dateStart: 20240101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Earth, Atmospheric & Aquatic Science Database customDbUrl: eissn: 3004-9261 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002793483 issn: 3004-9261 databaseCode: PCBAR dateStart: 20190101 isFulltext: true titleUrlDefault: https://search.proquest.com/eaasdb providerName: ProQuest – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 3004-9261 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002793483 issn: 3004-9261 databaseCode: M7S dateStart: 20190101 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: Environmental Science Database customDbUrl: eissn: 3004-9261 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002793483 issn: 3004-9261 databaseCode: PATMY dateStart: 20190101 isFulltext: true titleUrlDefault: http://search.proquest.com/environmentalscience providerName: ProQuest – providerCode: PRVPQU databaseName: Materials Science Database customDbUrl: eissn: 3004-9261 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002793483 issn: 3004-9261 databaseCode: KB. dateStart: 20190101 isFulltext: true titleUrlDefault: http://search.proquest.com/materialsscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 3004-9261 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002793483 issn: 3004-9261 databaseCode: BENPR dateStart: 20190101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 3004-9261 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002793483 issn: 3004-9261 databaseCode: PIMPY dateStart: 20190101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVPQU databaseName: Science Database customDbUrl: eissn: 3004-9261 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002793483 issn: 3004-9261 databaseCode: M2P dateStart: 20190101 isFulltext: true titleUrlDefault: https://search.proquest.com/sciencejournals providerName: ProQuest – providerCode: PRVAVX databaseName: Springer Nature OA Free Journals customDbUrl: eissn: 3004-9261 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002793483 issn: 3004-9261 databaseCode: C24 dateStart: 20210101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELag5QAH3qgL7coHbmCIH3n4hHarrUCoq6iAVE6WX1mVqptlN0Xqhd-Ox3H6kuDCxZESJ3I043l4Zr5B6LWhmQ-GgSQ26DciKkqJzjJHClsWhdAuLL6KzSbK-bw6PpZ1OnDbpLTKQSZGQe1aC2fk7zkDZ6bkRfVh9ZNA1yiIrqYWGnfRdrBsKKR0HbJ64KecQg1KUnc_YpBNchGROVnwvwgPzJfqaGI1HQQBGYH-rlkhq4zIG7oqQvrfsENvhU6jRjp49L__8hg9TLYonvTM8wTd8cun6ME1hMJn6GKC161pO7zqCwqwPu_avtoRgwJ0-Kw1QbDga4FwHOxg7AE4ObwFcaB4s22w7YF48emJW_oLnGJDGFLvF_gsZnV6nNpYLJ6jbwezr_sfSerWQCyvWEeEZN6VmWVWsIbmmjW5E85p1-S-8DI3IjhLVtpKOOrA7Wpo6YP3wyzPmmCE8hdoa9ku_Q7CUBxsnAzGl5RCilwXHiCMTZNrQw0TI_RmoIta9aAc6hJ-OVJRBSqqSEUlR2gKpLucCYDa8Ua7Xqi0P5UT3uhSem5cI4IUl5YHxc2F5lxLkdkR2h1IqdIu36grOo7Q24EZrh7_fUkv__21V-g-i2yYE8Z30Va3Pvd76J791Z1s1mO0PZ3N66NxPD4I4-fpu3HkexjLLzD-noVZ9f50cgTXT4f19z_OSQka |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VFgk4UB5F3dKCD3ACq4ntPHxAqBSqVi2rHorUm_Erq7bqZtlNQfun-hvxOEkfSHDrgWselpN8nvkm4_kG4I1JEx-IgaQ2-DcqyjSlOkkczW2R50K7MPkyNpsohsPy-FgeLsBlXwuD2yp7mxgNtast_iPf5AyDmYLn5cfJD4pdozC72rfQaGGx7-e_Qsg2-7D3OXzft4ztfDna3qVdVwFqeckaKiTzrkgss4JVaaZZlTnhnHZV5nMvMyMCqbfSlsKlDsODKi18YOnM8qQKZImHce_BkkBlMdwqyA57_GYp1rx07vU0JvUkF1EJlIV4j_IA9q5uJ1bvYdKRUewnm-SyTKi85RtjC4FbvPePVG30gDvL_9u7ewKPO65NttrF8RQW_PgZPLqhwPgc5ltkWpu6IZO2YILoi6ZuqzkJOnhHzmsTDCe5kegngecTj8LQ4S7Mc8WDdUVsKzRMzk7c2M9Jl_siWFowIudx16onXZuO0Qp8u5NnfwGL43rsV4Fg8bNxMpBLKYUUmc49SjSbKtMmNUwM4F2PAzVpRUfUlbx0RI0KqFERNUoO4BNC5epKFAyPB-rpSHX2RznhjS6k58ZVIngpaXkgJlxozrUUiR3Aeg8d1VmxmbrGzQDe9-C7Pv33Ka39e7TX8GD36OuBOtgb7r-EhywugYwyvg6LzfTCb8B9-7M5mU1fxfVF4Ptdg_I3bGxdBA |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VLUJw4I26UMAHOIHVxHYePiBUKCtWhdUeQCqn4FdWpepm2U1B-9f4dYwdpw8kuPXANQ_LST7PfJPxfAPwTKeJQ2IgqUH_RkWZplQliaW5KfJcKIuTL0OziWIyKQ8O5HQDfvW1MH5bZW8Tg6G2jfH_yHc488FMwfNyp47bIqZ7o9eL79R3kPKZ1r6dRgeRfbf-ieHb6tV4D7_1c8ZG7z69fU9jhwFqeMlaKiRztkgMM4LVaaZYnVlhrbJ15nInMy2Q4BtpSmFT60OFOi0cMnZmeFIjceI47hXYREou2AA2p-OP0y89mrPUV8BEZ_stpPgkF0EXlGH0RzlCP1bxhFo-n4Jk1HeXTXJZJlRe8JShocAFFvxH4jb4w9Gt__lN3oabkYWT3W7Z3IENN78LN85pM96D9S5ZNrppyaIrpSDqpG26Ok_iXb8lx41Gk0rObQEgGAEQ5yWj8S6fAQsHm5qYToKYHB3auVuTmBUjvuhgRo7DflZHYgOP2X34fCnP_gAG82butoD4smhtJdJOKYUUmcqdF2_WdaZ0qpkYwoseE9WikyOpToWnA4IqRFAVEFTJIbzxsDm90kuJhwPNclZFy1RZ4bQqpOPa1gL9lzQcKQsXinMlRWKGsN3DqIr2bVWdYWgIL3sgnp3--5Qe_nu0p3ANsVh9GE_2H8F1FlZDRhnfhkG7PHGP4ar50R6ulk_iYiPw9bJR-RszDWdN |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+robot+process+automation+based+mobile+application+for+early+prediction+of+chronic+kidney+disease+using+machine+learning&rft.jtitle=Discover+applied+sciences&rft.au=Bijoy%2C+Md.+Hasan+Imam&rft.au=Mia%2C+Md.+Jueal&rft.au=Rahman%2C+Md.+Mahbubur&rft.au=Arefin%2C+Mohammad+Shamsul&rft.date=2025-05-23&rft.pub=Springer+International+Publishing&rft.eissn=3004-9261&rft.volume=7&rft.issue=6&rft_id=info:doi/10.1007%2Fs42452-025-06980-9&rft.externalDocID=10_1007_s42452_025_06980_9 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=3004-9261&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=3004-9261&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=3004-9261&client=summon |