Randomized algorithms for the approximations of Tucker and the tensor train decompositions

Randomized algorithms provide a powerful tool for scientific computing. Compared with standard deterministic algorithms, randomized algorithms are often faster and robust. The main purpose of this paper is to design adaptive randomized algorithms for computing the approximate tensor decompositions....

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Advances in computational mathematics Ročník 45; číslo 1; s. 395 - 428
Hlavní autoři: Che, Maolin, Wei, Yimin
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York Springer US 05.02.2019
Springer Nature B.V
Témata:
ISSN:1019-7168, 1572-9044
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Randomized algorithms provide a powerful tool for scientific computing. Compared with standard deterministic algorithms, randomized algorithms are often faster and robust. The main purpose of this paper is to design adaptive randomized algorithms for computing the approximate tensor decompositions. We give an adaptive randomized algorithm for the computation of a low multilinear rank approximation of the tensors with unknown multilinear rank and analyze its probabilistic error bound under certain assumptions. Finally, we design an adaptive randomized algorithm for computing the tensor train approximations of the tensors. Based on the bounds about the singular values of sub-Gaussian matrices with independent columns or independent rows, we analyze these randomized algorithms. We illustrate our adaptive randomized algorithms via several numerical examples.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1019-7168
1572-9044
DOI:10.1007/s10444-018-9622-8