Application of machine learning algorithms in quality assurance of fermentation process of black tea-- based on electrical properties

Fermentation process directly determines the product quality of black tea. This work aimed to develop a rapid method for detecting the degree of fermentation of black tea based on electrical properties of tea leaves. An LCR meter employed to identify 11 electrical parameters of tea leaves during the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of food engineering Jg. 263; S. 165 - 172
Hauptverfasser: Zhu, Hongkai, Liu, Fei, Ye, Yang, Chen, Lin, Liu, Jingyuan, Gui, Anhui, Zhang, Jianqiang, Dong, Chunwang
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier Ltd 01.12.2019
Schlagworte:
ISSN:0260-8774, 1873-5770
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Fermentation process directly determines the product quality of black tea. This work aimed to develop a rapid method for detecting the degree of fermentation of black tea based on electrical properties of tea leaves. An LCR meter employed to identify 11 electrical parameters of tea leaves during the fermentation process, and the content of catechins and tea pigments in tea leaves were measured by using HPLC and UV-Vis spectrometer, respectively. Principal component analysis and hierarchical clustering analysis applied to divide samples into different groups in the degree of fermentation. Correlation analysis used to characterize the responding strength of electrical parameters on the variation of catechins and pigments. Finally, multilayer perceptron, random forest, and support vector machine algorithm used to build discrimination models of fermentation degree, and the average accuracy rate on the testing set reached to 88.90%, 100%, and 76.92%, respectively. •Electrical properties used to optimize the fermentation of black tea.•Hierarchical clustering provided an objective classification for fermented samples.•High correlations have been found between electrical properties and catechins.•Random forest can effectively distinguish the degree of fermented samples.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0260-8774
1873-5770
DOI:10.1016/j.jfoodeng.2019.06.009