A defeasible reasoning model of inductive concept learning from examples and communication

This paper introduces a logical model of inductive generalization, and specifically of the machine learning task of inductive concept learning (ICL). We argue that some inductive processes, like ICL, can be seen as a form of defeasible reasoning. We define a consequence relation characterizing which...

Full description

Saved in:
Bibliographic Details
Published in:Artificial intelligence Vol. 193; pp. 129 - 148
Main Authors: Ontañón, Santiago, Dellunde, Pilar, Godo, Lluís, Plaza, Enric
Format: Journal Article
Language:English
Published: Oxford Elsevier B.V 01.12.2012
Elsevier
Subjects:
ISSN:0004-3702, 1872-7921
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract This paper introduces a logical model of inductive generalization, and specifically of the machine learning task of inductive concept learning (ICL). We argue that some inductive processes, like ICL, can be seen as a form of defeasible reasoning. We define a consequence relation characterizing which hypotheses can be induced from given sets of examples, and study its properties, showing they correspond to a rather well-behaved non-monotonic logic. We will also show that with the addition of a preference relation on inductive theories we can characterize the inductive bias of ICL algorithms. The second part of the paper shows how this logical characterization of inductive generalization can be integrated with another form of non-monotonic reasoning (argumentation), to define a model of multiagent ICL. This integration allows two or more agents to learn, in a consistent way, both from induction and from arguments used in the communication between them. We show that the inductive theories achieved by multiagent induction plus argumentation are sound, i.e. they are precisely the same as the inductive theories built by a single agent with all data.
AbstractList This paper introduces a logical model of inductive generalization, and specifically of the machine learning task of inductive concept learning (ICL). We argue that some inductive processes, like ICL, can be seen as a form of defeasible reasoning. We define a consequence relation characterizing which hypotheses can be induced from given sets of examples, and study its properties, showing they correspond to a rather well-behaved non-monotonic logic. We will also show that with the addition of a preference relation on inductive theories we can characterize the inductive bias of ICL algorithms. The second part of the paper shows how this logical characterization of inductive generalization can be integrated with another form of non-monotonic reasoning (argumentation), to define a model of multiagent ICL. This integration allows two or more agents to learn, in a consistent way, both from induction and from arguments used in the communication between them. We show that the inductive theories achieved by multiagent induction plus argumentation are sound, i.e. they are precisely the same as the inductive theories built by a single agent with all data.
Author Ontañón, Santiago
Dellunde, Pilar
Plaza, Enric
Godo, Lluís
Author_xml – sequence: 1
  givenname: Santiago
  surname: Ontañón
  fullname: Ontañón, Santiago
  email: santi@iiia.csic.es, santi@cs.drexel.edu
  organization: IIIA-CSIC, Artificial Intelligence Research Institute, Spanish Council for Scientific Research, Campus UAB, 08193 Bellaterra, Catalonia, Spain
– sequence: 2
  givenname: Pilar
  surname: Dellunde
  fullname: Dellunde, Pilar
  email: pilar@iiia.csic.es, pilar.dellunde@uab.cat
  organization: IIIA-CSIC, Artificial Intelligence Research Institute, Spanish Council for Scientific Research, Campus UAB, 08193 Bellaterra, Catalonia, Spain
– sequence: 3
  givenname: Lluís
  surname: Godo
  fullname: Godo, Lluís
  email: godo@iiia.csic.es
  organization: IIIA-CSIC, Artificial Intelligence Research Institute, Spanish Council for Scientific Research, Campus UAB, 08193 Bellaterra, Catalonia, Spain
– sequence: 4
  givenname: Enric
  surname: Plaza
  fullname: Plaza, Enric
  email: enric@iiia.csic.es
  organization: IIIA-CSIC, Artificial Intelligence Research Institute, Spanish Council for Scientific Research, Campus UAB, 08193 Bellaterra, Catalonia, Spain
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26616242$$DView record in Pascal Francis
BookMark eNqFkLtKBTEQhoMoeLy8gUUay11z2VssBBFvINhoYxOyyURy2E2WJB707d3jamOh1czA9_8M3wHa9cEDQieUlJTQ5mxdqpidzyUjlJWkKwlpdtCKdi0rWsHoLloRQqqCt4Tto4OU1vPJhaAr9HKJDVhQyfUD4DgvwTv_isdgYMDBYufNm85uA1gHr2HKeAAVvxgbw4jhXY3TAAkrb2ZkHN-80yq74I_QnlVDguPveYieb66fru6Kh8fb-6vLh0LzjuWC9w1vhOlbIJ2piCW16GsujGoqTloKbWctNQp63XV1ZQWA6q0WtjZW8Ao4P0SnS--kklaDjcprl-QU3ajih2RNQxtWsZk7XzgdQ0oRrNQuf32ao3KDpERubcq1XGzKrU1JOjnbnMPVr_BP_z-xiyUGs4CNgyiTdjB7NC6CztIE93fBJ0g3lWQ
CODEN AINTBB
CitedBy_id crossref_primary_10_1016_j_knosys_2013_07_010
crossref_primary_10_1016_j_future_2021_04_005
crossref_primary_10_1080_11663081_2020_1766248
crossref_primary_10_1609_aimag_v35i3_2524
crossref_primary_10_1016_j_eswa_2016_07_037
crossref_primary_10_1007_s10458_014_9256_2
Cites_doi 10.1016/0004-3702(94)00041-X
10.1016/0004-3702(90)90101-5
10.1016/S0020-7373(87)80087-1
10.1093/logcom/exi046
10.1007/3-540-62858-4_80
10.1007/0-387-34239-7
10.1007/s10506-009-9078-8
10.1145/1329125.1329318
10.1016/S0004-3702(99)00038-7
10.1007/BF00993074
10.1016/j.artint.2007.04.012
10.1016/0890-5401(91)90023-U
10.1016/j.artint.2007.04.007
10.1007/BF00117105
ContentType Journal Article
Copyright 2012 Elsevier B.V.
2014 INIST-CNRS
Copyright_xml – notice: 2012 Elsevier B.V.
– notice: 2014 INIST-CNRS
DBID 6I.
AAFTH
AAYXX
CITATION
IQODW
DOI 10.1016/j.artint.2012.08.006
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Pascal-Francis
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
Applied Sciences
EISSN 1872-7921
EndPage 148
ExternalDocumentID 26616242
10_1016_j_artint_2012_08_006
S0004370212001063
GroupedDBID --K
--M
--Z
-~X
.DC
.~1
0R~
1B1
1~.
1~5
23N
4.4
457
4G.
5GY
5VS
6I.
6J9
6TJ
7-5
71M
77K
8P~
9JN
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AAKPC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABVKL
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNCT
ACNNM
ACRLP
ACWUS
ACZNC
ADBBV
ADEZE
ADMUD
AEBSH
AECPX
AEFWE
AEKER
AENEX
AETEA
AEXQZ
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
E3Z
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F0J
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
IHE
IXB
J1W
JJJVA
KOM
KQ8
LG9
LY7
M41
MO0
MVM
N9A
NCXOZ
O-L
O9-
OAUVE
OK1
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
R2-
RIG
RNS
ROL
RPZ
SBC
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
TAE
TN5
TR2
TWZ
UPT
UQL
VQA
WH7
WUQ
XFK
XJE
XJT
XPP
XSW
ZMT
~02
~G-
77I
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
AFXIZ
AGCQF
AGRNS
BNPGV
IQODW
SSH
ID FETCH-LOGICAL-c382t-3b6369db7e08d40f059b539da643071e78ff1daebc8854f9eeabfc9f5df934e33
ISICitedReferencesCount 9
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000311977500005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0004-3702
IngestDate Mon Jul 21 09:16:23 EDT 2025
Sat Nov 29 06:08:08 EST 2025
Tue Nov 18 22:18:59 EST 2025
Fri Feb 23 02:31:58 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Concept learning
Argumentation
Logic
Induction
Machine learning
Bias
Preference theory
Inductive learning
Modeling
Circumscription
Default logic
Multiagent system
Revision
Supervised learning
Reasoning
Inductive logic programming
Artificial intelligence
Language English
License http://www.elsevier.com/open-access/userlicense/1.0
https://www.elsevier.com/tdm/userlicense/1.0
https://www.elsevier.com/open-access/userlicense/1.0
CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c382t-3b6369db7e08d40f059b539da643071e78ff1daebc8854f9eeabfc9f5df934e33
OpenAccessLink https://dx.doi.org/10.1016/j.artint.2012.08.006
PageCount 20
ParticipantIDs pascalfrancis_primary_26616242
crossref_citationtrail_10_1016_j_artint_2012_08_006
crossref_primary_10_1016_j_artint_2012_08_006
elsevier_sciencedirect_doi_10_1016_j_artint_2012_08_006
PublicationCentury 2000
PublicationDate 2012-12-01
PublicationDateYYYYMMDD 2012-12-01
PublicationDate_xml – month: 12
  year: 2012
  text: 2012-12-01
  day: 01
PublicationDecade 2010
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Artificial intelligence
PublicationYear 2012
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References N. Rotstein, M. Moguillansky, G. Simari, Dialectical abstract argumentation: a characterization of the marking criterion, in: Proceedings of the Twenty First International Joint Conference on Artificial Intelligence (IJCAI), 2009, pp. 898–903.
Pino-Pérez, Uzcátegui (br0060) 1999; 111
Lavrač, Džeroski (br0110) 1994
Quinlan (br0120) 1990; 5
N. Lachiche, P. Marquis, A model for generalization based on confirmatory induction, in: Proceedings of the 9th European Conference on Machine Learning (ECML), 1997, pp. 154–161.
Ontañón, Plaza (br0090) 2010
Delgrande (br0030) 1987; 26
Prakken (br0220) 2005; 15
Možina, Zabkar, Bratko (br0250) 2007; 171
Nienhuys-Cheng (br0180) 1997
Michalski (br0230) 1993; 11
Ontañón, Dellunde, Godo, Plaza (br0080) 2010
Enderton (br0130) 2001
Lafage, Lang (br0170) 2001; vol. 2143
Wardeh, Bench-Capon, Coenen (br0260) 2009; 17
Avron (br0150) 1991; 92
Flach (br0050) 1996
S. Ontañón, E. Plaza, Learning and joint deliberation through argumentation in multiagent systems, in: Proceedings of the Sixth International Conference on Agents and Multiagent Systems (AAMAS), 2007, pp. 971–978.
Datteri, Hosni, Tamburrini (br0020) 2006
Flach (br0010) 2000
Kraus, Lehmann, Magidor (br0070) 1990; 44
Gabbay (br0140) 1985
Coste-Marquis, Devred, Konieczny, Lagasquie-Schiex, Marquis (br0240) 2007; 171
Mitchell (br0100) 1997
Dung (br0190) 1995; 77
Amgoud, Serrurier (br0270) 2007
Vapnik (br0160) 2006
C. Chesñevar, G. Simari, A lattice-based approach to computing warranted beliefs in skeptical argumentation frameworks, in: Proceedings of the Twentieth International Joint Conference on Artificial Intelligence (IJCAI), 2007, pp. 280–285.
Enderton (10.1016/j.artint.2012.08.006_br0130) 2001
Pino-Pérez (10.1016/j.artint.2012.08.006_br0060) 1999; 111
Avron (10.1016/j.artint.2012.08.006_br0150) 1991; 92
Nienhuys-Cheng (10.1016/j.artint.2012.08.006_br0180) 1997
10.1016/j.artint.2012.08.006_br0210
Dung (10.1016/j.artint.2012.08.006_br0190) 1995; 77
Wardeh (10.1016/j.artint.2012.08.006_br0260) 2009; 17
Michalski (10.1016/j.artint.2012.08.006_br0230) 1993; 11
Flach (10.1016/j.artint.2012.08.006_br0050) 1996
Gabbay (10.1016/j.artint.2012.08.006_br0140) 1985
Amgoud (10.1016/j.artint.2012.08.006_br0270) 2007
Datteri (10.1016/j.artint.2012.08.006_br0020) 2006
Kraus (10.1016/j.artint.2012.08.006_br0070) 1990; 44
Mitchell (10.1016/j.artint.2012.08.006_br0100) 1997
Delgrande (10.1016/j.artint.2012.08.006_br0030) 1987; 26
Prakken (10.1016/j.artint.2012.08.006_br0220) 2005; 15
Možina (10.1016/j.artint.2012.08.006_br0250) 2007; 171
Vapnik (10.1016/j.artint.2012.08.006_br0160) 2006
Lafage (10.1016/j.artint.2012.08.006_br0170) 2001; vol. 2143
Ontañón (10.1016/j.artint.2012.08.006_br0080) 2010
Ontañón (10.1016/j.artint.2012.08.006_br0090) 2010
Coste-Marquis (10.1016/j.artint.2012.08.006_br0240) 2007; 171
Quinlan (10.1016/j.artint.2012.08.006_br0120) 1990; 5
10.1016/j.artint.2012.08.006_br0200
Flach (10.1016/j.artint.2012.08.006_br0010) 2000
10.1016/j.artint.2012.08.006_br0280
10.1016/j.artint.2012.08.006_br0040
Lavrač (10.1016/j.artint.2012.08.006_br0110) 1994
References_xml – start-page: 267
  year: 1996
  end-page: 281
  ident: br0050
  article-title: Rationality postulates for induction
  publication-title: Proc. 6th Int. Conf. on Theoretical Aspects of Rationality and Knowledge
– start-page: 839
  year: 2010
  end-page: 846
  ident: br0090
  article-title: Multiagent inductive learning: an argumentation-based approach
  publication-title: Proceedings of the Twenty Seventh International Conference on Machine Learning (ICML)
– volume: 77
  start-page: 321
  year: 1995
  end-page: 357
  ident: br0190
  article-title: On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic programming and n-person games
  publication-title: Artificial Intelligence
– year: 1997
  ident: br0100
  article-title: Machine Learning
– start-page: 439
  year: 1985
  end-page: 457
  ident: br0140
  article-title: Theoretical foundations for non-monotonic reasoning in expert systems
  publication-title: Logics and Models of Concurrent Systems
– reference: C. Chesñevar, G. Simari, A lattice-based approach to computing warranted beliefs in skeptical argumentation frameworks, in: Proceedings of the Twentieth International Joint Conference on Artificial Intelligence (IJCAI), 2007, pp. 280–285.
– start-page: 155
  year: 2000
  end-page: 196
  ident: br0010
  article-title: Logical characterisations of inductive learning
  publication-title: Handbook of Defeasible Reasoning and Uncertainty Management Systems, vol. 4, Abductive Reasoning and Learning
– volume: 44
  start-page: 167
  year: 1990
  end-page: 207
  ident: br0070
  article-title: Nonmonotonic reasoning, preferential models and cumulative logics
  publication-title: Artificial Intelligence
– reference: N. Rotstein, M. Moguillansky, G. Simari, Dialectical abstract argumentation: a characterization of the marking criterion, in: Proceedings of the Twenty First International Joint Conference on Artificial Intelligence (IJCAI), 2009, pp. 898–903.
– year: 1994
  ident: br0110
  article-title: Inductive Logic Programming
  publication-title: Techniques and Applications
– year: 2006
  ident: br0160
  article-title: Estimation of Dependences Based on Empirical Data
  publication-title: Information Science and Statistics
– volume: 15
  start-page: 1009
  year: 2005
  end-page: 1040
  ident: br0220
  article-title: Coherence and flexibility in dialogue games for argumentation
  publication-title: Journal of Logic and Computation
– volume: vol. 2143
  start-page: 48
  year: 2001
  end-page: 59
  ident: br0170
  article-title: Propositional distances and preference representation
  publication-title: Proceedings of ECSQARU 2001
– volume: 5
  start-page: 239
  year: 1990
  end-page: 266
  ident: br0120
  article-title: Learning logical definitions from relations
  publication-title: Machine Learning
– volume: 11
  start-page: 111
  year: 1993
  end-page: 152
  ident: br0230
  article-title: Inferential theory of learning as a conceptual basis for multistrategy learning
  publication-title: Machine Learning
– volume: 171
  start-page: 730
  year: 2007
  end-page: 753
  ident: br0240
  article-title: On the merging of Dungʼs argumentation systems
  publication-title: Artificial Intelligence
– volume: 17
  start-page: 183
  year: 2009
  end-page: 215
  ident: br0260
  article-title: Padua: a protocol for argumentation dialogue using association rules
  publication-title: Artificial Intelligence in Law
– volume: 111
  start-page: 131
  year: 1999
  end-page: 169
  ident: br0060
  article-title: Jumping to explanations versus jumping to conclusions
  publication-title: Artificial Intelligence
– reference: N. Lachiche, P. Marquis, A model for generalization based on confirmatory induction, in: Proceedings of the 9th European Conference on Machine Learning (ECML), 1997, pp. 154–161.
– start-page: 1
  year: 2007
  end-page: 7
  ident: br0270
  article-title: Arguing and explaining classifications
  publication-title: Proceedings of the Sixth International Conference on Agents and Multiagent Systems (AAMAS)
– year: 2001
  ident: br0130
  article-title: A Mathematical Introduction to Logic
– start-page: 213
  year: 1997
  end-page: 226
  ident: br0180
  article-title: Distance between herbrand interpretations: A measure for approximations to a target concept
  publication-title: Proceedings of the 7th International Workshop on Inductive Logic Programming
– volume: 92
  start-page: 105
  year: 1991
  end-page: 140
  ident: br0150
  article-title: Simple consequence relations
  publication-title: Information and Computation
– start-page: 259
  year: 2010
  end-page: 268
  ident: br0080
  article-title: Towards a logical model of induction from examples and communication
  publication-title: Proceedings of the 13th International Conference of the Catalan Association for Artificial Intelligence (CCIA)
– volume: 26
  start-page: 123
  year: 1987
  end-page: 141
  ident: br0030
  article-title: A formal approach to learning from examples
  publication-title: International Journal of Man–Machine Studies
– reference: S. Ontañón, E. Plaza, Learning and joint deliberation through argumentation in multiagent systems, in: Proceedings of the Sixth International Conference on Agents and Multiagent Systems (AAMAS), 2007, pp. 971–978.
– start-page: 379
  year: 2006
  end-page: 399
  ident: br0020
  article-title: An inductionless, default based account of machine learning
  publication-title: Model-Based Reasoning in Science and Engineering
– volume: 171
  start-page: 922
  year: 2007
  end-page: 937
  ident: br0250
  article-title: Argument based machine learning
  publication-title: Artificial Intelligence
– volume: 77
  start-page: 321
  issue: 2
  year: 1995
  ident: 10.1016/j.artint.2012.08.006_br0190
  article-title: On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic programming and n-person games
  publication-title: Artificial Intelligence
  doi: 10.1016/0004-3702(94)00041-X
– year: 1994
  ident: 10.1016/j.artint.2012.08.006_br0110
  article-title: Inductive Logic Programming
– volume: 44
  start-page: 167
  issue: 1–2
  year: 1990
  ident: 10.1016/j.artint.2012.08.006_br0070
  article-title: Nonmonotonic reasoning, preferential models and cumulative logics
  publication-title: Artificial Intelligence
  doi: 10.1016/0004-3702(90)90101-5
– start-page: 213
  year: 1997
  ident: 10.1016/j.artint.2012.08.006_br0180
  article-title: Distance between herbrand interpretations: A measure for approximations to a target concept
– volume: 26
  start-page: 123
  year: 1987
  ident: 10.1016/j.artint.2012.08.006_br0030
  article-title: A formal approach to learning from examples
  publication-title: International Journal of Man–Machine Studies
  doi: 10.1016/S0020-7373(87)80087-1
– year: 1997
  ident: 10.1016/j.artint.2012.08.006_br0100
– year: 2001
  ident: 10.1016/j.artint.2012.08.006_br0130
– start-page: 439
  year: 1985
  ident: 10.1016/j.artint.2012.08.006_br0140
  article-title: Theoretical foundations for non-monotonic reasoning in expert systems
– volume: 15
  start-page: 1009
  year: 2005
  ident: 10.1016/j.artint.2012.08.006_br0220
  article-title: Coherence and flexibility in dialogue games for argumentation
  publication-title: Journal of Logic and Computation
  doi: 10.1093/logcom/exi046
– ident: 10.1016/j.artint.2012.08.006_br0040
  doi: 10.1007/3-540-62858-4_80
– year: 2006
  ident: 10.1016/j.artint.2012.08.006_br0160
  article-title: Estimation of Dependences Based on Empirical Data
  doi: 10.1007/0-387-34239-7
– volume: 17
  start-page: 183
  issue: 3
  year: 2009
  ident: 10.1016/j.artint.2012.08.006_br0260
  article-title: Padua: a protocol for argumentation dialogue using association rules
  publication-title: Artificial Intelligence in Law
  doi: 10.1007/s10506-009-9078-8
– start-page: 155
  year: 2000
  ident: 10.1016/j.artint.2012.08.006_br0010
  article-title: Logical characterisations of inductive learning
– start-page: 259
  year: 2010
  ident: 10.1016/j.artint.2012.08.006_br0080
  article-title: Towards a logical model of induction from examples and communication
– ident: 10.1016/j.artint.2012.08.006_br0280
  doi: 10.1145/1329125.1329318
– start-page: 839
  year: 2010
  ident: 10.1016/j.artint.2012.08.006_br0090
  article-title: Multiagent inductive learning: an argumentation-based approach
– start-page: 267
  year: 1996
  ident: 10.1016/j.artint.2012.08.006_br0050
  article-title: Rationality postulates for induction
– ident: 10.1016/j.artint.2012.08.006_br0200
– volume: 111
  start-page: 131
  issue: 1–2
  year: 1999
  ident: 10.1016/j.artint.2012.08.006_br0060
  article-title: Jumping to explanations versus jumping to conclusions
  publication-title: Artificial Intelligence
  doi: 10.1016/S0004-3702(99)00038-7
– volume: 11
  start-page: 111
  issue: 2–3
  year: 1993
  ident: 10.1016/j.artint.2012.08.006_br0230
  article-title: Inferential theory of learning as a conceptual basis for multistrategy learning
  publication-title: Machine Learning
  doi: 10.1007/BF00993074
– volume: 171
  start-page: 730
  year: 2007
  ident: 10.1016/j.artint.2012.08.006_br0240
  article-title: On the merging of Dungʼs argumentation systems
  publication-title: Artificial Intelligence
  doi: 10.1016/j.artint.2007.04.012
– volume: 92
  start-page: 105
  issue: 1
  year: 1991
  ident: 10.1016/j.artint.2012.08.006_br0150
  article-title: Simple consequence relations
  publication-title: Information and Computation
  doi: 10.1016/0890-5401(91)90023-U
– start-page: 379
  year: 2006
  ident: 10.1016/j.artint.2012.08.006_br0020
  article-title: An inductionless, default based account of machine learning
– volume: 171
  start-page: 922
  issue: 10–15
  year: 2007
  ident: 10.1016/j.artint.2012.08.006_br0250
  article-title: Argument based machine learning
  publication-title: Artificial Intelligence
  doi: 10.1016/j.artint.2007.04.007
– ident: 10.1016/j.artint.2012.08.006_br0210
– start-page: 1
  year: 2007
  ident: 10.1016/j.artint.2012.08.006_br0270
  article-title: Arguing and explaining classifications
– volume: 5
  start-page: 239
  year: 1990
  ident: 10.1016/j.artint.2012.08.006_br0120
  article-title: Learning logical definitions from relations
  publication-title: Machine Learning
  doi: 10.1007/BF00117105
– volume: vol. 2143
  start-page: 48
  year: 2001
  ident: 10.1016/j.artint.2012.08.006_br0170
  article-title: Propositional distances and preference representation
SSID ssj0003991
Score 2.1049647
Snippet This paper introduces a logical model of inductive generalization, and specifically of the machine learning task of inductive concept learning (ICL). We argue...
SourceID pascalfrancis
crossref
elsevier
SourceType Index Database
Enrichment Source
Publisher
StartPage 129
SubjectTerms Applied sciences
Argumentation
Artificial intelligence
Computer science; control theory; systems
Concept learning
Exact sciences and technology
Induction
Learning and adaptive systems
Logic
Machine learning
Title A defeasible reasoning model of inductive concept learning from examples and communication
URI https://dx.doi.org/10.1016/j.artint.2012.08.006
Volume 193
WOSCitedRecordID wos000311977500005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-7921
  dateEnd: 20180131
  omitProxy: false
  ssIdentifier: ssj0003991
  issn: 0004-3702
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ba9swFBZZuofB2H3sWvSwPQ0P27Ij6dHrsttDKayDsBcjy1JJMU5I0hL6X_pfd3RN2jC6DfYigolso_P5nE9H54LQG64oZWCYkpFiZVLQ0hwSZrBVyUmpm5QVjXTNJujhIZtM-NFgcBlyYc472vdsvebz_ypquAbCNqmzfyHueFO4AL9B6DCC2GH8I8FX71qllQCod6Ylilg6h6tteeMKRJgSryZgSLqUxdA54sTlmqi1MBWDlyHjbZM_sk1kq4UNMrItP7aqekafbQ-s9IC8_ZDZkTgvK0hxKk5mkTzDNJPDZpnstBMxTvgz7JWtw6A7swf5HyPxP-rEhaW7434xldsuiyy_Fv6xm0vjdXMB6i51ulk5dcwo8H_ucqijvuZkS-Nm3mHijHfmynbu2AXnojh9b0szmBBa4wI2UbTXynBbw_7dno9SU_zebpnJLbSX05KzIdqrvo4n36KpB3bnWzK6Vw-5mTaAcPdZv-M-d-diCV-kdq1UtvjN8QN0z29McOUA9RANVP8I3Q9NP7C3AY_Rzwpv8IUjvrDFF55pHPGFPb5wwBc2-MIBXxjwha_g6wn68Wl8fPAl8Q06EklYvkpIMyIjbgp0p6wtUg1UvSkJbwXQXKCuijKts1aoRjJWFporJRotuS5bzUmhCHmKhv2sV88QTlUpW6V0q5u2kCbwVedciRKsrwQCNXqOSFi6Wvrq9aaJSleHMMXT2i14bRa8Nr1VU5iVxFlzV73lhv_TIJXaM1DHLGsA0g0z968IMT7OEGCTg_Xin2_9Et3ZfESv0HC1OFOv0W15vpouF_sekr8A6OG5SQ
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+defeasible+reasoning+model+of+inductive+concept+learning+from+examples+and+communication&rft.jtitle=Artificial+intelligence&rft.au=Onta%C3%B1%C3%B3n%2C+Santiago&rft.au=Dellunde%2C+Pilar&rft.au=Godo%2C+Llu%C3%ADs&rft.au=Plaza%2C+Enric&rft.date=2012-12-01&rft.pub=Elsevier+B.V&rft.issn=0004-3702&rft.eissn=1872-7921&rft.volume=193&rft.spage=129&rft.epage=148&rft_id=info:doi/10.1016%2Fj.artint.2012.08.006&rft.externalDocID=S0004370212001063
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0004-3702&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0004-3702&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0004-3702&client=summon