Development of Spectral Clustering Algorithm in Cognitive Diagnosis Model: Approach for Student’s Psychological Growth
With the development of intelligent education, the diagnostic performance of the traditional cognitive diagnostic model has been unable to meet the needs of today’s education. This study uses the Gaussian mixture model (GMM) to model and optimize model parameters through maximum probability estimati...
Saved in:
| Published in: | International journal of computational intelligence systems Vol. 18; no. 1; pp. 211 - 15 |
|---|---|
| Main Author: | |
| Format: | Journal Article |
| Language: | English |
| Published: |
Dordrecht
Springer Netherlands
18.08.2025
Springer Nature B.V Springer |
| Subjects: | |
| ISSN: | 1875-6883, 1875-6891, 1875-6883 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | With the development of intelligent education, the diagnostic performance of the traditional cognitive diagnostic model has been unable to meet the needs of today’s education. This study uses the Gaussian mixture model (GMM) to model and optimize model parameters through maximum probability estimation. The spectral clustering (SC) algorithm iterative optimization was combined with a similarity matrix and Laplacian matrix to construct an improved spectral clustering cognitive diagnosis model. The proposed SC algorithm’s clustering accuracy was 0.95, ARI was 0.86, and FMI was 0.85, and its clustering performance was better than that of other comparison algorithms. The cognitive diagnosis model based on the SC algorithm showed 4.01 SC, and the psychological status score was 3.97. The clustering performance of the model proposed in this study showed a favorable outcome. Moreover, the cognitive diagnosis model based on SC can meet the cognitive diagnosis needs of most students and help improve their cognitive ability. The enhanced cognitive diagnostic model combining SC and the GMM proposed has significant advantages in clustering performance and educational application effects, providing technical support for promoting students’ psychological growth. |
|---|---|
| AbstractList | Abstract With the development of intelligent education, the diagnostic performance of the traditional cognitive diagnostic model has been unable to meet the needs of today’s education. This study uses the Gaussian mixture model (GMM) to model and optimize model parameters through maximum probability estimation. The spectral clustering (SC) algorithm iterative optimization was combined with a similarity matrix and Laplacian matrix to construct an improved spectral clustering cognitive diagnosis model. The proposed SC algorithm’s clustering accuracy was 0.95, ARI was 0.86, and FMI was 0.85, and its clustering performance was better than that of other comparison algorithms. The cognitive diagnosis model based on the SC algorithm showed 4.01 SC, and the psychological status score was 3.97. The clustering performance of the model proposed in this study showed a favorable outcome. Moreover, the cognitive diagnosis model based on SC can meet the cognitive diagnosis needs of most students and help improve their cognitive ability. The enhanced cognitive diagnostic model combining SC and the GMM proposed has significant advantages in clustering performance and educational application effects, providing technical support for promoting students’ psychological growth. With the development of intelligent education, the diagnostic performance of the traditional cognitive diagnostic model has been unable to meet the needs of today’s education. This study uses the Gaussian mixture model (GMM) to model and optimize model parameters through maximum probability estimation. The spectral clustering (SC) algorithm iterative optimization was combined with a similarity matrix and Laplacian matrix to construct an improved spectral clustering cognitive diagnosis model. The proposed SC algorithm’s clustering accuracy was 0.95, ARI was 0.86, and FMI was 0.85, and its clustering performance was better than that of other comparison algorithms. The cognitive diagnosis model based on the SC algorithm showed 4.01 SC, and the psychological status score was 3.97. The clustering performance of the model proposed in this study showed a favorable outcome. Moreover, the cognitive diagnosis model based on SC can meet the cognitive diagnosis needs of most students and help improve their cognitive ability. The enhanced cognitive diagnostic model combining SC and the GMM proposed has significant advantages in clustering performance and educational application effects, providing technical support for promoting students’ psychological growth. |
| ArticleNumber | 211 |
| Author | Chang, Xiao |
| Author_xml | – sequence: 1 givenname: Xiao surname: Chang fullname: Chang, Xiao email: sarahcxcx@163.com organization: Faculty of Foreign Languages, Huaiyin Institute of Technology |
| BookMark | eNp9kc1u1DAUhSNUJErpC7CyxDpw_Z-wG01pqVQEUmFteZybjEeZONieDt3xGrweT4LbIGDFytbROZ_v9XlenUxhwqp6SeE1BdBvkhC0VTUwWQM0oq2PT6pT2mhZq6bhJ__cn1XnKe0AgFEBIMRp9e0C73AM8x6nTEJPbmd0OdqRrMdDyhj9NJDVOITo83ZP_ETWYZh89ndILrwdppB8Ih9Ch-NbsprnGKzbkj5EcpsPXWH-_P4jkU_p3m3DGAbvCvkqhmPevqie9nZMeP77PKu-XL77vH5f33y8ul6vbmrHG5ZrblvqNj2lGjXHruedhF5ikQXTqpPYUC42LWw4SgfCCgutVtxq6KxA3fGz6nrhdsHuzBz93sZ7E6w3j0KIg7ExezeiUW2LwFrVSNkLq10DmnHZOLHpmaKcFdarhVX2_HrAlM0uHOJUxjecKS2KScniYovLxZBSxP7PqxTMQ2FmKcyUwsxjYeZYQnwJpfnhzzH-Rf8n9Qsl95xQ |
| Cites_doi | 10.1007/s00701-020-04479-3 10.1002/pon.5390 10.1021/acs.jpcc.0c11473 10.1111/1440-1630.12617 10.1002/int.22319 10.1109/TPWRD.2019.2915342 10.1111/ejn.15423 10.1016/j.neucom.2022.04.030 10.1016/j.patrec.2020.08.020 10.1017/S1355617720000272 10.1016/j.neucom.2021.09.052 10.1109/LSP.2019.2961071 10.1038/s41440-021-00704-3 10.1109/TR.2021.3079955 10.1097/WAD.0000000000000379 10.23919/JCC.2020.04.013 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2025 The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: The Author(s) 2025 – notice: The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | C6C AAYXX CITATION 7SC 8FD 8FE 8FG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- L7M L~C L~D P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS DOA |
| DOI | 10.1007/s44196-025-00849-w |
| DatabaseName | Springer Nature OA Free Journals CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central UK/Ireland ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ProQuest Advanced Technologies & Aerospace Collection ProQuest Databases ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Collection ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | Computer Science Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science Education |
| EISSN | 1875-6883 |
| EndPage | 15 |
| ExternalDocumentID | oai_doaj_org_article_699e0296855f4a7c8072358c4bf26132 10_1007_s44196_025_00849_w |
| GrantInformation_xml | – fundername: Research on Teaching Chinese as a Foreign Language Syntactic from the Perspective of Dynamic Syntax |
| GroupedDBID | 0R~ 4.4 5GY AAFWJ AAJSJ AAKKN AASML ABEEZ ABFIM ACACY ACGFS ACULB ADBBV ADCVX AENEX AFGXO AFPKN ALMA_UNASSIGNED_HOLDINGS ARCSS AVBZW BCNDV C24 C6C CS3 DU5 EBLON EBS EJD GROUPED_DOAJ GTTXZ HZ~ J~4 O9- OK1 SOJ TFW TR2 AAYXX AFFHD AFKRA ARAPS BENPR BGLVJ CCPQU CITATION HCIFZ K7- PHGZM PHGZT PQGLB 7SC 8FD 8FE 8FG AZQEC DWQXO GNUQQ JQ2 L7M L~C L~D P62 PKEHL PQEST PQQKQ PQUKI PRINS |
| ID | FETCH-LOGICAL-c382t-3a91cbf117e73edf3d50f5e3a94276d5e8134b90b3e5c04a4a09763a70da4e7d3 |
| IEDL.DBID | K7- |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001552049900002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1875-6883 1875-6891 |
| IngestDate | Fri Oct 03 12:26:09 EDT 2025 Sat Nov 01 15:17:23 EDT 2025 Sat Nov 29 07:30:52 EST 2025 Tue Aug 19 01:10:47 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Psychological development Spectral clustering algorithm Cognitive diagnosis Gaussian mixture model Graph segmentation |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c382t-3a91cbf117e73edf3d50f5e3a94276d5e8134b90b3e5c04a4a09763a70da4e7d3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| OpenAccessLink | https://doaj.org/article/699e0296855f4a7c8072358c4bf26132 |
| PQID | 3267461365 |
| PQPubID | 4869256 |
| PageCount | 15 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_699e0296855f4a7c8072358c4bf26132 proquest_journals_3267461365 crossref_primary_10_1007_s44196_025_00849_w springer_journals_10_1007_s44196_025_00849_w |
| PublicationCentury | 2000 |
| PublicationDate | 2025-08-18 |
| PublicationDateYYYYMMDD | 2025-08-18 |
| PublicationDate_xml | – month: 08 year: 2025 text: 2025-08-18 day: 18 |
| PublicationDecade | 2020 |
| PublicationPlace | Dordrecht |
| PublicationPlace_xml | – name: Dordrecht – name: Abingdon |
| PublicationTitle | International journal of computational intelligence systems |
| PublicationTitleAbbrev | Int J Comput Intell Syst |
| PublicationYear | 2025 |
| Publisher | Springer Netherlands Springer Nature B.V Springer |
| Publisher_xml | – name: Springer Netherlands – name: Springer Nature B.V – name: Springer |
| References | A Li (849_CR9) 2021; 70 PA Ejegwa (849_CR16) 2023; 2 KJ Harper (849_CR1) 2020; 67 A Gibson (849_CR13) 2020; 3 M Wibroe (849_CR15) 2021; 163 HW Yeung (849_CR10) 2021; 6 NM Payton (849_CR3) 2020; 26 J Qin (849_CR12) 2021; 10 Y Cai (849_CR7) 2022; 493 G Perera (849_CR14) 2020; 2 M Betchen (849_CR17) 2020; 29 CH Hung (849_CR2) 2020; 120 L Lin (849_CR11) 2021; 125 G Liu (849_CR18) 2020; 17 TJ Park (849_CR19) 2020; 27 Y Zhao (849_CR8) 2022; 468 X Yu (849_CR4) 2020; 36 A Sellami (849_CR20) 2020; 138 J Wang (849_CR6) 2020; 383 M Dabbaghjamanesh (849_CR5) 2020; 35 |
| References_xml | – volume: 163 start-page: 1291 issue: 5 year: 2021 ident: 849_CR15 publication-title: Acta Neurochir. doi: 10.1007/s00701-020-04479-3 – volume: 29 start-page: 1148 issue: 7 year: 2020 ident: 849_CR17 publication-title: Psychooncology doi: 10.1002/pon.5390 – volume: 125 start-page: 2623 issue: 6 year: 2021 ident: 849_CR11 publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.0c11473 – volume: 67 start-page: 13 issue: 1 year: 2020 ident: 849_CR1 publication-title: Aust. Occup. Ther. J. doi: 10.1111/1440-1630.12617 – volume: 36 start-page: 757 issue: 2 year: 2020 ident: 849_CR4 publication-title: Int. J. Intell. Syst. doi: 10.1002/int.22319 – volume: 2 start-page: 271 issue: 36 year: 2020 ident: 849_CR14 publication-title: Int. J. Geriatr. Psychiatry – volume: 35 start-page: 560 issue: 2 year: 2020 ident: 849_CR5 publication-title: IEEE Trans. Power Deliv. doi: 10.1109/TPWRD.2019.2915342 – volume: 6 start-page: 6281 issue: 54 year: 2021 ident: 849_CR10 publication-title: Eur. J. Neurosci. doi: 10.1111/ejn.15423 – volume: 2 start-page: 68 issue: 1 year: 2023 ident: 849_CR16 publication-title: J. Comput. Cogn. Eng. – volume: 383 start-page: 10 issue: 28 year: 2020 ident: 849_CR6 publication-title: Neurocomputing – volume: 493 start-page: 191 issue: 7 year: 2022 ident: 849_CR7 publication-title: Neurocomputing doi: 10.1016/j.neucom.2022.04.030 – volume: 138 start-page: 594 issue: 10 year: 2020 ident: 849_CR20 publication-title: Pattern Recogn. Lett. doi: 10.1016/j.patrec.2020.08.020 – volume: 26 start-page: 1 issue: 8 year: 2020 ident: 849_CR3 publication-title: J. InT. Neuropsychol. Soc. doi: 10.1017/S1355617720000272 – volume: 468 start-page: 257 issue: 11 year: 2022 ident: 849_CR8 publication-title: Neurocomputing doi: 10.1016/j.neucom.2021.09.052 – volume: 120 start-page: 533 issue: 2 year: 2020 ident: 849_CR2 publication-title: J. Formos. Med. Assoc. – volume: 27 start-page: 381 issue: 1 year: 2020 ident: 849_CR19 publication-title: IEEE Signal Process. Lett. doi: 10.1109/LSP.2019.2961071 – volume: 10 start-page: 1251 issue: 44 year: 2021 ident: 849_CR12 publication-title: Hypertens. Res. doi: 10.1038/s41440-021-00704-3 – volume: 70 start-page: 916 issue: 3 year: 2021 ident: 849_CR9 publication-title: IEEE Trans. Reliability doi: 10.1109/TR.2021.3079955 – volume: 3 start-page: 262 issue: 34 year: 2020 ident: 849_CR13 publication-title: Alzheimer Dis. Assoc. Disord. doi: 10.1097/WAD.0000000000000379 – volume: 17 start-page: 140 issue: 4 year: 2020 ident: 849_CR18 publication-title: China Commun. doi: 10.23919/JCC.2020.04.013 |
| SSID | ssj0002140044 ssib050732782 |
| Score | 2.35916 |
| Snippet | With the development of intelligent education, the diagnostic performance of the traditional cognitive diagnostic model has been unable to meet the needs of... Abstract With the development of intelligent education, the diagnostic performance of the traditional cognitive diagnostic model has been unable to meet the... |
| SourceID | doaj proquest crossref springer |
| SourceType | Open Website Aggregation Database Index Database Publisher |
| StartPage | 211 |
| SubjectTerms | Algorithms Artificial Intelligence Cluster analysis Clustering Cognition & reasoning Cognitive ability Cognitive diagnosis Computational Intelligence Control Datasets Diagnosis Education Engineering Gaussian mixture model Graph segmentation Information technology Mathematical Logic and Foundations Mechatronics Methods Optimization Probabilistic models Psychological development Research Article Robotics Spectral clustering algorithm Students |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV09T8MwELVQxcDCN6JQkAc2iHBiO07YSqEwVUiA1M1y_UErlRY1KWXkb_D3-CXYTlJaJMTC6kSWdXf2vUvO7wFwQlUaK2miQAiGA5IYZLeUVIGRsdZSEKlC48UmWKeTdLvp3YLUl-sJK-iBC8Odx2mqUZTGCaWGCCYTxNztTkl6xoJ_7E9fxNKFYsqdwVHoYpOUt2T8XTmb932_LQ0ch3wazJYykSfsX0KZP36M-nzT3gTrJVCEzWKBW2BFj7bBRiXCAMs9uQPeFtp-4NhAJyjvvl7A1nDqSBDs5LA5fBpPBnn_GQ5GsFU1DMGros1ukEGniDa8gM2SYBxaJAvvC9bLz_ePDC4dk_DGlu55fxc8tq8fWrdBKacQSJxEeYCF9ULPhCHTDGtlsKLIUG2HScRiRXUSYtJLUQ9rKhERRCCLVbBgSAmimcJ7oDYaj_Q-gBZ1CJvXkaQqJFKIJESaWCChtNShEKIOTivT8peCNYPP-ZG9I7h1BPeO4LM6uHTWn7_pGK_9gI0DXsYB_ysO6qBR-Y6X2zDjFpsyErtOvjo4q_z5_fj3JR38x5IOwVrk483W6UkD1PLJVB-BVfmaD7LJsQ_YL5Oa7xg priority: 102 providerName: Directory of Open Access Journals – databaseName: SpringerOpen dbid: C24 link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NTxsxEB21wKEcgEJRA7Tyobd2JXttr73cQijtCVWCStwsxx8QKSRVdoEe-zf4e_wSbMcbSNUe2qvXlizPjP28fvMG4AO3dWWNLwutBS2Y9DiElLGFN5VzRjNjiU_FJsTpqby4qL_lpLCmY7t3T5Jpp14ku4WDOxFmeRFF4Ovi7iWsciLrSOQb5ByHuP-WJPolyxkyfx66dAolsf4lhPnbo2g6a042_2-WW7CRsSXqz53hNbxwk23Y7Oo2oBzG27D-TIRwB34-4w2hqUexIn38_YEG45uoohA6of74cjobtVfXaDRBg45xhI7nPL1Rg2JJtfEh6meFchSgMDqby2Y-_Lpv0NI-i76Eu3979Qa-n3w-H3wtcj2GwlBZtgXVwYxDT4hwgjrrqeXYcxeaWSkqy50klA1rPKSOG8w00ziAHaoFtpo5YekurEymE_cWUIAtOgADbLglzGgtCXYsIBHrjCNa6x587OyjfsxlN9RCYDktsQpLrNISq7seHEUTLnpGyezUMJ1dqhyBqqprh8u6kpx7poWRWMQ0YcOGPtwiadmDg84BVI7jRgVwK1gVqYA9-NQZ_Onz36e092_d9-FVmXwmXOnlAay0sxv3DtbMbTtqZu-Tfz8Cfkr5oQ priority: 102 providerName: Springer Nature |
| Title | Development of Spectral Clustering Algorithm in Cognitive Diagnosis Model: Approach for Student’s Psychological Growth |
| URI | https://link.springer.com/article/10.1007/s44196-025-00849-w https://www.proquest.com/docview/3267461365 https://doaj.org/article/699e0296855f4a7c8072358c4bf26132 |
| Volume | 18 |
| WOSCitedRecordID | wos001552049900002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1875-6883 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002140044 issn: 1875-6883 databaseCode: DOA dateStart: 20080101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1875-6883 dateEnd: 99991231 omitProxy: false ssIdentifier: ssib050732782 issn: 1875-6883 databaseCode: M~E dateStart: 20120101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Computer Science Database customDbUrl: eissn: 1875-6883 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002140044 issn: 1875-6883 databaseCode: K7- dateStart: 20140101 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1875-6883 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002140044 issn: 1875-6883 databaseCode: BENPR dateStart: 20140101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerOpen customDbUrl: eissn: 1875-6883 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002140044 issn: 1875-6883 databaseCode: C24 dateStart: 20211201 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7RlgMXCgXEQln5wA0s_IwTLtV2aeG0qnhIvUVeP9qVtpuySVmO_A3-Xn8JttdpWSS4cE2ixNE3M_7sGX8D8FLaqrDGM6y14liUngSXMhZ7UzhntDCW-tRsQk0m5elpdZI33NpcVtnHxBSobWPiHvmbQDOUKGJR1sHlVxy7RsXsam6hsQU7lIUgHJOyCvf2FKgOZ71ae4zMjEaLTYnmQNNxUVY0n6NJp-kCM0gVuRJHlfkKrzbmqiTpv8FD_0idphnpePd__-UB3M9cFI3WxvMQ7rjFHuz2fR5Qdvu92Nk5V4E8gu-_VRmhxqPYvz5ulqDx_CpqLoSRotH8LHytO79AswUa9_VJ6N26qm_WotiAbf4WjbKeOQrEGX1ai2xe__jZoo2ojN4vm1V3_hi-HB99Hn_AuXsDNrxkHeY6gD71lCqnuLOeW0m8dOGyYKqw0pWUi2lFptxJQ4QWmgRqxLUiVgunLH8C24tm4Z4CCiRHBxpBjLRUGK1LSpwIvMU646jWegCvepzqy7VIR30jx5xQrQOqdUK1Xg3gMEJ582QU2E4XmuVZnf21LqrKEVYVpZReaGVKouKhYiOmPqw5ORvAfg9tnb2-rW9xHcDr3jhub_99SM_-_bbncI8lswwL_nIftrvllXsBd823btYuh7BzeDQ5-TiErTETw7SpMEx-8At96gsi |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtQwFLVKQYINhQJioIAXsAILvxI7SAgNU0qrKSOkFqk712M77UjDpExSBnb8Bj_BR_El2E7cMkiw64JtElmOc-7D8b3nAPA4s0VuTUmR1oIhLkvsTcpYVJrcOaO5saSMYhNiNJIHB8X7FfAj9cKEssrkE6OjtpUJ_8if-zRD8DwUZb06-YSCalQ4XU0SGi0shu7rwm_Z6pc7m_77PqF0683-YBt1qgLIMEkbxLSfzLgkRDjBnC2ZzXCZOX-ZU5HbzEnC-LjAY-Yyg7nmGvuQzbTAVnMnLPPjXgKXOZMi2NVQoIRfn1oxmtjhQySgJFhIPNj22wKUy4J0fTuxe89nIrECOEOB1b5Ai6XYGCUElvLeP45qYwTcWvvf1u4GuN7l2rDfGsdNsOJm62At6VjAzq2tB-XqrsrlFvjyWxUVrEq4FzpR536UwfQ0cEr4lYH96ZF_u-b4I5zM4CDVX8HNtmpxUsMgMDd9AfsdXzv0GwO415KI_vz2vYZLUQe-nVeL5vg2-HAha3EHrM6qmbsLoE_itE-TsMks4UZrSbDjPi-zzjiite6BpwkX6qQlIVFndNMRRcqjSEUUqUUPvA7QOXsyEIjHC9X8SHX-SOVF4TAtcpllJdfCSCxC07Th49LvqRntgY0EJdV5tVqd46gHniUwnt_--5Tu_Xu0R-Dq9v67XbW7MxreB9doNAmJiNwAq8381D0AV8znZlLPH0Z7g-DwokH6C4zVZOg |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwEB5BQagcaClU3dJSH7hBVCe246S3ZduFqmhVCZB6s7z-aVdakiqbdjnyGrxen6S2kyy7CA6IqzOWLM-M_Tkz8w3AG6bzVCubRFJyEtHMYudSSkdWpcYoSZWObWg2wUej7OIiP1-q4g_Z7l1Isqlp8CxNRX14re3hovDNXeIheZZFnhA-j-YP4ZGPSHkbH7T1Dv4sTmJvo7Stlvnz1JUbKRD3r6DN3wKk4d4Zbvz_ijfhWYs5Ub8xkufwwBRbsNH1c0Cte2_B0yVywhfwfSmfCJUW-U71_rcIGkxvPLuCE0L96WVZTeqrb2hSoEGXiYSOm_y9yQz5VmvTI9RvmcuRg8joc0Oneffj5wytnL_oQ1XO66uX8HV48mXwMWr7NESKZEkdEenUO7ZxzA0nRluiGbbMuGGa8FQzk8WEjnM8JoYpTCWV2IEgIjnWkhquyTasFWVhdgA5OCMdYMCK6ZgqKbMYG-oQijbKxFLKHrztdCWuGzoOsSBeDlss3BaLsMVi3oP3Xp0LSU-lHQbK6lK0ninSPDc4ydOMMUslVxnmvnxY0bF1r0uS9GCvMwbR-vdMONDLaepTBHvwrlP-r89_X9Luv4kfwJPz46H4dDo6ewXrSTAf9-rP9mCtrm7MPjxWt_VkVr0OZn8POCsFeQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Development+of+Spectral+Clustering+Algorithm+in+Cognitive+Diagnosis+Model%3A+Approach+for+Student%E2%80%99s+Psychological+Growth&rft.jtitle=International+journal+of+computational+intelligence+systems&rft.au=Chang%2C+Xiao&rft.date=2025-08-18&rft.pub=Springer+Nature+B.V&rft.issn=1875-6891&rft.eissn=1875-6883&rft.volume=18&rft.issue=1&rft.spage=211&rft_id=info:doi/10.1007%2Fs44196-025-00849-w |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1875-6883&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1875-6883&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1875-6883&client=summon |