Artificial neural networks applied for flood forecasting in ungauged basin – the Paranaíba river study case
Flow simulation using artificial neural networks (ANNs) in the modelling has been widely applied and has gained prominence in regions lacking data. The hydrological variables are subject to the influence of morphological characteristics and urbanization in the watershed. Statistical models, such as...
Saved in:
| Published in: | Proceedings of the International Association of Hydrological Sciences Vol. 386; pp. 81 - 86 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article Conference Proceeding |
| Language: | English |
| Published: |
Gottingen
Copernicus GmbH
19.04.2024
Copernicus Publications |
| Subjects: | |
| ISSN: | 2199-899X, 2199-8981, 2199-899X |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Flow simulation using artificial neural networks (ANNs) in the modelling has been widely applied and has gained prominence in regions lacking data. The hydrological variables are subject to the influence of morphological characteristics and urbanization in the watershed. Statistical models, such as ANNs, need to be able to identify the relationship between the hydrological inputs and outputs of the model, without explicitly considering the other relationships involved in physical processes. This work aimed to apply a Multilayer Perceptron (MLP) neural network for predicting flows in an urban basin subject to recurrent floods, using precipitation and flow data from previous periods as inputs. After model calibration and validation for the current state of the basin (2018–2019), its responses were analysed using input data before the basin urbanization (1985–1986) to identify the error behaviour at the output as a proxy for the basin changes effect. Its efficiency was evaluated using hydrographs, showing satisfactory results in both periods. In the urbanization period, there is more dispersion for maximum flows. For the day 4 steps back in the current forecast, NSE = 0.59 was observed, whereas in the other period, NSE = 0.70. The evaluation of the models for the current period of basin urbanization showed that the model could capture the basin's physical dynamics within the established static relationship. Also, the result found in the statistical relationships for the inputs showed once again the impact of urbanization on the basin. |
|---|---|
| AbstractList | Flow simulation using artificial neural networks (ANNs) in the modelling has been widely applied and has gained prominence in regions lacking data. The hydrological variables are subject to the influence of morphological characteristics and urbanization in the watershed. Statistical models, such as ANNs, need to be able to identify the relationship between the hydrological inputs and outputs of the model, without explicitly considering the other relationships involved in physical processes. This work aimed to apply a Multilayer Perceptron (MLP) neural network for predicting flows in an urban basin subject to recurrent floods, using precipitation and flow data from previous periods as inputs. After model calibration and validation for the current state of the basin (2018–2019), its responses were analysed using input data before the basin urbanization (1985–1986) to identify the error behaviour at the output as a proxy for the basin changes effect. Its efficiency was evaluated using hydrographs, showing satisfactory results in both periods. In the urbanization period, there is more dispersion for maximum flows. For the day 4 steps back in the current forecast, NSE = 0.59 was observed, whereas in the other period, NSE = 0.70. The evaluation of the models for the current period of basin urbanization showed that the model could capture the basin's physical dynamics within the established static relationship. Also, the result found in the statistical relationships for the inputs showed once again the impact of urbanization on the basin. |
| Author | de Menezes Filho, Frederico C. M. Fava, Maria C. Brandão, Abderraman R. A. Oliveira, Paulo T. S. |
| Author_xml | – sequence: 1 givenname: Abderraman R. A. orcidid: 0000-0003-0502-5234 surname: Brandão fullname: Brandão, Abderraman R. A. – sequence: 2 givenname: Frederico C. M. surname: de Menezes Filho fullname: de Menezes Filho, Frederico C. M. – sequence: 3 givenname: Paulo T. S. surname: Oliveira fullname: Oliveira, Paulo T. S. – sequence: 4 givenname: Maria C. orcidid: 0000-0002-8201-4339 surname: Fava fullname: Fava, Maria C. |
| BookMark | eNp9UUtu1TAUjVCRKKULYGaJccCfxLGHVcWnUiUYgMTMunauX_0IdrAdUGfsgXWwCnbCSnDfQwgxYHQ_Oufcz3nYncQUseseM_p0ZHp4tga4Kb1Qsles55QP97pTzrTuldbvT_7KH3TnpewppWwcNZPqtIsXuQYfXICFRNzyIdQvKX8oBNZ1CTgTnzLxS0qHDB2UGuKOhEi2uINt1xAWSit_fv1G6g2SN5Ahwo_vFkgOnzGTUrf5ljQiPurue1gKnv-OZ927F8_fXr7qr1-_vLq8uO6dULz2HDTnfNZeTDgC425kDpUGrhmfcQarQPp54lowNTsvrUCwA7WMweTRKnHWXR115wR7s-bwEfKtSRDMoZHyzkA73C1ovBy1lByHyfpBUYD2GRSDllwgtdPYtJ4ctdacPm1YqtmnLce2vhF8mBSdJOMNxY4ol1MpGf2fqYyaO5fMwSXTXDKKmTuXGmf6h-NChRpSrBnC8h_mL1LPnbM |
| CitedBy_id | crossref_primary_10_3390_s25072154 |
| Cites_doi | 10.6008/CBPC2179-6858.2021.007.0049 10.1029/2018WR023749 10.1623/hysj.48.3.399.45291 10.1016/j.jhydrol.2016.03.026 10.21168/rega.v18e2 10.14393/ufu.di.2017.304 10.1002/hyp.14987 10.1111/jfr3.12186 10.3390/w13121612 10.11606/issn.2316-9036.v0i106p31-44 10.1016/j.jhydrol.2020.125085 10.1002/hyp.10407 10.5016/geociencias.v39i1.13644 10.1126/science.add5462 10.13031/trans.58.10715 10.1016/j.scitotenv.2022.159134 10.14393/RCG3615293 |
| ContentType | Journal Article Conference Proceeding |
| Copyright | 2024. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2024. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION 7QH 7TG 7UA 8FE 8FG AAFGM AAMXL ABJCF ABQRF ABRGS ABUWG ADZZV AEUYN AFKRA AFLLJ AGAJT AQTIP AZQEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU DWQXO EACXX F1W H96 H97 HCIFZ KL. L.G L6V M7S PCBAR PHGZM PHGZT PIMPY PKEHL PQCXX PQEST PQGLB PQQKQ PQUKI PRINS PTHSS SQOEQ DOA |
| DOI | 10.5194/piahs-386-81-2024 |
| DatabaseName | CrossRef Aqualine Meteorological & Geoastrophysical Abstracts Water Resources Abstracts ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central Korea - hybrid linking Natural Science Collection - hybrid linking Materials Science & Engineering Collection Technology Collection - hybrid linking Materials Science & Engineering Collection - hybrid linking ProQuest Central (Alumni) ProQuest Central (Alumni) - hybrid linking ProQuest One Sustainability ProQuest Central UK/Ireland SciTech Premium Collection - hybrid linking ProQuest Central Essentials - hybrid linking ProQuest Women's & Gender Studies - hybrid linking ProQuest Central Essentials - QC ProQuest Central ProQuest Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Korea Earth, Atmospheric & Aquatic Science Collection - hybrid linking ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality SciTech Premium Collection Meteorological & Geoastrophysical Abstracts - Academic Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Engineering Collection Engineering Database Earth, Atmospheric & Aquatic Science Database Proquest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central - hybrid linking ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection ProQuest One Sustainability - hybrid linking DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database Aquatic Science & Fisheries Abstracts (ASFA) Professional Technology Collection ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality Water Resources Abstracts Environmental Sciences and Pollution Management Earth, Atmospheric & Aquatic Science Collection ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Engineering Collection Meteorological & Geoastrophysical Abstracts Natural Science Collection ProQuest Central Korea ProQuest Central (New) Engineering Collection Engineering Database ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection ProQuest SciTech Collection Aqualine Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ProQuest One Academic UKI Edition ASFA: Aquatic Sciences and Fisheries Abstracts Materials Science & Engineering Collection ProQuest One Academic Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) |
| DatabaseTitleList | CrossRef Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: PIMPY name: ProQuest Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geography |
| EISSN | 2199-899X |
| EndPage | 86 |
| ExternalDocumentID | oai_doaj_org_article_f659662e47bf480aa591e349623e0b75 10_5194_piahs_386_81_2024 |
| GeographicLocations | United States--US |
| GeographicLocations_xml | – name: United States--US |
| GroupedDBID | 8CJ 8FE 8FG 8FH AAFWJ AAYXX ABJCF ACIWK ADBBV AFKRA AFPKN AFRAH AHGZY ALMA_UNASSIGNED_HOLDINGS BANNL BCNDV BENPR BGLVJ BHPHI BKSAR CCPQU CITATION D1J EBS EDH EJD FRP GROUPED_DOAJ HCIFZ L6V M7S OK1 PCBAR PHGZM PHGZT PIMPY PROAC PTHSS RKB 7QH 7TG 7UA ABUWG AEUYN AZQEC C1K DWQXO F1W H96 H97 KL. L.G PKEHL PQEST PQGLB PQQKQ PQUKI PRINS |
| ID | FETCH-LOGICAL-c382t-2a9222d9f37e5a12c51ce89a2912dedab8a6fd729318dcf6b3eab40b11a7feb83 |
| IEDL.DBID | M7S |
| ISICitedReferencesCount | 1 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001481626500013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2199-899X 2199-8981 |
| IngestDate | Fri Oct 03 12:31:57 EDT 2025 Sat Nov 01 15:10:44 EDT 2025 Sat Nov 29 05:38:48 EST 2025 Tue Nov 18 22:02:44 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://creativecommons.org/licenses/by/4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c382t-2a9222d9f37e5a12c51ce89a2912dedab8a6fd729318dcf6b3eab40b11a7feb83 |
| Notes | ObjectType-Article-1 ObjectType-Feature-2 SourceType-Conference Papers & Proceedings-1 content type line 22 |
| ORCID | 0000-0003-0502-5234 0000-0002-8201-4339 |
| OpenAccessLink | https://www.proquest.com/docview/3247807612?pq-origsite=%requestingapplication% |
| PQID | 3247807612 |
| PQPubID | 2037677 |
| PageCount | 6 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_f659662e47bf480aa591e349623e0b75 proquest_journals_3247807612 crossref_primary_10_5194_piahs_386_81_2024 crossref_citationtrail_10_5194_piahs_386_81_2024 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-04-19 |
| PublicationDateYYYYMMDD | 2024-04-19 |
| PublicationDate_xml | – month: 04 year: 2024 text: 2024-04-19 day: 19 |
| PublicationDecade | 2020 |
| PublicationPlace | Gottingen |
| PublicationPlace_xml | – name: Gottingen |
| PublicationTitle | Proceedings of the International Association of Hydrological Sciences |
| PublicationYear | 2024 |
| Publisher | Copernicus GmbH Copernicus Publications |
| Publisher_xml | – name: Copernicus GmbH – name: Copernicus Publications |
| References | ref13 ref12 ref15 ref14 ref20 ref11 ref10 ref21 ref2 ref1 ref17 ref16 ref19 ref18 ref8 ref7 ref9 ref4 ref3 ref6 ref5 |
| References_xml | – ident: ref2 doi: 10.6008/CBPC2179-6858.2021.007.0049 – ident: ref1 – ident: ref3 – ident: ref19 doi: 10.1029/2018WR023749 – ident: ref20 doi: 10.1623/hysj.48.3.399.45291 – ident: ref7 doi: 10.1016/j.jhydrol.2016.03.026 – ident: ref12 doi: 10.21168/rega.v18e2 – ident: ref15 doi: 10.14393/ufu.di.2017.304 – ident: ref11 doi: 10.1002/hyp.14987 – ident: ref16 doi: 10.1111/jfr3.12186 – ident: ref6 doi: 10.3390/w13121612 – ident: ref10 doi: 10.11606/issn.2316-9036.v0i106p31-44 – ident: ref9 doi: 10.1016/j.jhydrol.2020.125085 – ident: ref21 doi: 10.1002/hyp.10407 – ident: ref5 doi: 10.5016/geociencias.v39i1.13644 – ident: ref8 doi: 10.1126/science.add5462 – ident: ref13 doi: 10.13031/trans.58.10715 – ident: ref18 – ident: ref14 doi: 10.1016/j.scitotenv.2022.159134 – ident: ref4 doi: 10.14393/RCG3615293 – ident: ref17 |
| SSID | ssj0001559168 |
| Score | 2.2605898 |
| Snippet | Flow simulation using artificial neural networks (ANNs) in the modelling has been widely applied and has gained prominence in regions lacking data. The... |
| SourceID | doaj proquest crossref |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database |
| StartPage | 81 |
| SubjectTerms | Artificial neural networks Case studies Correlation analysis Flood forecasting Flood predictions Floods Flow simulation Hydrologic data Hydrology Machine learning Multilayer perceptrons Neural networks Performance evaluation Physical characteristics Precipitation Software Statistical models Urbanization Variables |
| SummonAdditionalLinks | – databaseName: Copernicus Publications dbid: RKB link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3dahUxEA5SCnpj6x-eWiUXXgmhm2yym1yqWLwqRRR6FyabiT0gaznntOCd79Dn6FP4Jj6JM9ltUQS90Kv9m5CQmWS-bCbfCPHc5tZnG7RyKThli3cKfEBls0NrEzbZ5Jpsoj868icn4finVF8cEzbRA08dd1A6R4jcoO1Tsb4BcEEjs5ybFpvU8_FyMkMeku_mHG7T-WASq-fgaEQG5YPX05YmARZ7cLaE07Vqfae8JjMx9henVLn7f5uaq7853PmHlu6KuzPIlC-nIvfELRzvi9tzvvPTLw_EyJ8m7gjJjJb1UuPB1xImXCoJzcrCYe18hwOsOUBaLkd5zkm0P5IEeUB6_P71UhKKlMdAbg--XSWQKw72kJW5VlJBfCg-HL55__qtmjMvqKH1ZqMMBMINOZS2RwfaDE4P6AOYoE3GDMlDVzLhcpoR8lC61CIk2yStoS-YfPtIbI2fR3wsZF9CIgjTJYPGpq7zJO466xEALa1tFqK57vo4zLTknB3jU6TlCWsrVm1F0lb0OrK2FuLFTZGziZPjT8KvWFM3gkynXV-Q6uKsuvg31S3E_rU1xHmMUyXG9p5_A5m9_1HHE3GH28s7VTrsi63N6hyfiu3hYrNcr55V8_4Bnrz9Fw priority: 102 providerName: Copernicus Gesellschaft – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PahYxEA-lCPUi9R9-tUoOnoTQTTbZTY4qFk-lB4XewmQzsR_IWr7va6G3vkOfw6fwTXySzmS3pSLoxdP-m5Awmez8kkx-I8Qbm1ufbdDKpeCULd4p8AGVzQ6tTdhkk2uyif7oyJ-chON7qb44JmyiB54Ud1A6R4jcoO1Tsb4BcEEjs5ybFpvUV_bSpg_3JlPT-WASq-fgaEQG5YPX05YmARZ7cLaE07Vqfae8JjMx9jenVLn7__g1V39zuCsezUBRvpsa-Fhs4fhE7Mw5y08vn4qRP038D5JZKeulxnSvJUzYUhIilYVD0_kOB1hzkLNcjvKcE2F_JQnyYvT46-paEhKUx0CuC37-SCBXHLAhK_uspIL4THw5_Pj5wyc1Z09QQ-vNRhkI5PtzKG2PDrQZnB7QBzBBm4wZkoeuZMLWNKrzULrUIiTbJK2hL5h8-1xsj99HfCFkX0IiGNIlg8amrvMk7jrrEQAtzU8WorlVXxxmanHOcPEt0hSDNR6rxiNpPHodWeML8fauyNnEq_E34ffcJ3eCTIldX5ChxNlQ4r8MZSH2b3s0zuOUKjG297yUY_b-Rx0vxUNuL-826bAvtjerc3wlHgwXm-V69bqa6A0h5Otk priority: 102 providerName: Directory of Open Access Journals |
| Title | Artificial neural networks applied for flood forecasting in ungauged basin – the Paranaíba river study case |
| URI | https://www.proquest.com/docview/3247807612 https://doaj.org/article/f659662e47bf480aa591e349623e0b75 |
| Volume | 386 |
| WOSCitedRecordID | wos001481626500013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAGF databaseName: Copernicus Publications customDbUrl: eissn: 2199-899X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001559168 issn: 2199-899X databaseCode: RKB dateStart: 20140101 isFulltext: true titleUrlDefault: http://publications.copernicus.org/open-access_journals/open_access_journals_a_z.html providerName: Copernicus Gesellschaft – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2199-899X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001559168 issn: 2199-899X databaseCode: DOA dateStart: 20140101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVPQU databaseName: Earth, Atmospheric & Aquatic Science Database customDbUrl: eissn: 2199-899X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001559168 issn: 2199-899X databaseCode: PCBAR dateStart: 20240101 isFulltext: true titleUrlDefault: https://search.proquest.com/eaasdb providerName: ProQuest – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 2199-899X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001559168 issn: 2199-899X databaseCode: M7S dateStart: 20240101 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2199-899X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001559168 issn: 2199-899X databaseCode: BENPR dateStart: 20240101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Publicly Available Content Database customDbUrl: eissn: 2199-899X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001559168 issn: 2199-899X databaseCode: PIMPY dateStart: 20240101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3BbtQwELWg5cAJEEUslJUPnJCsxo6d2CfUrVqBEKtoAamcIjuelJVQdkm2nPkHvoOv4E_4Ema82UUIqRdOTpyxYmVszxt78oax5zrmNmonhQnOCN1aI7x1IHQ0oHWALKqYkk2U87m9vHTVuOE2jGGVuzUxLdRx1dAe-Qka_tKS061err8IyhpFp6tjCo3b7JBYEmQK3Xu3PbxEaKJP1kv_aRC5LYSVOCCU_sv8JJb-fxbhZFku7v1vn-6zoz8_7fFqb44esFvQPWTdaZ-CgXCUcaKuTEUK_B643wJQjrCVtxS_TlfQ-IEiofmy49eULfsKJdDU4e2vb985wkVeebRv_ueP4HlPUR08UdRybAhH7MPF-fuzV2JMsSCa3KqNUN4hQIiuzUswXqrGyAas88pJFSH6YH3RRgTgOPVj0xYhBx90FqT0ZQvB5o_YQbfq4DHjZesCYpUiKFA6FIVFcVNoC96DRidmwrLdl6-bkX-c0mB8rtEPIWXVSVk1Kqu2siZlTdiLfZP1lnzjJuEZqXMvSLzZqWLVX9XjNKyxS-jfKdBlaLXNvDdOAnHmqxyyUJoJO95puh4nM75kr-YnNz9-yu5ST-iwSbpjdrDpr-EZu9N83SyHfsoOZ-fzajFNbv80jVSsq85mpwsqX7-tPmLt4s3sN8d9-ng |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtQwFLXKFImuAFHEQAEvYINkNXacxF4gxKvqqO0oiyKVlbHjm3YklJkmUxA7_oHvgJ_gT_gSrj3JIITUXRes8rITJz6-j_j6HkKeSJ8qLzVnmdMZk7XKmFUamPQZSOkg8cJHsoliOlUnJ7rcID-GtTAhrHKQiVFQ-3kV_pHvouIvVHC6xYvFOQusUWF2daDQWMHiAL58Rpetez55g_37VIi9t8ev91nPKsCqVIklE1ajTvS6TgvILBdVxitQ2grNhQdvnbJ57dHmRLT7qs5dCtbJxHFuixqcSvG-18imDGAfkc1yclS-X02XojEkdxcze9axVOVMcYSgkH8pvMgL8I_Yj7ps7-b_9hVuke0_yxJpuVa4t8kGNHdI87KN4U44jmhIzhk3MbS9o3ZlYlM0zGkdIvTDHlS2C7HedNbQi8AHfoolUJnj4a-v3ygaxLS0qMHtz-_O0jbErdCYhJdiRdgm767kRe-SUTNv4B6hRa0dWmO5EyCky3OFxbNcKrAWJLppY5IMPW2qPsN6IPr4aNDTCuAwERwGwWEUNwEcY_JsXWWxSi9yWeFXAT7rgiEzeDwxb09NL2gMNgk9WAGycLVUibWZ5hBYAUQKiSuyMdkZkGV6cYUPWcPq_uWXH5Mb-8dHh-ZwMj14QLZCq8LUGtc7ZLRsL-AhuV59Ws669lE_Mij5cNUw_A1RjlSG |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+of+the+International+Association+of+Hydrological+Sciences&rft.atitle=Artificial+neural+networks+applied+for+flood+forecasting+in+ungauged+basin+%E2%80%93+the+Parana%C3%ADba+river+study+case&rft.au=Brand%C3%A3o%2C+Abderraman+R+A&rft.au=Frederico+C+M+de+Menezes+Filho&rft.au=Oliveira%2C+Paulo+T+S&rft.au=Fava%2C+Maria+C&rft.date=2024-04-19&rft.pub=Copernicus+GmbH&rft.volume=386&rft.spage=81&rft.epage=86&rft_id=info:doi/10.5194%2Fpiahs-386-81-2024 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2199-899X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2199-899X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2199-899X&client=summon |