Artificial neural networks applied for flood forecasting in ungauged basin – the Paranaíba river study case

Flow simulation using artificial neural networks (ANNs) in the modelling has been widely applied and has gained prominence in regions lacking data. The hydrological variables are subject to the influence of morphological characteristics and urbanization in the watershed. Statistical models, such as...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the International Association of Hydrological Sciences Vol. 386; pp. 81 - 86
Main Authors: Brandão, Abderraman R. A., de Menezes Filho, Frederico C. M., Oliveira, Paulo T. S., Fava, Maria C.
Format: Journal Article Conference Proceeding
Language:English
Published: Gottingen Copernicus GmbH 19.04.2024
Copernicus Publications
Subjects:
ISSN:2199-899X, 2199-8981, 2199-899X
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Flow simulation using artificial neural networks (ANNs) in the modelling has been widely applied and has gained prominence in regions lacking data. The hydrological variables are subject to the influence of morphological characteristics and urbanization in the watershed. Statistical models, such as ANNs, need to be able to identify the relationship between the hydrological inputs and outputs of the model, without explicitly considering the other relationships involved in physical processes. This work aimed to apply a Multilayer Perceptron (MLP) neural network for predicting flows in an urban basin subject to recurrent floods, using precipitation and flow data from previous periods as inputs. After model calibration and validation for the current state of the basin (2018–2019), its responses were analysed using input data before the basin urbanization (1985–1986) to identify the error behaviour at the output as a proxy for the basin changes effect. Its efficiency was evaluated using hydrographs, showing satisfactory results in both periods. In the urbanization period, there is more dispersion for maximum flows. For the day 4 steps back in the current forecast, NSE = 0.59 was observed, whereas in the other period, NSE = 0.70. The evaluation of the models for the current period of basin urbanization showed that the model could capture the basin's physical dynamics within the established static relationship. Also, the result found in the statistical relationships for the inputs showed once again the impact of urbanization on the basin.
AbstractList Flow simulation using artificial neural networks (ANNs) in the modelling has been widely applied and has gained prominence in regions lacking data. The hydrological variables are subject to the influence of morphological characteristics and urbanization in the watershed. Statistical models, such as ANNs, need to be able to identify the relationship between the hydrological inputs and outputs of the model, without explicitly considering the other relationships involved in physical processes. This work aimed to apply a Multilayer Perceptron (MLP) neural network for predicting flows in an urban basin subject to recurrent floods, using precipitation and flow data from previous periods as inputs. After model calibration and validation for the current state of the basin (2018–2019), its responses were analysed using input data before the basin urbanization (1985–1986) to identify the error behaviour at the output as a proxy for the basin changes effect. Its efficiency was evaluated using hydrographs, showing satisfactory results in both periods. In the urbanization period, there is more dispersion for maximum flows. For the day 4 steps back in the current forecast, NSE = 0.59 was observed, whereas in the other period, NSE = 0.70. The evaluation of the models for the current period of basin urbanization showed that the model could capture the basin's physical dynamics within the established static relationship. Also, the result found in the statistical relationships for the inputs showed once again the impact of urbanization on the basin.
Author de Menezes Filho, Frederico C. M.
Fava, Maria C.
Brandão, Abderraman R. A.
Oliveira, Paulo T. S.
Author_xml – sequence: 1
  givenname: Abderraman R. A.
  orcidid: 0000-0003-0502-5234
  surname: Brandão
  fullname: Brandão, Abderraman R. A.
– sequence: 2
  givenname: Frederico C. M.
  surname: de Menezes Filho
  fullname: de Menezes Filho, Frederico C. M.
– sequence: 3
  givenname: Paulo T. S.
  surname: Oliveira
  fullname: Oliveira, Paulo T. S.
– sequence: 4
  givenname: Maria C.
  orcidid: 0000-0002-8201-4339
  surname: Fava
  fullname: Fava, Maria C.
BookMark eNp9UUtu1TAUjVCRKKULYGaJccCfxLGHVcWnUiUYgMTMunauX_0IdrAdUGfsgXWwCnbCSnDfQwgxYHQ_Oufcz3nYncQUseseM_p0ZHp4tga4Kb1Qsles55QP97pTzrTuldbvT_7KH3TnpewppWwcNZPqtIsXuQYfXICFRNzyIdQvKX8oBNZ1CTgTnzLxS0qHDB2UGuKOhEi2uINt1xAWSit_fv1G6g2SN5Ahwo_vFkgOnzGTUrf5ljQiPurue1gKnv-OZ927F8_fXr7qr1-_vLq8uO6dULz2HDTnfNZeTDgC425kDpUGrhmfcQarQPp54lowNTsvrUCwA7WMweTRKnHWXR115wR7s-bwEfKtSRDMoZHyzkA73C1ovBy1lByHyfpBUYD2GRSDllwgtdPYtJ4ctdacPm1YqtmnLce2vhF8mBSdJOMNxY4ol1MpGf2fqYyaO5fMwSXTXDKKmTuXGmf6h-NChRpSrBnC8h_mL1LPnbM
CitedBy_id crossref_primary_10_3390_s25072154
Cites_doi 10.6008/CBPC2179-6858.2021.007.0049
10.1029/2018WR023749
10.1623/hysj.48.3.399.45291
10.1016/j.jhydrol.2016.03.026
10.21168/rega.v18e2
10.14393/ufu.di.2017.304
10.1002/hyp.14987
10.1111/jfr3.12186
10.3390/w13121612
10.11606/issn.2316-9036.v0i106p31-44
10.1016/j.jhydrol.2020.125085
10.1002/hyp.10407
10.5016/geociencias.v39i1.13644
10.1126/science.add5462
10.13031/trans.58.10715
10.1016/j.scitotenv.2022.159134
10.14393/RCG3615293
ContentType Journal Article
Conference Proceeding
Copyright 2024. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2024. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7QH
7TG
7UA
8FE
8FG
AAFGM
AAMXL
ABJCF
ABQRF
ABRGS
ABUWG
ADZZV
AEUYN
AFKRA
AFLLJ
AGAJT
AQTIP
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
EACXX
F1W
H96
H97
HCIFZ
KL.
L.G
L6V
M7S
PCBAR
PHGZM
PHGZT
PIMPY
PKEHL
PQCXX
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
SQOEQ
DOA
DOI 10.5194/piahs-386-81-2024
DatabaseName CrossRef
Aqualine
Meteorological & Geoastrophysical Abstracts
Water Resources Abstracts
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central Korea - hybrid linking
Natural Science Collection - hybrid linking
Materials Science & Engineering Collection
Technology Collection - hybrid linking
Materials Science & Engineering Collection - hybrid linking
ProQuest Central (Alumni)
ProQuest Central (Alumni) - hybrid linking
ProQuest One Sustainability
ProQuest Central UK/Ireland
SciTech Premium Collection - hybrid linking
ProQuest Central Essentials - hybrid linking
ProQuest Women's & Gender Studies - hybrid linking
ProQuest Central Essentials - QC
ProQuest Central
ProQuest Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central Korea
Earth, Atmospheric & Aquatic Science Collection - hybrid linking
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
SciTech Premium Collection
Meteorological & Geoastrophysical Abstracts - Academic
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Engineering Collection
Engineering Database
Earth, Atmospheric & Aquatic Science Database
Proquest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central - hybrid linking
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest One Sustainability - hybrid linking
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
Water Resources Abstracts
Environmental Sciences and Pollution Management
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Engineering Collection
Meteorological & Geoastrophysical Abstracts
Natural Science Collection
ProQuest Central Korea
ProQuest Central (New)
Engineering Collection
Engineering Database
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
ProQuest SciTech Collection
Aqualine
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ProQuest One Academic UKI Edition
ASFA: Aquatic Sciences and Fisheries Abstracts
Materials Science & Engineering Collection
ProQuest One Academic
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
DatabaseTitleList CrossRef

Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: ProQuest Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Geography
EISSN 2199-899X
EndPage 86
ExternalDocumentID oai_doaj_org_article_f659662e47bf480aa591e349623e0b75
10_5194_piahs_386_81_2024
GeographicLocations United States--US
GeographicLocations_xml – name: United States--US
GroupedDBID 8CJ
8FE
8FG
8FH
AAFWJ
AAYXX
ABJCF
ACIWK
ADBBV
AFKRA
AFPKN
AFRAH
AHGZY
ALMA_UNASSIGNED_HOLDINGS
BANNL
BCNDV
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
CITATION
D1J
EBS
EDH
EJD
FRP
GROUPED_DOAJ
HCIFZ
L6V
M7S
OK1
PCBAR
PHGZM
PHGZT
PIMPY
PROAC
PTHSS
RKB
7QH
7TG
7UA
ABUWG
AEUYN
AZQEC
C1K
DWQXO
F1W
H96
H97
KL.
L.G
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c382t-2a9222d9f37e5a12c51ce89a2912dedab8a6fd729318dcf6b3eab40b11a7feb83
IEDL.DBID M7S
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001481626500013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2199-899X
2199-8981
IngestDate Fri Oct 03 12:31:57 EDT 2025
Sat Nov 01 15:10:44 EDT 2025
Sat Nov 29 05:38:48 EST 2025
Tue Nov 18 22:02:44 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c382t-2a9222d9f37e5a12c51ce89a2912dedab8a6fd729318dcf6b3eab40b11a7feb83
Notes ObjectType-Article-1
ObjectType-Feature-2
SourceType-Conference Papers & Proceedings-1
content type line 22
ORCID 0000-0003-0502-5234
0000-0002-8201-4339
OpenAccessLink https://www.proquest.com/docview/3247807612?pq-origsite=%requestingapplication%
PQID 3247807612
PQPubID 2037677
PageCount 6
ParticipantIDs doaj_primary_oai_doaj_org_article_f659662e47bf480aa591e349623e0b75
proquest_journals_3247807612
crossref_primary_10_5194_piahs_386_81_2024
crossref_citationtrail_10_5194_piahs_386_81_2024
PublicationCentury 2000
PublicationDate 2024-04-19
PublicationDateYYYYMMDD 2024-04-19
PublicationDate_xml – month: 04
  year: 2024
  text: 2024-04-19
  day: 19
PublicationDecade 2020
PublicationPlace Gottingen
PublicationPlace_xml – name: Gottingen
PublicationTitle Proceedings of the International Association of Hydrological Sciences
PublicationYear 2024
Publisher Copernicus GmbH
Copernicus Publications
Publisher_xml – name: Copernicus GmbH
– name: Copernicus Publications
References ref13
ref12
ref15
ref14
ref20
ref11
ref10
ref21
ref2
ref1
ref17
ref16
ref19
ref18
ref8
ref7
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref2
  doi: 10.6008/CBPC2179-6858.2021.007.0049
– ident: ref1
– ident: ref3
– ident: ref19
  doi: 10.1029/2018WR023749
– ident: ref20
  doi: 10.1623/hysj.48.3.399.45291
– ident: ref7
  doi: 10.1016/j.jhydrol.2016.03.026
– ident: ref12
  doi: 10.21168/rega.v18e2
– ident: ref15
  doi: 10.14393/ufu.di.2017.304
– ident: ref11
  doi: 10.1002/hyp.14987
– ident: ref16
  doi: 10.1111/jfr3.12186
– ident: ref6
  doi: 10.3390/w13121612
– ident: ref10
  doi: 10.11606/issn.2316-9036.v0i106p31-44
– ident: ref9
  doi: 10.1016/j.jhydrol.2020.125085
– ident: ref21
  doi: 10.1002/hyp.10407
– ident: ref5
  doi: 10.5016/geociencias.v39i1.13644
– ident: ref8
  doi: 10.1126/science.add5462
– ident: ref13
  doi: 10.13031/trans.58.10715
– ident: ref18
– ident: ref14
  doi: 10.1016/j.scitotenv.2022.159134
– ident: ref4
  doi: 10.14393/RCG3615293
– ident: ref17
SSID ssj0001559168
Score 2.2605898
Snippet Flow simulation using artificial neural networks (ANNs) in the modelling has been widely applied and has gained prominence in regions lacking data. The...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 81
SubjectTerms Artificial neural networks
Case studies
Correlation analysis
Flood forecasting
Flood predictions
Floods
Flow simulation
Hydrologic data
Hydrology
Machine learning
Multilayer perceptrons
Neural networks
Performance evaluation
Physical characteristics
Precipitation
Software
Statistical models
Urbanization
Variables
SummonAdditionalLinks – databaseName: Copernicus Publications
  dbid: RKB
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3dahUxEA5SCnpj6x-eWiUXXgmhm2yym1yqWLwqRRR6FyabiT0gaznntOCd79Dn6FP4Jj6JM9ltUQS90Kv9m5CQmWS-bCbfCPHc5tZnG7RyKThli3cKfEBls0NrEzbZ5Jpsoj868icn4finVF8cEzbRA08dd1A6R4jcoO1Tsb4BcEEjs5ybFpvU8_FyMkMeku_mHG7T-WASq-fgaEQG5YPX05YmARZ7cLaE07Vqfae8JjMx9henVLn7f5uaq7853PmHlu6KuzPIlC-nIvfELRzvi9tzvvPTLw_EyJ8m7gjJjJb1UuPB1xImXCoJzcrCYe18hwOsOUBaLkd5zkm0P5IEeUB6_P71UhKKlMdAbg--XSWQKw72kJW5VlJBfCg-HL55__qtmjMvqKH1ZqMMBMINOZS2RwfaDE4P6AOYoE3GDMlDVzLhcpoR8lC61CIk2yStoS-YfPtIbI2fR3wsZF9CIgjTJYPGpq7zJO466xEALa1tFqK57vo4zLTknB3jU6TlCWsrVm1F0lb0OrK2FuLFTZGziZPjT8KvWFM3gkynXV-Q6uKsuvg31S3E_rU1xHmMUyXG9p5_A5m9_1HHE3GH28s7VTrsi63N6hyfiu3hYrNcr55V8_4Bnrz9Fw
  priority: 102
  providerName: Copernicus Gesellschaft
– databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PahYxEA-lCPUi9R9-tUoOnoTQTTbZTY4qFk-lB4XewmQzsR_IWr7va6G3vkOfw6fwTXySzmS3pSLoxdP-m5Awmez8kkx-I8Qbm1ufbdDKpeCULd4p8AGVzQ6tTdhkk2uyif7oyJ-chON7qb44JmyiB54Ud1A6R4jcoO1Tsb4BcEEjs5ybFpvUV_bSpg_3JlPT-WASq-fgaEQG5YPX05YmARZ7cLaE07Vqfae8JjMx9jenVLn7__g1V39zuCsezUBRvpsa-Fhs4fhE7Mw5y08vn4qRP038D5JZKeulxnSvJUzYUhIilYVD0_kOB1hzkLNcjvKcE2F_JQnyYvT46-paEhKUx0CuC37-SCBXHLAhK_uspIL4THw5_Pj5wyc1Z09QQ-vNRhkI5PtzKG2PDrQZnB7QBzBBm4wZkoeuZMLWNKrzULrUIiTbJK2hL5h8-1xsj99HfCFkX0IiGNIlg8amrvMk7jrrEQAtzU8WorlVXxxmanHOcPEt0hSDNR6rxiNpPHodWeML8fauyNnEq_E34ffcJ3eCTIldX5ChxNlQ4r8MZSH2b3s0zuOUKjG297yUY_b-Rx0vxUNuL-826bAvtjerc3wlHgwXm-V69bqa6A0h5Otk
  priority: 102
  providerName: Directory of Open Access Journals
Title Artificial neural networks applied for flood forecasting in ungauged basin – the Paranaíba river study case
URI https://www.proquest.com/docview/3247807612
https://doaj.org/article/f659662e47bf480aa591e349623e0b75
Volume 386
WOSCitedRecordID wos001481626500013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAGF
  databaseName: Copernicus Publications
  customDbUrl:
  eissn: 2199-899X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001559168
  issn: 2199-899X
  databaseCode: RKB
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: http://publications.copernicus.org/open-access_journals/open_access_journals_a_z.html
  providerName: Copernicus Gesellschaft
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2199-899X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001559168
  issn: 2199-899X
  databaseCode: DOA
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVPQU
  databaseName: Earth, Atmospheric & Aquatic Science Database
  customDbUrl:
  eissn: 2199-899X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001559168
  issn: 2199-899X
  databaseCode: PCBAR
  dateStart: 20240101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/eaasdb
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 2199-899X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001559168
  issn: 2199-899X
  databaseCode: M7S
  dateStart: 20240101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2199-899X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001559168
  issn: 2199-899X
  databaseCode: BENPR
  dateStart: 20240101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Publicly Available Content Database
  customDbUrl:
  eissn: 2199-899X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001559168
  issn: 2199-899X
  databaseCode: PIMPY
  dateStart: 20240101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3BbtQwELWg5cAJEEUslJUPnJCsxo6d2CfUrVqBEKtoAamcIjuelJVQdkm2nPkHvoOv4E_4Ema82UUIqRdOTpyxYmVszxt78oax5zrmNmonhQnOCN1aI7x1IHQ0oHWALKqYkk2U87m9vHTVuOE2jGGVuzUxLdRx1dAe-Qka_tKS061err8IyhpFp6tjCo3b7JBYEmQK3Xu3PbxEaKJP1kv_aRC5LYSVOCCU_sv8JJb-fxbhZFku7v1vn-6zoz8_7fFqb44esFvQPWTdaZ-CgXCUcaKuTEUK_B643wJQjrCVtxS_TlfQ-IEiofmy49eULfsKJdDU4e2vb985wkVeebRv_ueP4HlPUR08UdRybAhH7MPF-fuzV2JMsSCa3KqNUN4hQIiuzUswXqrGyAas88pJFSH6YH3RRgTgOPVj0xYhBx90FqT0ZQvB5o_YQbfq4DHjZesCYpUiKFA6FIVFcVNoC96DRidmwrLdl6-bkX-c0mB8rtEPIWXVSVk1Kqu2siZlTdiLfZP1lnzjJuEZqXMvSLzZqWLVX9XjNKyxS-jfKdBlaLXNvDdOAnHmqxyyUJoJO95puh4nM75kr-YnNz9-yu5ST-iwSbpjdrDpr-EZu9N83SyHfsoOZ-fzajFNbv80jVSsq85mpwsqX7-tPmLt4s3sN8d9-ng
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtQwFLXKFImuAFHEQAEvYINkNXacxF4gxKvqqO0oiyKVlbHjm3YklJkmUxA7_oHvgJ_gT_gSrj3JIITUXRes8rITJz6-j_j6HkKeSJ8qLzVnmdMZk7XKmFUamPQZSOkg8cJHsoliOlUnJ7rcID-GtTAhrHKQiVFQ-3kV_pHvouIvVHC6xYvFOQusUWF2daDQWMHiAL58Rpetez55g_37VIi9t8ev91nPKsCqVIklE1ajTvS6TgvILBdVxitQ2grNhQdvnbJ57dHmRLT7qs5dCtbJxHFuixqcSvG-18imDGAfkc1yclS-X02XojEkdxcze9axVOVMcYSgkH8pvMgL8I_Yj7ps7-b_9hVuke0_yxJpuVa4t8kGNHdI87KN4U44jmhIzhk3MbS9o3ZlYlM0zGkdIvTDHlS2C7HedNbQi8AHfoolUJnj4a-v3ygaxLS0qMHtz-_O0jbErdCYhJdiRdgm767kRe-SUTNv4B6hRa0dWmO5EyCky3OFxbNcKrAWJLppY5IMPW2qPsN6IPr4aNDTCuAwERwGwWEUNwEcY_JsXWWxSi9yWeFXAT7rgiEzeDwxb09NL2gMNgk9WAGycLVUibWZ5hBYAUQKiSuyMdkZkGV6cYUPWcPq_uWXH5Mb-8dHh-ZwMj14QLZCq8LUGtc7ZLRsL-AhuV59Ws669lE_Mij5cNUw_A1RjlSG
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+of+the+International+Association+of+Hydrological+Sciences&rft.atitle=Artificial+neural+networks+applied+for+flood+forecasting+in+ungauged+basin+%E2%80%93+the+Parana%C3%ADba+river+study+case&rft.au=Brand%C3%A3o%2C+Abderraman+R+A&rft.au=Frederico+C+M+de+Menezes+Filho&rft.au=Oliveira%2C+Paulo+T+S&rft.au=Fava%2C+Maria+C&rft.date=2024-04-19&rft.pub=Copernicus+GmbH&rft.volume=386&rft.spage=81&rft.epage=86&rft_id=info:doi/10.5194%2Fpiahs-386-81-2024
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2199-899X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2199-899X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2199-899X&client=summon