Physics-informed neural networks for inverse problems in supersonic flows

Accurate solutions to inverse supersonic compressible flow problems are often required for designing specialized aerospace vehicles. In particular, we consider the problem where we have data available for density gradients from Schlieren photography as well as data at the inflow and part of the wall...

Full description

Saved in:
Bibliographic Details
Published in:Journal of computational physics Vol. 466; p. 111402
Main Authors: Jagtap, Ameya D., Mao, Zhiping, Adams, Nikolaus, Karniadakis, George Em
Format: Journal Article
Language:English
Published: Cambridge Elsevier Science Ltd 01.10.2022
Subjects:
ISSN:0021-9991, 1090-2716
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Accurate solutions to inverse supersonic compressible flow problems are often required for designing specialized aerospace vehicles. In particular, we consider the problem where we have data available for density gradients from Schlieren photography as well as data at the inflow and part of the wall boundaries. These inverse problems are notoriously difficult, and traditional methods may not be adequate to solve such ill-posed inverse problems. To this end, we employ the physics-informed neural networks (PINNs) and its extended version, extended PINNs (XPINNs), where domain decomposition allows to deploy locally powerful neural networks in each subdomain, which can provide additional expressivity in subdomains, where a complex solution is expected. Apart from the governing compressible Euler equations, we also enforce the entropy conditions in order to obtain viscosity solutions. Moreover, we enforce positivity conditions on density and pressure. We consider inverse problems involving two-dimensional expansion waves, two-dimensional oblique and bow shock waves. We compare solutions obtained by PINNs and XPINNs and invoke some theoretical results that can be used to decide on the generalization errors of the two methods.
AbstractList Accurate solutions to inverse supersonic compressible flow problems are often required for designing specialized aerospace vehicles. In particular, we consider the problem where we have data available for density gradients from Schlieren photography as well as data at the inflow and part of the wall boundaries. These inverse problems are notoriously difficult, and traditional methods may not be adequate to solve such ill-posed inverse problems. To this end, we employ the physics-informed neural networks (PINNs) and its extended version, extended PINNs (XPINNs), where domain decomposition allows to deploy locally powerful neural networks in each subdomain, which can provide additional expressivity in subdomains, where a complex solution is expected. Apart from the governing compressible Euler equations, we also enforce the entropy conditions in order to obtain viscosity solutions. Moreover, we enforce positivity conditions on density and pressure. We consider inverse problems involving two-dimensional expansion waves, two-dimensional oblique and bow shock waves. We compare solutions obtained by PINNs and XPINNs and invoke some theoretical results that can be used to decide on the generalization errors of the two methods.
ArticleNumber 111402
Author Adams, Nikolaus
Mao, Zhiping
Karniadakis, George Em
Jagtap, Ameya D.
Author_xml – sequence: 1
  givenname: Ameya D.
  surname: Jagtap
  fullname: Jagtap, Ameya D.
– sequence: 2
  givenname: Zhiping
  surname: Mao
  fullname: Mao, Zhiping
– sequence: 3
  givenname: Nikolaus
  surname: Adams
  fullname: Adams, Nikolaus
– sequence: 4
  givenname: George Em
  surname: Karniadakis
  fullname: Karniadakis, George Em
BookMark eNp9kEtPwzAQhC1UJFrgB3CLxDlhd-PEyRFVPCpVggOcrcRxhEMaBzuh6r_HVTlx4DTSaGYf34otBjtoxm4QEgTM77qkU2NCQJQgIgc6Y0uEEmISmC_YEoAwLssSL9jK-w4AiowXS7Z5_Th4o3xshta6nW6iQc-u6oNMe-s-fRTsyAzf2nkdjc7Wvd75YER-HoNnB6Oitrd7f8XO26r3-vpXL9n748Pb-jnevjxt1vfbWKUFTTFlKq-EqrEmEnmTtlQVKdWlKKFOCRXPioJr3qDIhYKU5xkP79RIbdGgJp5estvT3HDM16z9JDs7uyGslCSAshQBspASp5Ry1nunW6nMVE3GDpOrTC8R5JGb7GTgJo_c5IlbaOKf5ujMrnKHfzo_ljpyzQ
CitedBy_id crossref_primary_10_1016_j_applthermaleng_2025_127193
crossref_primary_10_1016_j_cpc_2025_109782
crossref_primary_10_3390_aerospace11090723
crossref_primary_10_1063_5_0200168
crossref_primary_10_1007_s11071_025_11771_3
crossref_primary_10_1016_j_amc_2024_128985
crossref_primary_10_1007_s40436_025_00545_0
crossref_primary_10_1016_j_jmps_2025_106222
crossref_primary_10_1088_0256_307X_41_3_030201
crossref_primary_10_1016_j_aei_2025_103215
crossref_primary_10_1016_j_camwa_2024_08_035
crossref_primary_10_1016_j_applthermaleng_2025_127506
crossref_primary_10_1016_j_engappai_2025_111554
crossref_primary_10_1016_j_applthermaleng_2025_127104
crossref_primary_10_1016_j_engfracmech_2025_111133
crossref_primary_10_1080_15376494_2025_2473694
crossref_primary_10_1002_adts_202400589
crossref_primary_10_1007_s00397_025_01496_w
crossref_primary_10_1007_s10462_025_11303_w
crossref_primary_10_1016_j_compchemeng_2023_108339
crossref_primary_10_1016_j_jcp_2024_113648
crossref_primary_10_1016_j_compositesa_2024_108019
crossref_primary_10_1063_5_0264160
crossref_primary_10_1017_jfm_2024_219
crossref_primary_10_1016_j_neunet_2023_08_014
crossref_primary_10_3390_math13071057
crossref_primary_10_1007_s11071_023_08712_3
crossref_primary_10_1016_j_compfluid_2023_106114
crossref_primary_10_1103_9wj9_nmr8
crossref_primary_10_3390_biomimetics9020072
crossref_primary_10_1016_j_jcp_2023_112291
crossref_primary_10_1109_ACCESS_2024_3402240
crossref_primary_10_1016_j_camwa_2025_07_001
crossref_primary_10_1029_2023WR036589
crossref_primary_10_1063_5_0279122
crossref_primary_10_1063_5_0284425
crossref_primary_10_1016_j_physd_2024_134202
crossref_primary_10_3390_w17182731
crossref_primary_10_1080_09349847_2024_2350398
crossref_primary_10_1016_j_cpc_2024_109433
crossref_primary_10_1016_j_mtcomm_2025_112337
crossref_primary_10_1016_j_cma_2024_116996
crossref_primary_10_1016_j_jcp_2023_112464
crossref_primary_10_1016_j_camwa_2024_01_021
crossref_primary_10_1016_j_energy_2025_136019
crossref_primary_10_1038_s41598_023_49977_3
crossref_primary_10_1016_j_cma_2023_116278
crossref_primary_10_2514_1_G008503
crossref_primary_10_1016_j_cam_2025_116962
crossref_primary_10_1016_j_paerosci_2025_101130
crossref_primary_10_1177_13506501241291403
crossref_primary_10_1016_j_scitotenv_2023_168814
crossref_primary_10_1109_ACCESS_2023_3329562
crossref_primary_10_1016_j_isatra_2025_08_021
crossref_primary_10_1016_j_cnsns_2024_108103
crossref_primary_10_1155_2024_5532909
crossref_primary_10_1109_TCAD_2023_3296370
crossref_primary_10_1063_5_0216609
crossref_primary_10_1007_s10409_024_24322_x
crossref_primary_10_1016_j_aej_2025_05_072
crossref_primary_10_1016_j_trpro_2024_09_005
crossref_primary_10_1016_j_ast_2025_110363
crossref_primary_10_1016_j_jer_2024_02_011
crossref_primary_10_1109_LAWP_2024_3413851
crossref_primary_10_1016_j_camwa_2022_09_025
crossref_primary_10_3390_fluids10090226
crossref_primary_10_1016_j_est_2023_109604
crossref_primary_10_1016_j_ijmecsci_2024_109267
crossref_primary_10_1007_s00348_022_03554_y
crossref_primary_10_1002_nme_7406
crossref_primary_10_1016_j_enganabound_2025_106281
crossref_primary_10_3390_en15249347
crossref_primary_10_1061_AJRUA6_RUENG_1441
crossref_primary_10_1016_j_ocemod_2024_102453
crossref_primary_10_1109_TASE_2025_3529578
crossref_primary_10_1063_5_0208040
crossref_primary_10_1016_j_applthermaleng_2024_125334
crossref_primary_10_1088_1361_665X_ad8a31
crossref_primary_10_1016_j_advwatres_2023_104564
crossref_primary_10_1016_j_engappai_2024_109378
crossref_primary_10_34248_bsengineering_1645207
crossref_primary_10_1016_j_neucom_2024_127240
crossref_primary_10_1155_er_3241787
crossref_primary_10_1063_5_0278976
crossref_primary_10_1016_j_jcp_2023_112344
crossref_primary_10_1016_j_jcp_2024_113698
crossref_primary_10_3390_a15120447
crossref_primary_10_1016_j_jcp_2023_112360
crossref_primary_10_1016_j_jmps_2024_105570
crossref_primary_10_1016_j_engappai_2023_107773
crossref_primary_10_1115_1_4068396
crossref_primary_10_1016_j_engappai_2024_109436
crossref_primary_10_1016_j_engappai_2025_111084
crossref_primary_10_1016_j_jocs_2024_102466
crossref_primary_10_3390_math12233851
crossref_primary_10_3390_e24081106
crossref_primary_10_1007_s11071_024_10093_0
crossref_primary_10_1016_j_media_2024_103423
crossref_primary_10_1016_j_knosys_2024_111831
crossref_primary_10_1063_5_0251167
crossref_primary_10_1016_j_cma_2023_116569
crossref_primary_10_1016_j_neunet_2024_106732
crossref_primary_10_1016_j_neunet_2025_107665
crossref_primary_10_1016_j_jqsrt_2024_109229
crossref_primary_10_1007_s13272_024_00774_2
crossref_primary_10_1063_5_0274946
crossref_primary_10_1016_j_cma_2025_118245
crossref_primary_10_1063_5_0275514
crossref_primary_10_1615_HeatTransRes_2024055270
crossref_primary_10_1007_s11071_025_11700_4
crossref_primary_10_1137_22M1517081
crossref_primary_10_1007_s10462_025_11282_y
crossref_primary_10_1016_j_finel_2025_104373
crossref_primary_10_1016_j_engappai_2023_107307
crossref_primary_10_1016_j_conbuildmat_2024_138316
crossref_primary_10_1007_s10598_025_09610_6
crossref_primary_10_1016_j_eswa_2025_127067
crossref_primary_10_1016_j_jcp_2025_114385
crossref_primary_10_1080_01495739_2024_2321205
crossref_primary_10_1016_j_camwa_2023_09_030
crossref_primary_10_1016_j_compfluid_2023_106164
crossref_primary_10_1007_s42979_025_03752_5
crossref_primary_10_1016_j_ijmecsci_2024_109210
crossref_primary_10_1016_j_jcp_2023_112263
crossref_primary_10_1063_5_0276518
crossref_primary_10_1016_j_engappai_2023_106425
crossref_primary_10_1016_j_net_2024_103425
crossref_primary_10_1016_j_cma_2025_118338
crossref_primary_10_1016_j_ijheatmasstransfer_2024_126216
crossref_primary_10_1038_s41598_023_39989_4
crossref_primary_10_1016_j_energy_2024_130354
crossref_primary_10_1016_j_compfluid_2025_106700
crossref_primary_10_1016_j_cma_2024_117000
crossref_primary_10_15421_cims_4_313
crossref_primary_10_1007_s00366_023_01881_0
crossref_primary_10_1007_s10483_023_2994_7
crossref_primary_10_1016_j_engstruct_2025_121090
crossref_primary_10_1016_j_ijheatmasstransfer_2023_124392
crossref_primary_10_1016_j_asoc_2024_112632
crossref_primary_10_3390_app13126892
crossref_primary_10_1016_j_istruc_2025_108618
crossref_primary_10_3390_a16090410
crossref_primary_10_1016_j_chaos_2023_114090
crossref_primary_10_1002_eer2_70005
crossref_primary_10_1016_j_jcp_2025_114370
crossref_primary_10_1080_17499518_2024_2315301
crossref_primary_10_3390_a16020111
crossref_primary_10_1021_acs_jctc_4c01747
crossref_primary_10_1007_s00466_024_02559_0
crossref_primary_10_1016_j_compgeo_2024_106801
crossref_primary_10_1016_j_ijheatfluidflow_2023_109232
crossref_primary_10_1016_j_engappai_2023_107528
crossref_primary_10_1016_j_cma_2025_118348
crossref_primary_10_1016_j_neucom_2025_131440
crossref_primary_10_2118_218402_PA
crossref_primary_10_3390_s23146649
crossref_primary_10_1016_j_trc_2024_104658
crossref_primary_10_1016_j_engappai_2022_105724
crossref_primary_10_1063_5_0286676
crossref_primary_10_1088_1361_665X_ad126c
crossref_primary_10_1121_10_0026459
crossref_primary_10_1007_s00366_025_02170_8
crossref_primary_10_1007_s00466_024_02491_3
crossref_primary_10_1016_j_compfluid_2025_106782
crossref_primary_10_1007_s11063_024_11644_7
crossref_primary_10_1016_j_physd_2025_134689
crossref_primary_10_1016_j_ymssp_2025_112736
crossref_primary_10_1063_5_0232852
crossref_primary_10_1016_j_jocs_2024_102318
crossref_primary_10_1016_j_scs_2024_105750
crossref_primary_10_12677_aam_2025_149405
crossref_primary_10_3847_1538_4357_ade43e
crossref_primary_10_1080_10618562_2023_2285330
crossref_primary_10_1016_j_jcp_2025_114122
crossref_primary_10_1007_s00397_023_01408_w
crossref_primary_10_1016_j_jcp_2024_113656
Cites_doi 10.1016/j.jcp.2020.109345
10.1016/j.jcp.2021.110698
10.4007/annals.2005.161.223
10.1098/rspa.2020.0334
10.1137/20M1318043
10.1016/j.jcp.2021.110683
10.1016/j.cma.2019.112789
10.1016/0021-9991(82)90046-8
10.1126/science.aaw4741
10.1109/MSP.2021.3118904
10.1364/OE.384875
10.1137/0916069
10.1016/j.cma.2020.113028
10.1016/j.jcp.2021.110754
10.1016/j.jcp.2019.05.027
10.1016/j.jcp.2019.109136
10.1016/j.jcp.2018.10.045
10.4208/cicp.OA-2020-0164
10.1063/1.5139992
10.1016/j.oceaneng.2022.110775
10.1016/j.cma.2020.113547
10.1615/JMachLearnModelComput.2020033905
10.1017/jfm.2021.135
10.1016/j.jcp.2021.110324
10.1016/j.cma.2021.113741
ContentType Journal Article
Copyright Copyright Elsevier Science Ltd. Oct 1, 2022
Copyright_xml – notice: Copyright Elsevier Science Ltd. Oct 1, 2022
DBID AAYXX
CITATION
7SC
7SP
7U5
8FD
JQ2
L7M
L~C
L~D
DOI 10.1016/j.jcp.2022.111402
DatabaseName CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISSN 1090-2716
ExternalDocumentID 10_1016_j_jcp_2022_111402
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
29K
4.4
457
4G.
5GY
5VS
6OB
6TJ
7-5
71M
8P~
8WZ
9DU
9JN
A6W
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYFN
AAYWO
AAYXX
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABNEU
ABWVN
ABXDB
ACBEA
ACDAQ
ACFVG
ACGFO
ACGFS
ACLOT
ACNCT
ACNNM
ACRPL
ACVFH
ACZNC
ADBBV
ADCNI
ADEZE
ADFGL
ADIYS
ADJOM
ADMUD
ADNMO
AEBSH
AEFWE
AEIPS
AEKER
AENEX
AEUPX
AFFNX
AFJKZ
AFPUW
AFTJW
AGHFR
AGQPQ
AGUBO
AGYEJ
AHZHX
AIALX
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AIVDX
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
AOUOD
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BBWZM
BKOJK
BLXMC
CAG
CITATION
COF
CS3
D-I
DM4
DU5
EBS
EFBJH
EFKBS
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HLZ
HME
HMV
HVGLF
HZ~
IHE
J1W
K-O
KOM
LG5
LX9
LZ4
M37
M41
MO0
N9A
NDZJH
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RNS
ROL
RPZ
SBC
SDF
SDG
SDP
SES
SEW
SHN
SPC
SPCBC
SPD
SPG
SSQ
SSV
SSZ
T5K
T9H
TN5
UPT
UQL
WUQ
YQT
ZMT
ZU3
ZY4
~02
~G-
~HD
7SC
7SP
7U5
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c382t-25c6a7cb1b2276d3f2a832b9790b321c45884e4d1767c034654140b12f8d1e243
ISICitedReferencesCount 217
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000828149400007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0021-9991
IngestDate Sun Nov 30 03:56:15 EST 2025
Sat Nov 29 03:10:36 EST 2025
Tue Nov 18 20:51:51 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c382t-25c6a7cb1b2276d3f2a832b9790b321c45884e4d1767c034654140b12f8d1e243
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://doi.org/10.2139/ssrn.4047632
PQID 2702531005
PQPubID 2047462
ParticipantIDs proquest_journals_2702531005
crossref_citationtrail_10_1016_j_jcp_2022_111402
crossref_primary_10_1016_j_jcp_2022_111402
PublicationCentury 2000
PublicationDate 2022-10-00
20221001
PublicationDateYYYYMMDD 2022-10-01
PublicationDate_xml – month: 10
  year: 2022
  text: 2022-10-00
PublicationDecade 2020
PublicationPlace Cambridge
PublicationPlace_xml – name: Cambridge
PublicationTitle Journal of computational physics
PublicationYear 2022
Publisher Elsevier Science Ltd
Publisher_xml – name: Elsevier Science Ltd
References Wang (10.1016/j.jcp.2022.111402_br0440) 2021; 43
Glorot (10.1016/j.jcp.2022.111402_br0380) 2010
Mishra (10.1016/j.jcp.2022.111402_br0170) 2021
Kingma (10.1016/j.jcp.2022.111402_br0420)
Jagtap (10.1016/j.jcp.2022.111402_br0150) 2022; 248
Dafermos (10.1016/j.jcp.2022.111402_br0330) 2016; vol. 325
Courant (10.1016/j.jcp.2022.111402_br0300) 1999
Fuks (10.1016/j.jcp.2022.111402_br0230) 2020; 1
Bianchini (10.1016/j.jcp.2022.111402_br0340) 2005
Abadi (10.1016/j.jcp.2022.111402_br0400) 2016
Shukla (10.1016/j.jcp.2022.111402_br0070) 2022; 39
Cai (10.1016/j.jcp.2022.111402_br0130) 2021; 915
10.1016/j.jcp.2022.111402_br0410
De Ryck (10.1016/j.jcp.2022.111402_br0180)
He (10.1016/j.jcp.2022.111402_br0290) 2020; 127
Baydin (10.1016/j.jcp.2022.111402_br0390) 2018; 18
Shukla (10.1016/j.jcp.2022.111402_br0080) 2021; 447
Raissi (10.1016/j.jcp.2022.111402_br0040) 2020; 367
Yang (10.1016/j.jcp.2022.111402_br0120) 2019; 394
Chen (10.1016/j.jcp.2022.111402_br0090) 2020; 28
Mao (10.1016/j.jcp.2022.111402_br0270) 2021; 447
Karpuk (10.1016/j.jcp.2022.111402_br0460)
Monfort (10.1016/j.jcp.2022.111402_br0280) 2017
Godlewski (10.1016/j.jcp.2022.111402_br0350) 1996
Jagtap (10.1016/j.jcp.2022.111402_br0370) 2020; 476
Patel (10.1016/j.jcp.2022.111402_br0220) 2022; 449
Shin (10.1016/j.jcp.2022.111402_br0160)
Zucker (10.1016/j.jcp.2022.111402_br0320) 2002
Raissi (10.1016/j.jcp.2022.111402_br0010) 2019; 378
bin Waheed (10.1016/j.jcp.2022.111402_br0100) 2021
Jagtap (10.1016/j.jcp.2022.111402_br0060) 2020; 365
Magiera (10.1016/j.jcp.2022.111402_br0250) 2020; 409
Bezgin (10.1016/j.jcp.2022.111402_br0260) 2021; 437
Hall (10.1016/j.jcp.2022.111402_br0210) 1981
Jagtap (10.1016/j.jcp.2022.111402_br0050) 2020; 28
Jagtap (10.1016/j.jcp.2022.111402_br0450)
Haghighat (10.1016/j.jcp.2022.111402_br0110) 2021; 379
Kharazmi (10.1016/j.jcp.2022.111402_br0140) 2021; 374
Liepmann (10.1016/j.jcp.2022.111402_br0310) 2001
Hu (10.1016/j.jcp.2022.111402_br0240)
Raissi (10.1016/j.jcp.2022.111402_br0020)
Jagtap (10.1016/j.jcp.2022.111402_br0360) 2020; 404
Mao (10.1016/j.jcp.2022.111402_br0030) 2020; 360
Bayliss (10.1016/j.jcp.2022.111402_br0200) 1982; 48
Byrd (10.1016/j.jcp.2022.111402_br0430) 1995; 16
Anderson (10.1016/j.jcp.2022.111402_br0190) 1995
References_xml – volume: 409
  year: 2020
  ident: 10.1016/j.jcp.2022.111402_br0250
  article-title: Constraint-aware neural networks for Riemann problems
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2020.109345
– volume: 447
  year: 2021
  ident: 10.1016/j.jcp.2022.111402_br0270
  article-title: Deepm&mnet for hypersonics: predicting the coupled flow and finite-rate chemistry behind a normal shock using neural-network approximation of operators
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2021.110698
– start-page: 223
  year: 2005
  ident: 10.1016/j.jcp.2022.111402_br0340
  article-title: Vanishing viscosity solutions of nonlinear hyperbolic systems
  publication-title: Ann. Math.
  doi: 10.4007/annals.2005.161.223
– volume: 476
  issue: 2239
  year: 2020
  ident: 10.1016/j.jcp.2022.111402_br0370
  article-title: Locally adaptive activation functions with slope recovery for deep and physics-informed neural networks
  publication-title: Proc. R. Soc. A
  doi: 10.1098/rspa.2020.0334
– volume: 43
  start-page: A3055
  issue: 5
  year: 2021
  ident: 10.1016/j.jcp.2022.111402_br0440
  article-title: Understanding and mitigating gradient flow pathologies in physics-informed neural networks
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/20M1318043
– volume: 447
  year: 2021
  ident: 10.1016/j.jcp.2022.111402_br0080
  article-title: Parallel physics-informed neural networks via domain decomposition
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2021.110683
– year: 1999
  ident: 10.1016/j.jcp.2022.111402_br0300
– volume: 360
  year: 2020
  ident: 10.1016/j.jcp.2022.111402_br0030
  article-title: Physics-informed neural networks for high-speed flows
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2019.112789
– volume: 48
  start-page: 182
  issue: 2
  year: 1982
  ident: 10.1016/j.jcp.2022.111402_br0200
  article-title: Far field boundary conditions for compressible flows
  publication-title: J. Comput. Phys.
  doi: 10.1016/0021-9991(82)90046-8
– ident: 10.1016/j.jcp.2022.111402_br0180
– start-page: 375
  year: 2017
  ident: 10.1016/j.jcp.2022.111402_br0280
  article-title: A deep learning approach to identifying shock locations in turbulent combustion tensor fields
– year: 1995
  ident: 10.1016/j.jcp.2022.111402_br0190
– year: 1996
  ident: 10.1016/j.jcp.2022.111402_br0350
– volume: 367
  start-page: 1026
  issue: 6481
  year: 2020
  ident: 10.1016/j.jcp.2022.111402_br0040
  article-title: Hidden fluid mechanics: learning velocity and pressure fields from flow visualizations
  publication-title: Science
  doi: 10.1126/science.aaw4741
– ident: 10.1016/j.jcp.2022.111402_br0240
– volume: 39
  start-page: 68
  issue: 1
  year: 2022
  ident: 10.1016/j.jcp.2022.111402_br0070
  article-title: A physics-informed neural network for quantifying the microstructural properties of polycrystalline nickel using ultrasound data: a promising approach for solving inverse problems
  publication-title: IEEE Signal Process. Mag.
  doi: 10.1109/MSP.2021.3118904
– volume: 28
  start-page: 11618
  issue: 8
  year: 2020
  ident: 10.1016/j.jcp.2022.111402_br0090
  article-title: Physics-informed neural networks for inverse problems in nano-optics and metamaterials
  publication-title: Opt. Express
  doi: 10.1364/OE.384875
– volume: vol. 325
  year: 2016
  ident: 10.1016/j.jcp.2022.111402_br0330
  article-title: Hyperbolic Conservation Laws in Continuum Physics
– ident: 10.1016/j.jcp.2022.111402_br0020
– start-page: 45
  year: 1981
  ident: 10.1016/j.jcp.2022.111402_br0210
  article-title: Implementation of nonreflective boundary condition at the outflow boundary
– year: 2021
  ident: 10.1016/j.jcp.2022.111402_br0100
  article-title: Pinneik: Eikonal solution using physics-informed neural networks
  publication-title: Comput. Geosci.
– volume: 16
  start-page: 1190
  issue: 5
  year: 1995
  ident: 10.1016/j.jcp.2022.111402_br0430
  article-title: A limited memory algorithm for bound constrained optimization
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/0916069
– ident: 10.1016/j.jcp.2022.111402_br0160
– volume: 365
  year: 2020
  ident: 10.1016/j.jcp.2022.111402_br0060
  article-title: Conservative physics-informed neural networks on discrete domains for conservation laws: applications to forward and inverse problems
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2020.113028
– volume: 449
  year: 2022
  ident: 10.1016/j.jcp.2022.111402_br0220
  article-title: Thermodynamically consistent physics-informed neural networks for hyperbolic systems
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2021.110754
– ident: 10.1016/j.jcp.2022.111402_br0420
– volume: 394
  start-page: 136
  year: 2019
  ident: 10.1016/j.jcp.2022.111402_br0120
  article-title: Adversarial uncertainty quantification in physics-informed neural networks
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2019.05.027
– volume: 404
  year: 2020
  ident: 10.1016/j.jcp.2022.111402_br0360
  article-title: Adaptive activation functions accelerate convergence in deep and physics-informed neural networks
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2019.109136
– ident: 10.1016/j.jcp.2022.111402_br0410
– start-page: 265
  year: 2016
  ident: 10.1016/j.jcp.2022.111402_br0400
  article-title: Tensorflow: a system for large-scale machine learning
– volume: 378
  start-page: 686
  year: 2019
  ident: 10.1016/j.jcp.2022.111402_br0010
  article-title: Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2018.10.045
– volume: 28
  start-page: 2002
  issue: 5
  year: 2020
  ident: 10.1016/j.jcp.2022.111402_br0050
  article-title: Extended physics-informed neural networks (xpinns): a generalized space-time domain decomposition based deep learning framework for nonlinear partial differential equations
  publication-title: Commun. Comput. Phys.
  doi: 10.4208/cicp.OA-2020-0164
– volume: 127
  issue: 12
  year: 2020
  ident: 10.1016/j.jcp.2022.111402_br0290
  article-title: Inverting shock-wave temperatures via artificial neural networks
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.5139992
– volume: 248
  year: 2022
  ident: 10.1016/j.jcp.2022.111402_br0150
  article-title: Deep learning of inverse water waves problems using multi-fidelity data: application to Serre–Green–Naghdi equations
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2022.110775
– volume: 374
  year: 2021
  ident: 10.1016/j.jcp.2022.111402_br0140
  article-title: hp-vpinns: variational physics-informed neural networks with domain decomposition
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2020.113547
– volume: 1
  issue: 1
  year: 2020
  ident: 10.1016/j.jcp.2022.111402_br0230
  article-title: Limitations of physics informed machine learning for nonlinear two-phase transport in porous media
  publication-title: J. Mach. Learn. Model. Comput.
  doi: 10.1615/JMachLearnModelComput.2020033905
– volume: 915
  year: 2021
  ident: 10.1016/j.jcp.2022.111402_br0130
  article-title: Flow over an espresso cup: inferring 3-d velocity and pressure fields from tomographic background oriented schlieren via physics-informed neural networks
  publication-title: J. Fluid Mech.
  doi: 10.1017/jfm.2021.135
– volume: 437
  year: 2021
  ident: 10.1016/j.jcp.2022.111402_br0260
  article-title: A data-driven physics-informed finite-volume scheme for nonclassical undercompressive shocks
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2021.110324
– volume: 379
  year: 2021
  ident: 10.1016/j.jcp.2022.111402_br0110
  article-title: A physics-informed deep learning framework for inversion and surrogate modeling in solid mechanics
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2021.113741
– year: 2002
  ident: 10.1016/j.jcp.2022.111402_br0320
– ident: 10.1016/j.jcp.2022.111402_br0460
– year: 2021
  ident: 10.1016/j.jcp.2022.111402_br0170
  article-title: Estimates on the generalization error of physics-informed neural networks for approximating a class of inverse problems for pdes
  publication-title: IMA J. Numer. Anal.
– ident: 10.1016/j.jcp.2022.111402_br0450
– volume: 18
  start-page: 1
  year: 2018
  ident: 10.1016/j.jcp.2022.111402_br0390
  article-title: Automatic differentiation in machine learning: a survey
  publication-title: J. Mach. Learn. Res.
– year: 2001
  ident: 10.1016/j.jcp.2022.111402_br0310
– start-page: 249
  year: 2010
  ident: 10.1016/j.jcp.2022.111402_br0380
  article-title: Understanding the difficulty of training deep feedforward neural networks
SSID ssj0008548
Score 2.7278278
Snippet Accurate solutions to inverse supersonic compressible flow problems are often required for designing specialized aerospace vehicles. In particular, we consider...
SourceID proquest
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
StartPage 111402
SubjectTerms Aerospace engineering
Aerospace vehicles
Compressible flow
Computational physics
Density gradients
Elastic waves
Euler-Lagrange equation
Inverse problems
Neural networks
Schlieren photography
Shock waves
Supersonic flow
Title Physics-informed neural networks for inverse problems in supersonic flows
URI https://www.proquest.com/docview/2702531005
Volume 466
WOSCitedRecordID wos000828149400007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1090-2716
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0008548
  issn: 0021-9991
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELZCy4EL5SlKC_IBcSAyWnvt9e4xQqkoKoFDKkVcLK93UxLSbegmVfkZ_GPGr2xbUAUHLqvIyWajmYlnPPPNfAi9ggg0LWgpCStFQjhlhuRCZCTLwXcaLSwVtyObkKNRPpkUn3u9n7EX5mIhmya_vCyW_1XVsAbKtq2z_6DuzZfCArwGpcMV1A7Xv1K8w3SalviRqLa6X7vRGo0HfLv5C_1ZY-EYtknK8ck4UGy7Xrrwe2b608VZCLZ_j1uN44GIOUSfGelwiPpkpR3l3eC0_qE7PPFH7XKyX75aruyTDiUQUj2j2Tc4Y6-7ypJN2OjKhrdd5r4_PL2apIDzbYS7hcxZ7J6JG1YHWfIdBZTYQNX7JL8RJ0VCmPR9mHGn5tnVvZb-0QP4ZMT87dzYaaSMWZ_AE9a5u1jiH31SB8dHR2o8nIxfL78TS0RmC_aBleUO2mZSFLB1bg8Oh5MPG_eeC-7de_jRsVTuQIM3nno92Lnu610AM36A7gcN4oG3mIeoVzeP0E44heAgsvYxOrxpQNgbEI4GhGEZBwPC0YBgAXcGhJ0BPUHHB8Pxu_ckEG4Qk-ZsRZgwmZampCVjMqvSKdOw4ZeFLJIyZdS4ruaaV1Rm0iQpdxzySUnZNK9ozXj6FG01Z039DGE7dkjwims4HkD8k-QQucKNPOVTobkUuyiJklEmTKO3pCgLFWGHcwXCVFaYygtzF73Z3LL0o1hu-_B-FLcKf85W2d5LYSta4vntb--he50V76Ot1fm6foHumovVrD1_GSziF122iRY
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Physics-informed+neural+networks+for+inverse+problems+in+supersonic+flows&rft.jtitle=Journal+of+computational+physics&rft.au=Jagtap%2C+Ameya+D&rft.au=Mao%2C+Zhiping&rft.au=Adams%2C+Nikolaus&rft.au=Karniadakis%2C+George+Em&rft.date=2022-10-01&rft.pub=Elsevier+Science+Ltd&rft.issn=0021-9991&rft.eissn=1090-2716&rft.volume=466&rft.spage=1&rft_id=info:doi/10.1016%2Fj.jcp.2022.111402&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9991&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9991&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9991&client=summon