Fully portable and wireless universal brain–machine interfaces enabled by flexible scalp electronics and deep learning algorithm
Variation in human brains creates difficulty in implementing electroencephalography into universal brain–machine interfaces. Conventional electroencephalography systems typically suffer from motion artefacts, extensive preparation time and bulky equipment, while existing electroencephalography class...
Saved in:
| Published in: | Nature machine intelligence Vol. 1; no. 9; pp. 412 - 422 |
|---|---|
| Main Authors: | , , , , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
London
Nature Publishing Group UK
01.09.2019
Nature Publishing Group |
| Subjects: | |
| ISSN: | 2522-5839, 2522-5839 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Variation in human brains creates difficulty in implementing electroencephalography into universal brain–machine interfaces. Conventional electroencephalography systems typically suffer from motion artefacts, extensive preparation time and bulky equipment, while existing electroencephalography classification methods require training on a per-subject or per-session basis. Here, we introduce a fully portable, wireless, flexible scalp electronic system, incorporating a set of dry electrodes and a flexible membrane circuit. Time-domain analysis using convolutional neural networks allows for accurate, real-time classification of steady-state visually evoked potentials in the occipital lobe. Compared to commercial systems, the flexible electronics show the improved performance in detection of evoked potentials due to significant reduction of noise and electromagnetic interference. The two-channel scalp electronic system achieves a high information transfer rate (122.1 ± 3.53 bits per minute) with six human subjects, allowing for wireless, real-time, universal electroencephalography classification for an electric wheelchair, a motorized vehicle and a keyboard-less presentation.
Brain–machine interfaces using steady-state visually evoked potentials (SSVEPs) show promise in therapeutic applications. With a combination of innovations in flexible and soft electronics and in deep learning approaches to classify potentials from two channels and from any subject, a compact, wireless and universal SSVEP interface is designed. Subjects can operate a wheelchair in real time with eye movements while wearing the new brain–machine interface. |
|---|---|
| AbstractList | Variation in human brains creates difficulty in implementing electroencephalography into universal brain–machine interfaces. Conventional electroencephalography systems typically suffer from motion artefacts, extensive preparation time and bulky equipment, while existing electroencephalography classification methods require training on a per-subject or per-session basis. Here, we introduce a fully portable, wireless, flexible scalp electronic system, incorporating a set of dry electrodes and a flexible membrane circuit. Time-domain analysis using convolutional neural networks allows for accurate, real-time classification of steady-state visually evoked potentials in the occipital lobe. Compared to commercial systems, the flexible electronics show the improved performance in detection of evoked potentials due to significant reduction of noise and electromagnetic interference. The two-channel scalp electronic system achieves a high information transfer rate (122.1 ± 3.53 bits per minute) with six human subjects, allowing for wireless, real-time, universal electroencephalography classification for an electric wheelchair, a motorized vehicle and a keyboard-less presentation.
Brain–machine interfaces using steady-state visually evoked potentials (SSVEPs) show promise in therapeutic applications. With a combination of innovations in flexible and soft electronics and in deep learning approaches to classify potentials from two channels and from any subject, a compact, wireless and universal SSVEP interface is designed. Subjects can operate a wheelchair in real time with eye movements while wearing the new brain–machine interface. Variation in human brains creates difficulty in implementing electroencephalography into universal brain–machine interfaces. Conventional electroencephalography systems typically suffer from motion artefacts, extensive preparation time and bulky equipment, while existing electroencephalography classification methods require training on a per-subject or per-session basis. Here, we introduce a fully portable, wireless, flexible scalp electronic system, incorporating a set of dry electrodes and a flexible membrane circuit. Time-domain analysis using convolutional neural networks allows for accurate, real-time classification of steady-state visually evoked potentials in the occipital lobe. Compared to commercial systems, the flexible electronics show the improved performance in detection of evoked potentials due to significant reduction of noise and electromagnetic interference. The two-channel scalp electronic system achieves a high information transfer rate (122.1 ± 3.53 bits per minute) with six human subjects, allowing for wireless, real-time, universal electroencephalography classification for an electric wheelchair, a motorized vehicle and a keyboard-less presentation.Brain–machine interfaces using steady-state visually evoked potentials (SSVEPs) show promise in therapeutic applications. With a combination of innovations in flexible and soft electronics and in deep learning approaches to classify potentials from two channels and from any subject, a compact, wireless and universal SSVEP interface is designed. Subjects can operate a wheelchair in real time with eye movements while wearing the new brain–machine interface. |
| Author | Mzurikwao, Deogratias Duarte, Audrey Mahmood, Musa Herbert, Robert Yeo, Woon-Hong Mishra, Saswat Kim, Yun-Soung Lee, Yongkuk Ang, Chee Siang |
| Author_xml | – sequence: 1 givenname: Musa surname: Mahmood fullname: Mahmood, Musa organization: George W. Woodruff School of Mechanical Engineering, Institute for Electronics and Nanotechnology, Georgia Institute of Technology – sequence: 2 givenname: Deogratias surname: Mzurikwao fullname: Mzurikwao, Deogratias organization: School of Engineering and Digital Arts, University of Kent – sequence: 3 givenname: Yun-Soung surname: Kim fullname: Kim, Yun-Soung organization: George W. Woodruff School of Mechanical Engineering, Institute for Electronics and Nanotechnology, Georgia Institute of Technology – sequence: 4 givenname: Yongkuk surname: Lee fullname: Lee, Yongkuk organization: Department of Biomedical Engineering, Wichita State University – sequence: 5 givenname: Saswat surname: Mishra fullname: Mishra, Saswat organization: George W. Woodruff School of Mechanical Engineering, Institute for Electronics and Nanotechnology, Georgia Institute of Technology – sequence: 6 givenname: Robert surname: Herbert fullname: Herbert, Robert organization: George W. Woodruff School of Mechanical Engineering, Institute for Electronics and Nanotechnology, Georgia Institute of Technology – sequence: 7 givenname: Audrey surname: Duarte fullname: Duarte, Audrey organization: School of Psychology, College of Sciences, Georgia Institute of Technology – sequence: 8 givenname: Chee Siang surname: Ang fullname: Ang, Chee Siang organization: School of Engineering and Digital Arts, University of Kent – sequence: 9 givenname: Woon-Hong orcidid: 0000-0002-5526-3882 surname: Yeo fullname: Yeo, Woon-Hong email: whyeo@gatech.edu organization: George W. Woodruff School of Mechanical Engineering, Institute for Electronics and Nanotechnology, Georgia Institute of Technology, Wallace H. Coulter Department of Biomedical Engineering, Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Neural Engineering Center, Center for Flexible and Wearable Electronics Advanced Research, Institute for Materials, Institute for Robotics and Intelligent Machines, Georgia Institute of Technology |
| BookMark | eNp9kMtKxDAYRoMoeH0AdwHX1dzaTJci3kBwo-vwN_07RjJpTTLq7MRX8A19EjuOoAi6ShbfOQlnm6yHPiAh-5wdciYnR0kJUVYF43XBWM0LvUa2RClEUU5kvf7jvkn2UrpnjAmuVMnUFnk9m3u_oEMfMzQeKYSWPrmIHlOi8-AeMSbwtIngwvvL2wzsnQtIXcgYO7CYKIYl2NJmQTuPz25pSRb8QEeJzbEPzqZPb4s4UI8QgwtTCn7aR5fvZrtkowOfcO_r3CG3Z6c3JxfF1fX55cnxVWHlROSCo1SyayaKsVEkhW4rWVltsa5ZA7xD6BjUstRM6xIaW7etboUFZW1boqrkDjlYeYfYP8wxZXPfz2MYnzSiEqJSnNVyXOnVysY-pYidsS5Ddn3IYwNvODPL5mbV3IzNzbK50SPJf5FDdDOIi38ZsWLSuA1TjN9_-hv6AEpcmd4 |
| CitedBy_id | crossref_primary_10_1016_j_neucom_2021_03_025 crossref_primary_10_1002_advs_202000810 crossref_primary_10_1002_itl2_438 crossref_primary_10_1038_s41467_022_33457_9 crossref_primary_10_1155_2022_6599720 crossref_primary_10_26599_BSA_2022_9050002 crossref_primary_10_1021_acsnano_5c08540 crossref_primary_10_1111_exsy_13530 crossref_primary_10_1039_D2NR04551F crossref_primary_10_3390_bios12100889 crossref_primary_10_1109_TNSRE_2021_3114340 crossref_primary_10_1016_j_bspc_2021_103338 crossref_primary_10_3389_fnsys_2022_836778 crossref_primary_10_1016_j_nanoen_2022_107069 crossref_primary_10_1016_j_bios_2022_114333 crossref_primary_10_1109_TMTT_2022_3164708 crossref_primary_10_1016_j_compbiomed_2022_106068 crossref_primary_10_1016_j_tics_2021_04_003 crossref_primary_10_1016_j_inffus_2025_103069 crossref_primary_10_1002_admt_202402189 crossref_primary_10_1088_1741_2552_ac36aa crossref_primary_10_1109_TCSS_2024_3350958 crossref_primary_10_1002_adfm_202419882 crossref_primary_10_3390_ma13163587 crossref_primary_10_1016_j_biomaterials_2023_122075 crossref_primary_10_1016_j_bios_2022_114329 crossref_primary_10_1109_JSEN_2023_3287291 crossref_primary_10_1002_aisy_202100194 crossref_primary_10_1002_adrr_202500047 crossref_primary_10_1002_adma_202211236 crossref_primary_10_1016_j_mattod_2025_07_008 crossref_primary_10_1007_s40820_023_01235_x crossref_primary_10_1016_j_bios_2024_116499 crossref_primary_10_1002_adfm_202501130 crossref_primary_10_1007_s40820_022_00818_4 crossref_primary_10_1002_aisy_202000157 crossref_primary_10_1038_s41467_023_39814_6 crossref_primary_10_3390_brainsci10070442 crossref_primary_10_1002_adfm_202007436 crossref_primary_10_1038_s41467_024_55142_9 crossref_primary_10_1093_nsr_nwad048 crossref_primary_10_1145_3513023 crossref_primary_10_1002_adma_202402708 crossref_primary_10_1126_science_abj9912 crossref_primary_10_1002_adfm_202008807 crossref_primary_10_1007_s11517_023_02840_z crossref_primary_10_1088_1741_2552_ad7f89 crossref_primary_10_3390_s23041868 crossref_primary_10_1002_rpm_20230022 crossref_primary_10_1016_j_compbiomed_2025_110266 crossref_primary_10_3390_polym14061232 crossref_primary_10_1038_s41378_024_00825_y crossref_primary_10_1016_j_trechm_2021_01_001 crossref_primary_10_1038_s41578_022_00427_y crossref_primary_10_3389_fneur_2023_1272992 crossref_primary_10_1016_j_compbiomed_2020_103843 crossref_primary_10_1002_lpor_202301082 crossref_primary_10_3389_fmed_2024_1390634 crossref_primary_10_1109_COMST_2021_3090778 crossref_primary_10_1039_D5MH00451A crossref_primary_10_1002_adhm_202002286 crossref_primary_10_1002_adma_202107902 crossref_primary_10_1038_s41467_023_40004_7 crossref_primary_10_1038_s42256_023_00760_z crossref_primary_10_1007_s42979_023_02160_x crossref_primary_10_1038_s41528_022_00164_w crossref_primary_10_1002_adma_202005786 crossref_primary_10_1002_sdtp_16507 crossref_primary_10_3390_nano11040842 crossref_primary_10_1038_s41597_022_01372_9 crossref_primary_10_1039_D5MH00528K crossref_primary_10_7759_cureus_42460 crossref_primary_10_1016_j_bios_2020_112404 crossref_primary_10_1007_s40820_023_01029_1 crossref_primary_10_1016_j_bspc_2023_105548 crossref_primary_10_1016_j_bios_2020_112764 crossref_primary_10_1002_aisy_202300291 crossref_primary_10_3390_s20113297 crossref_primary_10_3390_s21020354 crossref_primary_10_1016_j_matpr_2022_04_654 crossref_primary_10_1002_advs_202405273 crossref_primary_10_1016_j_snb_2020_129416 crossref_primary_10_3390_bios12030155 crossref_primary_10_1088_2058_8585_ac6a96 crossref_primary_10_1016_j_arr_2025_102877 crossref_primary_10_1016_j_device_2024_100496 crossref_primary_10_1002_advs_202101129 crossref_primary_10_1145_3495002 crossref_primary_10_1002_advs_202001938 crossref_primary_10_1002_adhm_202100646 crossref_primary_10_1002_adma_202406424 crossref_primary_10_1002_adfm_202404333 crossref_primary_10_1038_s41928_022_00888_7 crossref_primary_10_1088_1741_2552_abf473 crossref_primary_10_63995_JKTG9603 crossref_primary_10_1002_aisy_202300359 crossref_primary_10_1002_adfm_202005692 crossref_primary_10_1007_s42765_025_00524_x crossref_primary_10_1002_aisy_202300631 crossref_primary_10_1016_j_matt_2020_03_020 crossref_primary_10_1016_j_trac_2025_118279 crossref_primary_10_1038_s44385_025_00009_x crossref_primary_10_1002_smtd_202402164 crossref_primary_10_1109_TII_2024_3375376 crossref_primary_10_1109_TBME_2021_3115464 crossref_primary_10_1109_ACCESS_2021_3071599 crossref_primary_10_3389_fbioe_2021_706229 |
| Cites_doi | 10.1016/j.bios.2017.01.044 10.1007/BF02523842 10.1109/TNSRE.2005.847369 10.1016/j.cub.2013.02.013 10.1049/el.2010.0923 10.1088/0967-3334/21/2/307 10.1073/pnas.1424875112 10.1109/TBME.2006.889197 10.1142/S0129065714500130 10.1109/MEMB.2008.923958 10.1155/2007/94561 10.1088/1741-2560/7/2/026010 10.3390/s120201211 10.1109/TNSRE.2006.875576 10.1016/j.jneumeth.2003.10.009 10.1097/00001756-200212200-00022 10.1002/adhm.201700994 10.1016/j.clinph.2004.10.001 10.1109/5.939829 10.1088/1741-2560/8/3/036020 10.1159/000230807 10.1109/TBME.2017.2694818 10.1088/1741-2560/6/4/046002 10.1142/S0129065718500181 10.1109/TBME.2015.2481482 10.1073/pnas.1508080112 10.1109/7333.948456 10.1155/2010/702357 10.1016/j.patrec.2011.02.022 10.1016/j.chb.2017.12.037 10.1007/s002210100682 10.1002/ana.23879 10.1016/j.nbd.2014.11.025 10.1002/adma.201701312 10.1088/1741-2552/aa5d5f 10.1038/srep46697 10.1109/TBCAS.2017.2779324 10.1016/j.sna.2011.12.017 10.1016/j.eml.2014.12.010 10.1016/j.snb.2016.10.005 10.1073/pnas.1719573115 10.1371/journal.pone.0172578 10.1109/ICACI.2018.8377615 10.1007/978-3-642-39454-6_69 10.1109/IJCNN.2014.6889955 10.1515/cdbme-2015-0019 10.1109/EMBC.2015.7318805 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer Nature Limited 2019 The Author(s), under exclusive licence to Springer Nature Limited 2019. |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Nature Limited 2019 – notice: The Author(s), under exclusive licence to Springer Nature Limited 2019. |
| DBID | AAYXX CITATION 3V. 7SC 7XB 88I 8FD 8FE 8FG 8FK ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- L7M L~C L~D M2P P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS Q9U |
| DOI | 10.1038/s42256-019-0091-7 |
| DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Technology collection ProQuest One Community College ProQuest Central ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic |
| DatabaseTitle | CrossRef Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Collection ProQuest Science Journals (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Academic ProQuest Central (Alumni) ProQuest One Academic (New) |
| DatabaseTitleList | Computer Science Database |
| Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2522-5839 |
| EndPage | 422 |
| ExternalDocumentID | 10_1038_s42256_019_0091_7 |
| GrantInformation_xml | – fundername: ISTK | Korea Institute of Materials Science (KIMS) grantid: PNK5061 funderid: https://doi.org/10.13039/501100003713 |
| GroupedDBID | 0R~ 88I AAEEF AARCD AAYZH ABJNI ABUWG ACBWK ADBBV AFKRA AFSHS AIBTJ ALFFA ALMA_UNASSIGNED_HOLDINGS ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO EBS EJD FSGXE GNUQQ HCIFZ K7- M2P NNMJJ ODYON RNT SIXXV SNYQT SOJ TBHMF AAYXX AFANA AFFHD AGSTI ATHPR CITATION O9- PHGZM PHGZT PQGLB 3V. 7SC 7XB 8FD 8FE 8FG 8FK JQ2 L7M L~C L~D P62 PKEHL PQEST PQQKQ PQUKI PRINS PUEGO Q9U |
| ID | FETCH-LOGICAL-c382t-1e343fb8400dee327d636c7ce990ba1feaf0a93570775abc9dd7d2ca4ccd5e463 |
| IEDL.DBID | K7- |
| ISICitedReferencesCount | 133 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000571252900005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2522-5839 |
| IngestDate | Sat Aug 23 14:50:47 EDT 2025 Tue Nov 18 21:52:25 EST 2025 Sat Nov 29 02:24:58 EST 2025 Fri Feb 21 02:37:41 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 9 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c382t-1e343fb8400dee327d636c7ce990ba1feaf0a93570775abc9dd7d2ca4ccd5e463 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-5526-3882 |
| PQID | 2622641093 |
| PQPubID | 5342773 |
| PageCount | 11 |
| ParticipantIDs | proquest_journals_2622641093 crossref_citationtrail_10_1038_s42256_019_0091_7 crossref_primary_10_1038_s42256_019_0091_7 springer_journals_10_1038_s42256_019_0091_7 |
| PublicationCentury | 2000 |
| PublicationDate | 2019-09-01 |
| PublicationDateYYYYMMDD | 2019-09-01 |
| PublicationDate_xml | – month: 09 year: 2019 text: 2019-09-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: Basingstoke |
| PublicationTitle | Nature machine intelligence |
| PublicationTitleAbbrev | Nat Mach Intell |
| PublicationYear | 2019 |
| Publisher | Nature Publishing Group UK Nature Publishing Group |
| Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group |
| References | Ma (CR46) 2017; 14 Zhang, Zhou, Jin, Wang, Cichocki (CR52) 2014; 24 Mullen (CR41) 2015; 62 CR36 Lee (CR42) 2017; 7 Li, Wang, Duan (CR25) 2017; 241 CR34 CR33 Salvo (CR27) 2012; 174 Cecotti (CR22) 2011; 32 Chen (CR44) 2015; 112 Bideaux, Zimmermann, Hey, Stork (CR50) 2015; 1 Bin, Gao, Yan, Hong, Gao (CR20) 2009; 6 Dufort y Alvarez (CR32) 2018; 12 CR9 Wang, Gao, Hong, Jia, Gao (CR11) 2008; 27 Herrmann (CR13) 2001; 137 CR40 Xu (CR53) 2014; 1 McAdams, Jossinet, Lackermeier, Risacher (CR23) 1996; 34 Searle, Kirkup (CR24) 2000; 21 Kelly, Lalor, Reilly, Foxe (CR12) 2005; 13 Volosyak (CR60) 2011; 8 Garcia, Srinivasan, Serences (CR1) 2013; 23 Wang, Wang, Jung (CR14) 2010; 46 Luo, Sullivan (CR3) 2010; 7 Lee (CR39) 2018; 115 Ramos-Murguialday (CR6) 2013; 74 CR17 CR59 Pfurtscheller, Neuper (CR47) 2001; 89 CR58 CR57 Soekadar, Birbaumer, Slutzky, Cohen (CR7) 2015; 83 CR55 Wang, Wang, Gao, Hong, Gao (CR10) 2006; 14 Stamps, Hamam (CR4) 2010; 6334 CR51 Beverina, Palmas, Silvoni, Piccione, Giove (CR16) 2003; 1 Martinez, Bakardjian, Cichocki (CR19) 2007; 2007 Goldman, Stern, Engel, Cohen (CR56) 2002; 13 Lin, Zhang, Wu, Gao (CR18) 2007; 54 Kwak, Muller, Lee (CR31) 2017; 12 Ji, Hwang, Kim (CR45) 2013; 97 Kim (CR49) 2017; 29 Mishra (CR38) 2017; 91 Delorme, Makeig (CR48) 2004; 134 Zhu, Bieger, Garcia Molina, Aarts (CR2) 2010; 2010 Guger (CR5) 2012; 6 Nicolas-Alonso, Gomez-Gil (CR8) 2012; 12 CR21 Lin (CR26) 2010; 56 Krizhevsky, Sutskever, Hinton (CR43) 2012; 1 Stauffer (CR28) 2018; 7 Nakanishi (CR30) 2018; 65 Xu, Zhong (CR35) 2018; 81 Norton (CR15) 2015; 112 Tallgren, Vanhatalo, Kaila, Voipio (CR29) 2005; 116 Chen, Zhao, Wang, Xu, Gao (CR37) 2018; 28 Obermaier, Neuper, Guger, Pfurtscheller (CR54) 2001; 9 H Cecotti (91_CR22) 2011; 32 A Searle (91_CR24) 2000; 21 R Xu (91_CR53) 2014; 1 SR Soekadar (91_CR7) 2015; 83 91_CR21 S Mishra (91_CR38) 2017; 91 M Nakanishi (91_CR30) 2018; 65 CT Lin (91_CR26) 2010; 56 CS Herrmann (91_CR13) 2001; 137 NS Kwak (91_CR31) 2017; 12 D Zhu (91_CR2) 2010; 2010 Y Wang (91_CR11) 2008; 27 SP Kelly (91_CR12) 2005; 13 91_CR9 91_CR59 91_CR58 91_CR57 G Pfurtscheller (91_CR47) 2001; 89 91_CR17 P Martinez (91_CR19) 2007; 2007 91_CR51 P Salvo (91_CR27) 2012; 174 X Chen (91_CR37) 2018; 28 91_CR55 T Ma (91_CR46) 2017; 14 Y Zhang (91_CR52) 2014; 24 RI Goldman (91_CR56) 2002; 13 Y Lee (91_CR39) 2018; 115 G Bin (91_CR20) 2009; 6 B Obermaier (91_CR54) 2001; 9 A Krizhevsky (91_CR43) 2012; 1 Z Lin (91_CR18) 2007; 54 F Stauffer (91_CR28) 2018; 7 Y Ji (91_CR45) 2013; 97 JJS Norton (91_CR15) 2015; 112 LF Nicolas-Alonso (91_CR8) 2012; 12 91_CR40 A Luo (91_CR3) 2010; 7 ET McAdams (91_CR23) 1996; 34 JO Garcia (91_CR1) 2013; 23 J Xu (91_CR35) 2018; 81 P Tallgren (91_CR29) 2005; 116 G Dufort y Alvarez (91_CR32) 2018; 12 TR Mullen (91_CR41) 2015; 62 F Beverina (91_CR16) 2003; 1 91_CR36 Y Wang (91_CR14) 2010; 46 A Delorme (91_CR48) 2004; 134 91_CR34 91_CR33 A Bideaux (91_CR50) 2015; 1 Y Wang (91_CR10) 2006; 14 I Volosyak (91_CR60) 2011; 8 G Li (91_CR25) 2017; 241 Y Lee (91_CR42) 2017; 7 K Stamps (91_CR4) 2010; 6334 A Ramos-Murguialday (91_CR6) 2013; 74 YS Kim (91_CR49) 2017; 29 C Guger (91_CR5) 2012; 6 X Chen (91_CR44) 2015; 112 |
| References_xml | – volume: 91 start-page: 796 year: 2017 end-page: 803 ident: CR38 article-title: Soft, conformal bioelectronics for a wireless human–wheelchair interface publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2017.01.044 – volume: 34 start-page: 397 year: 1996 end-page: 408 ident: CR23 article-title: Factors affecting electrode–gel–skin interface impedance in electrical impedance tomography publication-title: Med. Biol. Eng. Comput. doi: 10.1007/BF02523842 – volume: 13 start-page: 172 year: 2005 end-page: 178 ident: CR12 article-title: Visual spatial attention tracking using high-density SSVEP data for independent brain–computer communication publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2005.847369 – ident: CR51 – volume: 23 start-page: 515 year: 2013 end-page: 522 ident: CR1 article-title: Near-real-time feature-selective modulations in human cortex publication-title: Curr. Biol. doi: 10.1016/j.cub.2013.02.013 – volume: 46 start-page: 1057 year: 2010 end-page: 1058 ident: CR14 article-title: Visual stimulus design for high-rate SSVEP BCI publication-title: Electron. Lett. doi: 10.1049/el.2010.0923 – ident: CR58 – volume: 1 start-page: 331 year: 2003 end-page: 354 ident: CR16 article-title: User adaptive BCIs: SSVEP and P300 based interfaces publication-title: PsychNology J. – volume: 21 start-page: 271 year: 2000 end-page: 283 ident: CR24 article-title: A direct comparison of wet, dry and insulating bioelectric recording electrodes publication-title: Physiol. Meas. doi: 10.1088/0967-3334/21/2/307 – ident: CR21 – volume: 6334 start-page: 336 year: 2010 end-page: 345 ident: CR4 article-title: Towards inexpensive BCI control for wheelchair navigation in the enabled environment - a hardware survey publication-title: Lect. Notes Artif. Int. – volume: 112 start-page: 3920 year: 2015 end-page: 3925 ident: CR15 article-title: Soft, curved electrode systems capable of integration on the auricle as a persistent brain–computer interface publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1424875112 – volume: 54 start-page: 1172 year: 2007 end-page: 1176 ident: CR18 article-title: Frequency recognition based on canonical correlation analysis for SSVEP-based BCIs publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2006.889197 – volume: 24 start-page: 1450013 year: 2014 ident: CR52 article-title: Frequency recognition in SSVEP-based BCI using multiset canonical correlation analysis publication-title: Int. J. Neural Syst. doi: 10.1142/S0129065714500130 – volume: 27 start-page: 64 year: 2008 end-page: 71 ident: CR11 article-title: Brain–computer interfaces based on visual evoked potentials publication-title: IEEE Eng. Med. Biol. Mag. doi: 10.1109/MEMB.2008.923958 – volume: 2007 start-page: 94561 year: 2007 ident: CR19 article-title: Fully online multicommand brain–computer interface with visual neurofeedback using SSVEP paradigm publication-title: Comput. Intell Neurosci. doi: 10.1155/2007/94561 – ident: CR9 – ident: CR57 – volume: 7 start-page: 26010 year: 2010 ident: CR3 article-title: A user-friendly SSVEP-based brain-computer interface using a time-domain classifier publication-title: J. Neural Eng. doi: 10.1088/1741-2560/7/2/026010 – ident: CR36 – volume: 12 start-page: 1211 year: 2012 end-page: 1279 ident: CR8 article-title: Brain computer interfaces, a review publication-title: Sensors doi: 10.3390/s120201211 – volume: 14 start-page: 234 year: 2006 end-page: 239 ident: CR10 article-title: A practical VEP-based brain–computer interface publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2006.875576 – volume: 134 start-page: 9 year: 2004 end-page: 21 ident: CR48 article-title: EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis publication-title: J. Neurosci. Methods doi: 10.1016/j.jneumeth.2003.10.009 – volume: 13 start-page: 2487 year: 2002 end-page: 2492 ident: CR56 article-title: Simultaneous EEG and fMRI of the alpha rhythm publication-title: Neuroreport doi: 10.1097/00001756-200212200-00022 – volume: 7 start-page: e1700994 year: 2018 ident: CR28 article-title: Skin conformal polymer electrodes for clinical ECG and EEG recordings publication-title: Adv. Healthc. Mater. doi: 10.1002/adhm.201700994 – volume: 116 start-page: 799 year: 2005 end-page: 806 ident: CR29 article-title: Evaluation of commercially available electrodes and gels for recording of slow EEG potentials publication-title: Clin. Neurophysiol. doi: 10.1016/j.clinph.2004.10.001 – volume: 89 start-page: 1123 year: 2001 end-page: 1134 ident: CR47 article-title: Motor imagery and direct brain–computer communication publication-title: Proc. IEEE doi: 10.1109/5.939829 – volume: 8 start-page: 036020 year: 2011 ident: CR60 article-title: SSVEP-based Bremen–BCI interface—boosting information transfer rates publication-title: J. Neural Eng. doi: 10.1088/1741-2560/8/3/036020 – volume: 56 start-page: 112 year: 2010 end-page: 119 ident: CR26 article-title: Review of wireless and wearable electroencephalogram systems and brain-computer interfaces - a mini-review publication-title: Gerontology doi: 10.1159/000230807 – volume: 65 start-page: 104 year: 2018 end-page: 112 ident: CR30 article-title: Enhancing detection of SSVEPs for a high-speed brain speller using task-related component analysis publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2017.2694818 – volume: 6 start-page: 046002 year: 2009 ident: CR20 article-title: An online multi-channel SSVEP-based brain–computer interface using a canonical correlation analysis method publication-title: J. Neural Eng. doi: 10.1088/1741-2560/6/4/046002 – volume: 28 start-page: 1850018 year: 2018 ident: CR37 article-title: Control of a 7-DOF robotic arm system with an SSVEP-based BCI publication-title: Int. J. Neural Syst. doi: 10.1142/S0129065718500181 – volume: 62 start-page: 2553 year: 2015 end-page: 2567 ident: CR41 article-title: Real-time neuroimaging and cognitive monitoring using wearable dry EEG publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2015.2481482 – ident: CR33 – volume: 1 start-page: 73 year: 2015 end-page: 76 ident: CR50 article-title: Synchronization in wireless biomedical-sensor networks with Bluetooth Low Energy publication-title: Curr. Dir. Biomed. Eng. – volume: 112 start-page: E6058 year: 2015 end-page: E6067 ident: CR44 article-title: High-speed spelling with a noninvasive brain–computer interface publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1508080112 – volume: 9 start-page: 283 year: 2001 end-page: 288 ident: CR54 article-title: Information transfer rate in a five-classes brain–computer interface publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/7333.948456 – ident: CR40 – volume: 2010 start-page: 702357 year: 2010 ident: CR2 article-title: A survey of stimulation methods used in SSVEP-based BCIs publication-title: Comput. Intell. Neurosci. doi: 10.1155/2010/702357 – volume: 32 start-page: 1145 year: 2011 end-page: 1153 ident: CR22 article-title: A time–frequency convolutional neural network for the offline classification of steady-state visual evoked potential responses publication-title: Pattern Recognit. Lett. doi: 10.1016/j.patrec.2011.02.022 – volume: 81 start-page: 340 year: 2018 end-page: 349 ident: CR35 article-title: Review on portable EEG technology in educational research publication-title: Comput. Hum. Behav. doi: 10.1016/j.chb.2017.12.037 – volume: 6 start-page: 169 year: 2012 ident: CR5 article-title: How many people could use an SSVEP BCI? publication-title: Front. Neurosci. – volume: 137 start-page: 346 year: 2001 end-page: 353 ident: CR13 article-title: Human EEG responses to 1–100 Hz flicker: resonance phenomena in visual cortex and their potential correlation to cognitive phenomena publication-title: Exp. Brain Res. doi: 10.1007/s002210100682 – volume: 97 start-page: 620 year: 2013 end-page: 628 ident: CR45 article-title: An intelligent wheelchair using situation awareness and obstacle detection publication-title: Procedia – volume: 74 start-page: 100 year: 2013 end-page: 108 ident: CR6 article-title: Brain–machine interface in chronic stroke rehabilitation: a controlled study publication-title: Ann. Neurol. doi: 10.1002/ana.23879 – volume: 83 start-page: 172 year: 2015 end-page: 179 ident: CR7 article-title: Brain–machine interfaces in neurorehabilitation of stroke publication-title: Neurobiol. Dis. doi: 10.1016/j.nbd.2014.11.025 – ident: CR17 – volume: 29 start-page: 1701312 year: 2017 ident: CR49 article-title: Scalable manufacturing of solderable and stretchable physiologic sensing systems publication-title: Adv. Mater. doi: 10.1002/adma.201701312 – volume: 14 start-page: 026015 year: 2017 ident: CR46 article-title: The hybrid BCI system for movement control by combining motor imagery and moving onset visual evoked potential publication-title: J. Neural Eng. doi: 10.1088/1741-2552/aa5d5f – ident: CR34 – volume: 7 start-page: 46697 year: 2017 ident: CR42 article-title: Soft electronics enabled ergonomic human–computer interaction for swallowing training publication-title: Sci. Rep. doi: 10.1038/srep46697 – ident: CR55 – volume: 12 start-page: 231 year: 2018 end-page: 241 ident: CR32 article-title: Wireless EEG system achieving high throughput and reduced energy consumption through lossless and near-lossless compression publication-title: IEEE Trans. Biomed. Circuits Syst. doi: 10.1109/TBCAS.2017.2779324 – ident: CR59 – volume: 174 start-page: 96 year: 2012 end-page: 102 ident: CR27 article-title: A 3D printed dry electrode for ECG/EEG recording publication-title: Sens. Actuators A doi: 10.1016/j.sna.2011.12.017 – volume: 1 start-page: 120 year: 2014 end-page: 126 ident: CR53 article-title: Fabric-based stretchable electronics with mechanically optimized designs and prestrained composite substrates publication-title: Extreme Mech. Lett. doi: 10.1016/j.eml.2014.12.010 – volume: 241 start-page: 1244 year: 2017 end-page: 1255 ident: CR25 article-title: Towards gel-free electrodes: a systematic study of electrode–skin impedance publication-title: Sens. Actuators B doi: 10.1016/j.snb.2016.10.005 – volume: 115 start-page: 5377 year: 2018 end-page: 5382 ident: CR39 article-title: Wireless, intraoral hybrid electronics for real-time quantification of sodium intake toward hypertension management publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1719573115 – volume: 1 start-page: 1097 year: 2012 end-page: 1105 ident: CR43 article-title: Imagenet classification with deep convolutional neural networks publication-title: Adv. Neural Inf. Process. Syst. – volume: 12 start-page: e0172578 year: 2017 ident: CR31 article-title: A convolutional neural network for steady state visual evoked potential classification under ambulatory environment publication-title: PLoS ONE doi: 10.1371/journal.pone.0172578 – volume: 2007 start-page: 94561 year: 2007 ident: 91_CR19 publication-title: Comput. Intell Neurosci. doi: 10.1155/2007/94561 – ident: 91_CR55 – volume: 12 start-page: 1211 year: 2012 ident: 91_CR8 publication-title: Sensors doi: 10.3390/s120201211 – volume: 34 start-page: 397 year: 1996 ident: 91_CR23 publication-title: Med. Biol. Eng. Comput. doi: 10.1007/BF02523842 – volume: 91 start-page: 796 year: 2017 ident: 91_CR38 publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2017.01.044 – volume: 112 start-page: 3920 year: 2015 ident: 91_CR15 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1424875112 – volume: 174 start-page: 96 year: 2012 ident: 91_CR27 publication-title: Sens. Actuators A doi: 10.1016/j.sna.2011.12.017 – volume: 56 start-page: 112 year: 2010 ident: 91_CR26 publication-title: Gerontology doi: 10.1159/000230807 – volume: 241 start-page: 1244 year: 2017 ident: 91_CR25 publication-title: Sens. Actuators B doi: 10.1016/j.snb.2016.10.005 – ident: 91_CR36 doi: 10.1109/ICACI.2018.8377615 – volume: 62 start-page: 2553 year: 2015 ident: 91_CR41 publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2015.2481482 – ident: 91_CR58 – ident: 91_CR33 – volume: 97 start-page: 620 year: 2013 ident: 91_CR45 publication-title: Procedia – volume: 13 start-page: 2487 year: 2002 ident: 91_CR56 publication-title: Neuroreport doi: 10.1097/00001756-200212200-00022 – volume: 14 start-page: 026015 year: 2017 ident: 91_CR46 publication-title: J. Neural Eng. doi: 10.1088/1741-2552/aa5d5f – volume: 65 start-page: 104 year: 2018 ident: 91_CR30 publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2017.2694818 – ident: 91_CR40 doi: 10.1007/978-3-642-39454-6_69 – volume: 7 start-page: e1700994 year: 2018 ident: 91_CR28 publication-title: Adv. Healthc. Mater. doi: 10.1002/adhm.201700994 – volume: 23 start-page: 515 year: 2013 ident: 91_CR1 publication-title: Curr. Biol. doi: 10.1016/j.cub.2013.02.013 – volume: 9 start-page: 283 year: 2001 ident: 91_CR54 publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/7333.948456 – volume: 24 start-page: 1450013 year: 2014 ident: 91_CR52 publication-title: Int. J. Neural Syst. doi: 10.1142/S0129065714500130 – volume: 112 start-page: E6058 year: 2015 ident: 91_CR44 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1508080112 – volume: 2010 start-page: 702357 year: 2010 ident: 91_CR2 publication-title: Comput. Intell. Neurosci. doi: 10.1155/2010/702357 – ident: 91_CR17 – ident: 91_CR9 – ident: 91_CR34 – volume: 83 start-page: 172 year: 2015 ident: 91_CR7 publication-title: Neurobiol. Dis. doi: 10.1016/j.nbd.2014.11.025 – volume: 28 start-page: 1850018 year: 2018 ident: 91_CR37 publication-title: Int. J. Neural Syst. doi: 10.1142/S0129065718500181 – ident: 91_CR57 – volume: 74 start-page: 100 year: 2013 ident: 91_CR6 publication-title: Ann. Neurol. doi: 10.1002/ana.23879 – volume: 12 start-page: 231 year: 2018 ident: 91_CR32 publication-title: IEEE Trans. Biomed. Circuits Syst. doi: 10.1109/TBCAS.2017.2779324 – volume: 29 start-page: 1701312 year: 2017 ident: 91_CR49 publication-title: Adv. Mater. doi: 10.1002/adma.201701312 – volume: 7 start-page: 26010 year: 2010 ident: 91_CR3 publication-title: J. Neural Eng. doi: 10.1088/1741-2560/7/2/026010 – ident: 91_CR21 – volume: 54 start-page: 1172 year: 2007 ident: 91_CR18 publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2006.889197 – volume: 6 start-page: 169 year: 2012 ident: 91_CR5 publication-title: Front. Neurosci. – volume: 7 start-page: 46697 year: 2017 ident: 91_CR42 publication-title: Sci. Rep. doi: 10.1038/srep46697 – volume: 14 start-page: 234 year: 2006 ident: 91_CR10 publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2006.875576 – volume: 13 start-page: 172 year: 2005 ident: 91_CR12 publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2005.847369 – volume: 27 start-page: 64 year: 2008 ident: 91_CR11 publication-title: IEEE Eng. Med. Biol. Mag. doi: 10.1109/MEMB.2008.923958 – volume: 12 start-page: e0172578 year: 2017 ident: 91_CR31 publication-title: PLoS ONE doi: 10.1371/journal.pone.0172578 – volume: 8 start-page: 036020 year: 2011 ident: 91_CR60 publication-title: J. Neural Eng. doi: 10.1088/1741-2560/8/3/036020 – ident: 91_CR59 doi: 10.1109/IJCNN.2014.6889955 – volume: 6334 start-page: 336 year: 2010 ident: 91_CR4 publication-title: Lect. Notes Artif. Int. – volume: 32 start-page: 1145 year: 2011 ident: 91_CR22 publication-title: Pattern Recognit. Lett. doi: 10.1016/j.patrec.2011.02.022 – volume: 81 start-page: 340 year: 2018 ident: 91_CR35 publication-title: Comput. Hum. Behav. doi: 10.1016/j.chb.2017.12.037 – volume: 1 start-page: 1097 year: 2012 ident: 91_CR43 publication-title: Adv. Neural Inf. Process. Syst. – volume: 1 start-page: 73 year: 2015 ident: 91_CR50 publication-title: Curr. Dir. Biomed. Eng. doi: 10.1515/cdbme-2015-0019 – ident: 91_CR51 doi: 10.1109/EMBC.2015.7318805 – volume: 6 start-page: 046002 year: 2009 ident: 91_CR20 publication-title: J. Neural Eng. doi: 10.1088/1741-2560/6/4/046002 – volume: 116 start-page: 799 year: 2005 ident: 91_CR29 publication-title: Clin. Neurophysiol. doi: 10.1016/j.clinph.2004.10.001 – volume: 137 start-page: 346 year: 2001 ident: 91_CR13 publication-title: Exp. Brain Res. doi: 10.1007/s002210100682 – volume: 21 start-page: 271 year: 2000 ident: 91_CR24 publication-title: Physiol. Meas. doi: 10.1088/0967-3334/21/2/307 – volume: 1 start-page: 120 year: 2014 ident: 91_CR53 publication-title: Extreme Mech. Lett. doi: 10.1016/j.eml.2014.12.010 – volume: 46 start-page: 1057 year: 2010 ident: 91_CR14 publication-title: Electron. Lett. doi: 10.1049/el.2010.0923 – volume: 1 start-page: 331 year: 2003 ident: 91_CR16 publication-title: PsychNology J. – volume: 115 start-page: 5377 year: 2018 ident: 91_CR39 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1719573115 – volume: 89 start-page: 1123 year: 2001 ident: 91_CR47 publication-title: Proc. IEEE doi: 10.1109/5.939829 – volume: 134 start-page: 9 year: 2004 ident: 91_CR48 publication-title: J. Neurosci. Methods doi: 10.1016/j.jneumeth.2003.10.009 |
| SSID | ssj0002144504 |
| Score | 2.4732332 |
| Snippet | Variation in human brains creates difficulty in implementing electroencephalography into universal brain–machine interfaces. Conventional... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 412 |
| SubjectTerms | 639/166 639/301/1005 9/10 Aerosols Algorithms Artificial neural networks Brain Circuits Classification Deep learning Electrodes Electroencephalography Electromagnetic interference Electronic systems Electronics Engineering Evoked potentials Eye movements Flexible components Information transfer Interfaces Keyboards Machine learning Man-machine interfaces Motor vehicles Neural networks Portability Real time Steady state Time domain analysis Wheelchairs |
| Title | Fully portable and wireless universal brain–machine interfaces enabled by flexible scalp electronics and deep learning algorithm |
| URI | https://link.springer.com/article/10.1038/s42256-019-0091-7 https://www.proquest.com/docview/2622641093 |
| Volume | 1 |
| WOSCitedRecordID | wos000571252900005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 2522-5839 dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0002144504 issn: 2522-5839 databaseCode: P5Z dateStart: 20190101 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Computer Science Database customDbUrl: eissn: 2522-5839 dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0002144504 issn: 2522-5839 databaseCode: K7- dateStart: 20190101 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2522-5839 dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0002144504 issn: 2522-5839 databaseCode: BENPR dateStart: 20190101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Science Database customDbUrl: eissn: 2522-5839 dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0002144504 issn: 2522-5839 databaseCode: M2P dateStart: 20190101 isFulltext: true titleUrlDefault: https://search.proquest.com/sciencejournals providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PS8MwFA66efDiD1SczpGDJyWsTdqmPYnKhiCOIQrDS0mTdAr75boJu4n_gv-hf4l5Wbuh4C5eemnzCHyveS95L9-H0KkJka6rKSMilAHxlNmwCuE7xHeBri3QoWSpFZvgrVbY6UTt_MAty9sqizXRLtRqKOGMvE4DuPIJ5EcXo1cCqlFQXc0lNNZR2aXUBT-_5WRxxgJ0YL7jFcVMFtYzz_gvbKEjYpILl_Cf4WiZY_4qi9po09z-7zx30FaeZ-LLuWPsojU92EMfsOGcYZtyJz2NxUBh4CrumeUOT-ctGmZQArIRX--ffdtoqTFQSoxT6N3C2l61UjiZ4RSoNMFKZmAe4aWeTmbtKq1HONek6GLR65pJTp77--ix2Xi4viG5CAORLKQT4mrmsTQx-0DHDGSUq4AFkkttwlgi3FSL1BER8zlw6YlERkpxRaXwpFS-9gJ2gEqD4UAfIuzR1Es5Y8YYUOIEkYaqq6NDBfI3SlWQU2ARy5yhHIQyerGtlLMwnsMXG_higC_mFXS2GDKa03Os-rhaQBbnf2oWL_GqoPMC9OXrP40drTZ2jDap9TLoRqui0mQ81SdoQ75NXrJxDZWvGq32fc26q3ne0bZ5tv2nbyAU9P0 |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3BbtQwEB2VggSXAgLEtgV8gAvIamI7cXJAFQKqVltWHIrUm3HsSYu03S6bbdHeEL_Af_BR_RI8TtIVSPTWA-fEo8R-Hns84_cAnoclMk1RSG4Ll3PlQ8BqbZbwLCW6thwLJ-soNqFHo-LwsPy4Ar_6uzBUVtn7xOio_amjM_ItkdOVTyI_2p5-5aQaRdnVXkKjhcUQF99CyNa83nsXxveFEDvvD97u8k5VgDtZiDlPUSpZVyGwSTyiFNrnMnfaYfDLlU1rtHViS5lpIoezlSu91144q5zzGapcBrs34KaShSau_qHml2c6RD-WJapPnspiq1FhvlDIXvKwmUm5_nP5W-5p_0rDxtVt5-7_1i_3YK3bR7M3LfDvwwpOHsAPCqgXLIYU1RiZnXhGXMzj4M7ZWVuCEhpVJItx8f3nSSwkRUaUGbOaatMYxqtknlULVhNVKFlpAoynbKkX1ES74eunrNPcOGJ2fBQ6ZX588hA-XctvP4LVyekEHwNTola1ljIYI8qfvETKKidYeJL38X4AST_2xnUM7CQEMjaxEkAWpoWLCXAxBBejB_Dyssm0pR-56uXNHiKm80SNWeJjAK96kC0f_9PY-tXGnsHt3YMP-2Z_bzTcgDsiIpwq7zZhdT47wydwy53PvzSzp3GKMPh83dj7DVS9UPM |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VghAXfgSIhQI-wAVkbWIncXJAqKKsqBategCpN-P4p0XabpfNFrQ31Ffo2_A4PElnnKQrkOitB86JR_n5ZuzxjL8P4AVOkWnqheSmtAXPHCasxuQJz1Oiayt8aWWIYhNqMin396u9DfjVn4Whtso-JsZA7Y4t7ZEPRUFHPon8aBi6toi9ndHb-TdOClJUae3lNFqIjP3qB6ZvzZvdHfzXL4UYvf_07gPvFAa4laVY8tTLTIYak5zEeS-FcoUsrLIeY3Rt0uBNSEwlc0VEcaa2lXPKCWsya13us0Ki3WtwHWfhnHxsrPjF_g5RkeVJ1hdSZTlsMvQdSt8rjgublKs_p8L1-vavkmyc6UZ3_udvdBdud-trtt06xD3Y8LP7cEqJ9orFVKOeemZmjhFH8xTDPDtpW1NwUE1yGb9_nh3FBlPPiEpjEahnjfl4xMyxesUCUYiSlQbhPWdrHaEm2sWnn7NOi-OAmekBfpTl4dED-Hwlr_0QNmfHM_8IWCZCFpSUaIyogIrKU7U58aUj2R_nBpD0ONC2Y2YngZCpjh0CstQtdDRCRxN0tBrAq4sh85aW5LKbt3q46C5CNXqNlQG87gG3vvxPY48vN_YcbiLk9MfdyfgJ3BIR7NSQtwWby8WJfwo37Pfl12bxLHoLgy9XDb1zwbhZrQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fully+portable+and+wireless+universal+brain%E2%80%93machine+interfaces+enabled+by+flexible+scalp+electronics+and+deep+learning+algorithm&rft.jtitle=Nature+machine+intelligence&rft.au=Mahmood+Musa&rft.au=Mzurikwao+Deogratias&rft.au=Yun-Soung%2C+Kim&rft.au=Lee%2C+Yongkuk&rft.date=2019-09-01&rft.pub=Nature+Publishing+Group&rft.eissn=2522-5839&rft.volume=1&rft.issue=9&rft.spage=412&rft.epage=422&rft_id=info:doi/10.1038%2Fs42256-019-0091-7&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2522-5839&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2522-5839&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2522-5839&client=summon |