Fully portable and wireless universal brain–machine interfaces enabled by flexible scalp electronics and deep learning algorithm

Variation in human brains creates difficulty in implementing electroencephalography into universal brain–machine interfaces. Conventional electroencephalography systems typically suffer from motion artefacts, extensive preparation time and bulky equipment, while existing electroencephalography class...

Full description

Saved in:
Bibliographic Details
Published in:Nature machine intelligence Vol. 1; no. 9; pp. 412 - 422
Main Authors: Mahmood, Musa, Mzurikwao, Deogratias, Kim, Yun-Soung, Lee, Yongkuk, Mishra, Saswat, Herbert, Robert, Duarte, Audrey, Ang, Chee Siang, Yeo, Woon-Hong
Format: Journal Article
Language:English
Published: London Nature Publishing Group UK 01.09.2019
Nature Publishing Group
Subjects:
ISSN:2522-5839, 2522-5839
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Variation in human brains creates difficulty in implementing electroencephalography into universal brain–machine interfaces. Conventional electroencephalography systems typically suffer from motion artefacts, extensive preparation time and bulky equipment, while existing electroencephalography classification methods require training on a per-subject or per-session basis. Here, we introduce a fully portable, wireless, flexible scalp electronic system, incorporating a set of dry electrodes and a flexible membrane circuit. Time-domain analysis using convolutional neural networks allows for accurate, real-time classification of steady-state visually evoked potentials in the occipital lobe. Compared to commercial systems, the flexible electronics show the improved performance in detection of evoked potentials due to significant reduction of noise and electromagnetic interference. The two-channel scalp electronic system achieves a high information transfer rate (122.1 ± 3.53 bits per minute) with six human subjects, allowing for wireless, real-time, universal electroencephalography classification for an electric wheelchair, a motorized vehicle and a keyboard-less presentation. Brain–machine interfaces using steady-state visually evoked potentials (SSVEPs) show promise in therapeutic applications. With a combination of innovations in flexible and soft electronics and in deep learning approaches to classify potentials from two channels and from any subject, a compact, wireless and universal SSVEP interface is designed. Subjects can operate a wheelchair in real time with eye movements while wearing the new brain–machine interface.
AbstractList Variation in human brains creates difficulty in implementing electroencephalography into universal brain–machine interfaces. Conventional electroencephalography systems typically suffer from motion artefacts, extensive preparation time and bulky equipment, while existing electroencephalography classification methods require training on a per-subject or per-session basis. Here, we introduce a fully portable, wireless, flexible scalp electronic system, incorporating a set of dry electrodes and a flexible membrane circuit. Time-domain analysis using convolutional neural networks allows for accurate, real-time classification of steady-state visually evoked potentials in the occipital lobe. Compared to commercial systems, the flexible electronics show the improved performance in detection of evoked potentials due to significant reduction of noise and electromagnetic interference. The two-channel scalp electronic system achieves a high information transfer rate (122.1 ± 3.53 bits per minute) with six human subjects, allowing for wireless, real-time, universal electroencephalography classification for an electric wheelchair, a motorized vehicle and a keyboard-less presentation. Brain–machine interfaces using steady-state visually evoked potentials (SSVEPs) show promise in therapeutic applications. With a combination of innovations in flexible and soft electronics and in deep learning approaches to classify potentials from two channels and from any subject, a compact, wireless and universal SSVEP interface is designed. Subjects can operate a wheelchair in real time with eye movements while wearing the new brain–machine interface.
Variation in human brains creates difficulty in implementing electroencephalography into universal brain–machine interfaces. Conventional electroencephalography systems typically suffer from motion artefacts, extensive preparation time and bulky equipment, while existing electroencephalography classification methods require training on a per-subject or per-session basis. Here, we introduce a fully portable, wireless, flexible scalp electronic system, incorporating a set of dry electrodes and a flexible membrane circuit. Time-domain analysis using convolutional neural networks allows for accurate, real-time classification of steady-state visually evoked potentials in the occipital lobe. Compared to commercial systems, the flexible electronics show the improved performance in detection of evoked potentials due to significant reduction of noise and electromagnetic interference. The two-channel scalp electronic system achieves a high information transfer rate (122.1 ± 3.53 bits per minute) with six human subjects, allowing for wireless, real-time, universal electroencephalography classification for an electric wheelchair, a motorized vehicle and a keyboard-less presentation.Brain–machine interfaces using steady-state visually evoked potentials (SSVEPs) show promise in therapeutic applications. With a combination of innovations in flexible and soft electronics and in deep learning approaches to classify potentials from two channels and from any subject, a compact, wireless and universal SSVEP interface is designed. Subjects can operate a wheelchair in real time with eye movements while wearing the new brain–machine interface.
Author Mzurikwao, Deogratias
Duarte, Audrey
Mahmood, Musa
Herbert, Robert
Yeo, Woon-Hong
Mishra, Saswat
Kim, Yun-Soung
Lee, Yongkuk
Ang, Chee Siang
Author_xml – sequence: 1
  givenname: Musa
  surname: Mahmood
  fullname: Mahmood, Musa
  organization: George W. Woodruff School of Mechanical Engineering, Institute for Electronics and Nanotechnology, Georgia Institute of Technology
– sequence: 2
  givenname: Deogratias
  surname: Mzurikwao
  fullname: Mzurikwao, Deogratias
  organization: School of Engineering and Digital Arts, University of Kent
– sequence: 3
  givenname: Yun-Soung
  surname: Kim
  fullname: Kim, Yun-Soung
  organization: George W. Woodruff School of Mechanical Engineering, Institute for Electronics and Nanotechnology, Georgia Institute of Technology
– sequence: 4
  givenname: Yongkuk
  surname: Lee
  fullname: Lee, Yongkuk
  organization: Department of Biomedical Engineering, Wichita State University
– sequence: 5
  givenname: Saswat
  surname: Mishra
  fullname: Mishra, Saswat
  organization: George W. Woodruff School of Mechanical Engineering, Institute for Electronics and Nanotechnology, Georgia Institute of Technology
– sequence: 6
  givenname: Robert
  surname: Herbert
  fullname: Herbert, Robert
  organization: George W. Woodruff School of Mechanical Engineering, Institute for Electronics and Nanotechnology, Georgia Institute of Technology
– sequence: 7
  givenname: Audrey
  surname: Duarte
  fullname: Duarte, Audrey
  organization: School of Psychology, College of Sciences, Georgia Institute of Technology
– sequence: 8
  givenname: Chee Siang
  surname: Ang
  fullname: Ang, Chee Siang
  organization: School of Engineering and Digital Arts, University of Kent
– sequence: 9
  givenname: Woon-Hong
  orcidid: 0000-0002-5526-3882
  surname: Yeo
  fullname: Yeo, Woon-Hong
  email: whyeo@gatech.edu
  organization: George W. Woodruff School of Mechanical Engineering, Institute for Electronics and Nanotechnology, Georgia Institute of Technology, Wallace H. Coulter Department of Biomedical Engineering, Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Neural Engineering Center, Center for Flexible and Wearable Electronics Advanced Research, Institute for Materials, Institute for Robotics and Intelligent Machines, Georgia Institute of Technology
BookMark eNp9kMtKxDAYRoMoeH0AdwHX1dzaTJci3kBwo-vwN_07RjJpTTLq7MRX8A19EjuOoAi6ShbfOQlnm6yHPiAh-5wdciYnR0kJUVYF43XBWM0LvUa2RClEUU5kvf7jvkn2UrpnjAmuVMnUFnk9m3u_oEMfMzQeKYSWPrmIHlOi8-AeMSbwtIngwvvL2wzsnQtIXcgYO7CYKIYl2NJmQTuPz25pSRb8QEeJzbEPzqZPb4s4UI8QgwtTCn7aR5fvZrtkowOfcO_r3CG3Z6c3JxfF1fX55cnxVWHlROSCo1SyayaKsVEkhW4rWVltsa5ZA7xD6BjUstRM6xIaW7etboUFZW1boqrkDjlYeYfYP8wxZXPfz2MYnzSiEqJSnNVyXOnVysY-pYidsS5Ddn3IYwNvODPL5mbV3IzNzbK50SPJf5FDdDOIi38ZsWLSuA1TjN9_-hv6AEpcmd4
CitedBy_id crossref_primary_10_1016_j_neucom_2021_03_025
crossref_primary_10_1002_advs_202000810
crossref_primary_10_1002_itl2_438
crossref_primary_10_1038_s41467_022_33457_9
crossref_primary_10_1155_2022_6599720
crossref_primary_10_26599_BSA_2022_9050002
crossref_primary_10_1021_acsnano_5c08540
crossref_primary_10_1111_exsy_13530
crossref_primary_10_1039_D2NR04551F
crossref_primary_10_3390_bios12100889
crossref_primary_10_1109_TNSRE_2021_3114340
crossref_primary_10_1016_j_bspc_2021_103338
crossref_primary_10_3389_fnsys_2022_836778
crossref_primary_10_1016_j_nanoen_2022_107069
crossref_primary_10_1016_j_bios_2022_114333
crossref_primary_10_1109_TMTT_2022_3164708
crossref_primary_10_1016_j_compbiomed_2022_106068
crossref_primary_10_1016_j_tics_2021_04_003
crossref_primary_10_1016_j_inffus_2025_103069
crossref_primary_10_1002_admt_202402189
crossref_primary_10_1088_1741_2552_ac36aa
crossref_primary_10_1109_TCSS_2024_3350958
crossref_primary_10_1002_adfm_202419882
crossref_primary_10_3390_ma13163587
crossref_primary_10_1016_j_biomaterials_2023_122075
crossref_primary_10_1016_j_bios_2022_114329
crossref_primary_10_1109_JSEN_2023_3287291
crossref_primary_10_1002_aisy_202100194
crossref_primary_10_1002_adrr_202500047
crossref_primary_10_1002_adma_202211236
crossref_primary_10_1016_j_mattod_2025_07_008
crossref_primary_10_1007_s40820_023_01235_x
crossref_primary_10_1016_j_bios_2024_116499
crossref_primary_10_1002_adfm_202501130
crossref_primary_10_1007_s40820_022_00818_4
crossref_primary_10_1002_aisy_202000157
crossref_primary_10_1038_s41467_023_39814_6
crossref_primary_10_3390_brainsci10070442
crossref_primary_10_1002_adfm_202007436
crossref_primary_10_1038_s41467_024_55142_9
crossref_primary_10_1093_nsr_nwad048
crossref_primary_10_1145_3513023
crossref_primary_10_1002_adma_202402708
crossref_primary_10_1126_science_abj9912
crossref_primary_10_1002_adfm_202008807
crossref_primary_10_1007_s11517_023_02840_z
crossref_primary_10_1088_1741_2552_ad7f89
crossref_primary_10_3390_s23041868
crossref_primary_10_1002_rpm_20230022
crossref_primary_10_1016_j_compbiomed_2025_110266
crossref_primary_10_3390_polym14061232
crossref_primary_10_1038_s41378_024_00825_y
crossref_primary_10_1016_j_trechm_2021_01_001
crossref_primary_10_1038_s41578_022_00427_y
crossref_primary_10_3389_fneur_2023_1272992
crossref_primary_10_1016_j_compbiomed_2020_103843
crossref_primary_10_1002_lpor_202301082
crossref_primary_10_3389_fmed_2024_1390634
crossref_primary_10_1109_COMST_2021_3090778
crossref_primary_10_1039_D5MH00451A
crossref_primary_10_1002_adhm_202002286
crossref_primary_10_1002_adma_202107902
crossref_primary_10_1038_s41467_023_40004_7
crossref_primary_10_1038_s42256_023_00760_z
crossref_primary_10_1007_s42979_023_02160_x
crossref_primary_10_1038_s41528_022_00164_w
crossref_primary_10_1002_adma_202005786
crossref_primary_10_1002_sdtp_16507
crossref_primary_10_3390_nano11040842
crossref_primary_10_1038_s41597_022_01372_9
crossref_primary_10_1039_D5MH00528K
crossref_primary_10_7759_cureus_42460
crossref_primary_10_1016_j_bios_2020_112404
crossref_primary_10_1007_s40820_023_01029_1
crossref_primary_10_1016_j_bspc_2023_105548
crossref_primary_10_1016_j_bios_2020_112764
crossref_primary_10_1002_aisy_202300291
crossref_primary_10_3390_s20113297
crossref_primary_10_3390_s21020354
crossref_primary_10_1016_j_matpr_2022_04_654
crossref_primary_10_1002_advs_202405273
crossref_primary_10_1016_j_snb_2020_129416
crossref_primary_10_3390_bios12030155
crossref_primary_10_1088_2058_8585_ac6a96
crossref_primary_10_1016_j_arr_2025_102877
crossref_primary_10_1016_j_device_2024_100496
crossref_primary_10_1002_advs_202101129
crossref_primary_10_1145_3495002
crossref_primary_10_1002_advs_202001938
crossref_primary_10_1002_adhm_202100646
crossref_primary_10_1002_adma_202406424
crossref_primary_10_1002_adfm_202404333
crossref_primary_10_1038_s41928_022_00888_7
crossref_primary_10_1088_1741_2552_abf473
crossref_primary_10_63995_JKTG9603
crossref_primary_10_1002_aisy_202300359
crossref_primary_10_1002_adfm_202005692
crossref_primary_10_1007_s42765_025_00524_x
crossref_primary_10_1002_aisy_202300631
crossref_primary_10_1016_j_matt_2020_03_020
crossref_primary_10_1016_j_trac_2025_118279
crossref_primary_10_1038_s44385_025_00009_x
crossref_primary_10_1002_smtd_202402164
crossref_primary_10_1109_TII_2024_3375376
crossref_primary_10_1109_TBME_2021_3115464
crossref_primary_10_1109_ACCESS_2021_3071599
crossref_primary_10_3389_fbioe_2021_706229
Cites_doi 10.1016/j.bios.2017.01.044
10.1007/BF02523842
10.1109/TNSRE.2005.847369
10.1016/j.cub.2013.02.013
10.1049/el.2010.0923
10.1088/0967-3334/21/2/307
10.1073/pnas.1424875112
10.1109/TBME.2006.889197
10.1142/S0129065714500130
10.1109/MEMB.2008.923958
10.1155/2007/94561
10.1088/1741-2560/7/2/026010
10.3390/s120201211
10.1109/TNSRE.2006.875576
10.1016/j.jneumeth.2003.10.009
10.1097/00001756-200212200-00022
10.1002/adhm.201700994
10.1016/j.clinph.2004.10.001
10.1109/5.939829
10.1088/1741-2560/8/3/036020
10.1159/000230807
10.1109/TBME.2017.2694818
10.1088/1741-2560/6/4/046002
10.1142/S0129065718500181
10.1109/TBME.2015.2481482
10.1073/pnas.1508080112
10.1109/7333.948456
10.1155/2010/702357
10.1016/j.patrec.2011.02.022
10.1016/j.chb.2017.12.037
10.1007/s002210100682
10.1002/ana.23879
10.1016/j.nbd.2014.11.025
10.1002/adma.201701312
10.1088/1741-2552/aa5d5f
10.1038/srep46697
10.1109/TBCAS.2017.2779324
10.1016/j.sna.2011.12.017
10.1016/j.eml.2014.12.010
10.1016/j.snb.2016.10.005
10.1073/pnas.1719573115
10.1371/journal.pone.0172578
10.1109/ICACI.2018.8377615
10.1007/978-3-642-39454-6_69
10.1109/IJCNN.2014.6889955
10.1515/cdbme-2015-0019
10.1109/EMBC.2015.7318805
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Nature Limited 2019
The Author(s), under exclusive licence to Springer Nature Limited 2019.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Nature Limited 2019
– notice: The Author(s), under exclusive licence to Springer Nature Limited 2019.
DBID AAYXX
CITATION
3V.
7SC
7XB
88I
8FD
8FE
8FG
8FK
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
L7M
L~C
L~D
M2P
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
DOI 10.1038/s42256-019-0091-7
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Technology collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
DatabaseTitle CrossRef
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Collection
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
DatabaseTitleList
Computer Science Database
Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2522-5839
EndPage 422
ExternalDocumentID 10_1038_s42256_019_0091_7
GrantInformation_xml – fundername: ISTK | Korea Institute of Materials Science (KIMS)
  grantid: PNK5061
  funderid: https://doi.org/10.13039/501100003713
GroupedDBID 0R~
88I
AAEEF
AARCD
AAYZH
ABJNI
ABUWG
ACBWK
ADBBV
AFKRA
AFSHS
AIBTJ
ALFFA
ALMA_UNASSIGNED_HOLDINGS
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
EBS
EJD
FSGXE
GNUQQ
HCIFZ
K7-
M2P
NNMJJ
ODYON
RNT
SIXXV
SNYQT
SOJ
TBHMF
AAYXX
AFANA
AFFHD
AGSTI
ATHPR
CITATION
O9-
PHGZM
PHGZT
PQGLB
3V.
7SC
7XB
8FD
8FE
8FG
8FK
JQ2
L7M
L~C
L~D
P62
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
PUEGO
Q9U
ID FETCH-LOGICAL-c382t-1e343fb8400dee327d636c7ce990ba1feaf0a93570775abc9dd7d2ca4ccd5e463
IEDL.DBID K7-
ISICitedReferencesCount 133
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000571252900005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2522-5839
IngestDate Sat Aug 23 14:50:47 EDT 2025
Tue Nov 18 21:52:25 EST 2025
Sat Nov 29 02:24:58 EST 2025
Fri Feb 21 02:37:41 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c382t-1e343fb8400dee327d636c7ce990ba1feaf0a93570775abc9dd7d2ca4ccd5e463
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-5526-3882
PQID 2622641093
PQPubID 5342773
PageCount 11
ParticipantIDs proquest_journals_2622641093
crossref_citationtrail_10_1038_s42256_019_0091_7
crossref_primary_10_1038_s42256_019_0091_7
springer_journals_10_1038_s42256_019_0091_7
PublicationCentury 2000
PublicationDate 2019-09-01
PublicationDateYYYYMMDD 2019-09-01
PublicationDate_xml – month: 09
  year: 2019
  text: 2019-09-01
  day: 01
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: Basingstoke
PublicationTitle Nature machine intelligence
PublicationTitleAbbrev Nat Mach Intell
PublicationYear 2019
Publisher Nature Publishing Group UK
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
References Ma (CR46) 2017; 14
Zhang, Zhou, Jin, Wang, Cichocki (CR52) 2014; 24
Mullen (CR41) 2015; 62
CR36
Lee (CR42) 2017; 7
Li, Wang, Duan (CR25) 2017; 241
CR34
CR33
Salvo (CR27) 2012; 174
Cecotti (CR22) 2011; 32
Chen (CR44) 2015; 112
Bideaux, Zimmermann, Hey, Stork (CR50) 2015; 1
Bin, Gao, Yan, Hong, Gao (CR20) 2009; 6
Dufort y Alvarez (CR32) 2018; 12
CR9
Wang, Gao, Hong, Jia, Gao (CR11) 2008; 27
Herrmann (CR13) 2001; 137
CR40
Xu (CR53) 2014; 1
McAdams, Jossinet, Lackermeier, Risacher (CR23) 1996; 34
Searle, Kirkup (CR24) 2000; 21
Kelly, Lalor, Reilly, Foxe (CR12) 2005; 13
Volosyak (CR60) 2011; 8
Garcia, Srinivasan, Serences (CR1) 2013; 23
Wang, Wang, Jung (CR14) 2010; 46
Luo, Sullivan (CR3) 2010; 7
Lee (CR39) 2018; 115
Ramos-Murguialday (CR6) 2013; 74
CR17
CR59
Pfurtscheller, Neuper (CR47) 2001; 89
CR58
CR57
Soekadar, Birbaumer, Slutzky, Cohen (CR7) 2015; 83
CR55
Wang, Wang, Gao, Hong, Gao (CR10) 2006; 14
Stamps, Hamam (CR4) 2010; 6334
CR51
Beverina, Palmas, Silvoni, Piccione, Giove (CR16) 2003; 1
Martinez, Bakardjian, Cichocki (CR19) 2007; 2007
Goldman, Stern, Engel, Cohen (CR56) 2002; 13
Lin, Zhang, Wu, Gao (CR18) 2007; 54
Kwak, Muller, Lee (CR31) 2017; 12
Ji, Hwang, Kim (CR45) 2013; 97
Kim (CR49) 2017; 29
Mishra (CR38) 2017; 91
Delorme, Makeig (CR48) 2004; 134
Zhu, Bieger, Garcia Molina, Aarts (CR2) 2010; 2010
Guger (CR5) 2012; 6
Nicolas-Alonso, Gomez-Gil (CR8) 2012; 12
CR21
Lin (CR26) 2010; 56
Krizhevsky, Sutskever, Hinton (CR43) 2012; 1
Stauffer (CR28) 2018; 7
Nakanishi (CR30) 2018; 65
Xu, Zhong (CR35) 2018; 81
Norton (CR15) 2015; 112
Tallgren, Vanhatalo, Kaila, Voipio (CR29) 2005; 116
Chen, Zhao, Wang, Xu, Gao (CR37) 2018; 28
Obermaier, Neuper, Guger, Pfurtscheller (CR54) 2001; 9
H Cecotti (91_CR22) 2011; 32
A Searle (91_CR24) 2000; 21
R Xu (91_CR53) 2014; 1
SR Soekadar (91_CR7) 2015; 83
91_CR21
S Mishra (91_CR38) 2017; 91
M Nakanishi (91_CR30) 2018; 65
CT Lin (91_CR26) 2010; 56
CS Herrmann (91_CR13) 2001; 137
NS Kwak (91_CR31) 2017; 12
D Zhu (91_CR2) 2010; 2010
Y Wang (91_CR11) 2008; 27
SP Kelly (91_CR12) 2005; 13
91_CR9
91_CR59
91_CR58
91_CR57
G Pfurtscheller (91_CR47) 2001; 89
91_CR17
P Martinez (91_CR19) 2007; 2007
91_CR51
P Salvo (91_CR27) 2012; 174
X Chen (91_CR37) 2018; 28
91_CR55
T Ma (91_CR46) 2017; 14
Y Zhang (91_CR52) 2014; 24
RI Goldman (91_CR56) 2002; 13
Y Lee (91_CR39) 2018; 115
G Bin (91_CR20) 2009; 6
B Obermaier (91_CR54) 2001; 9
A Krizhevsky (91_CR43) 2012; 1
Z Lin (91_CR18) 2007; 54
F Stauffer (91_CR28) 2018; 7
Y Ji (91_CR45) 2013; 97
JJS Norton (91_CR15) 2015; 112
LF Nicolas-Alonso (91_CR8) 2012; 12
91_CR40
A Luo (91_CR3) 2010; 7
ET McAdams (91_CR23) 1996; 34
JO Garcia (91_CR1) 2013; 23
J Xu (91_CR35) 2018; 81
P Tallgren (91_CR29) 2005; 116
G Dufort y Alvarez (91_CR32) 2018; 12
TR Mullen (91_CR41) 2015; 62
F Beverina (91_CR16) 2003; 1
91_CR36
Y Wang (91_CR14) 2010; 46
A Delorme (91_CR48) 2004; 134
91_CR34
91_CR33
A Bideaux (91_CR50) 2015; 1
Y Wang (91_CR10) 2006; 14
I Volosyak (91_CR60) 2011; 8
G Li (91_CR25) 2017; 241
Y Lee (91_CR42) 2017; 7
K Stamps (91_CR4) 2010; 6334
A Ramos-Murguialday (91_CR6) 2013; 74
YS Kim (91_CR49) 2017; 29
C Guger (91_CR5) 2012; 6
X Chen (91_CR44) 2015; 112
References_xml – volume: 91
  start-page: 796
  year: 2017
  end-page: 803
  ident: CR38
  article-title: Soft, conformal bioelectronics for a wireless human–wheelchair interface
  publication-title: Biosens. Bioelectron.
  doi: 10.1016/j.bios.2017.01.044
– volume: 34
  start-page: 397
  year: 1996
  end-page: 408
  ident: CR23
  article-title: Factors affecting electrode–gel–skin interface impedance in electrical impedance tomography
  publication-title: Med. Biol. Eng. Comput.
  doi: 10.1007/BF02523842
– volume: 13
  start-page: 172
  year: 2005
  end-page: 178
  ident: CR12
  article-title: Visual spatial attention tracking using high-density SSVEP data for independent brain–computer communication
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2005.847369
– ident: CR51
– volume: 23
  start-page: 515
  year: 2013
  end-page: 522
  ident: CR1
  article-title: Near-real-time feature-selective modulations in human cortex
  publication-title: Curr. Biol.
  doi: 10.1016/j.cub.2013.02.013
– volume: 46
  start-page: 1057
  year: 2010
  end-page: 1058
  ident: CR14
  article-title: Visual stimulus design for high-rate SSVEP BCI
  publication-title: Electron. Lett.
  doi: 10.1049/el.2010.0923
– ident: CR58
– volume: 1
  start-page: 331
  year: 2003
  end-page: 354
  ident: CR16
  article-title: User adaptive BCIs: SSVEP and P300 based interfaces
  publication-title: PsychNology J.
– volume: 21
  start-page: 271
  year: 2000
  end-page: 283
  ident: CR24
  article-title: A direct comparison of wet, dry and insulating bioelectric recording electrodes
  publication-title: Physiol. Meas.
  doi: 10.1088/0967-3334/21/2/307
– ident: CR21
– volume: 6334
  start-page: 336
  year: 2010
  end-page: 345
  ident: CR4
  article-title: Towards inexpensive BCI control for wheelchair navigation in the enabled environment - a hardware survey
  publication-title: Lect. Notes Artif. Int.
– volume: 112
  start-page: 3920
  year: 2015
  end-page: 3925
  ident: CR15
  article-title: Soft, curved electrode systems capable of integration on the auricle as a persistent brain–computer interface
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1424875112
– volume: 54
  start-page: 1172
  year: 2007
  end-page: 1176
  ident: CR18
  article-title: Frequency recognition based on canonical correlation analysis for SSVEP-based BCIs
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2006.889197
– volume: 24
  start-page: 1450013
  year: 2014
  ident: CR52
  article-title: Frequency recognition in SSVEP-based BCI using multiset canonical correlation analysis
  publication-title: Int. J. Neural Syst.
  doi: 10.1142/S0129065714500130
– volume: 27
  start-page: 64
  year: 2008
  end-page: 71
  ident: CR11
  article-title: Brain–computer interfaces based on visual evoked potentials
  publication-title: IEEE Eng. Med. Biol. Mag.
  doi: 10.1109/MEMB.2008.923958
– volume: 2007
  start-page: 94561
  year: 2007
  ident: CR19
  article-title: Fully online multicommand brain–computer interface with visual neurofeedback using SSVEP paradigm
  publication-title: Comput. Intell Neurosci.
  doi: 10.1155/2007/94561
– ident: CR9
– ident: CR57
– volume: 7
  start-page: 26010
  year: 2010
  ident: CR3
  article-title: A user-friendly SSVEP-based brain-computer interface using a time-domain classifier
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2560/7/2/026010
– ident: CR36
– volume: 12
  start-page: 1211
  year: 2012
  end-page: 1279
  ident: CR8
  article-title: Brain computer interfaces, a review
  publication-title: Sensors
  doi: 10.3390/s120201211
– volume: 14
  start-page: 234
  year: 2006
  end-page: 239
  ident: CR10
  article-title: A practical VEP-based brain–computer interface
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2006.875576
– volume: 134
  start-page: 9
  year: 2004
  end-page: 21
  ident: CR48
  article-title: EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis
  publication-title: J. Neurosci. Methods
  doi: 10.1016/j.jneumeth.2003.10.009
– volume: 13
  start-page: 2487
  year: 2002
  end-page: 2492
  ident: CR56
  article-title: Simultaneous EEG and fMRI of the alpha rhythm
  publication-title: Neuroreport
  doi: 10.1097/00001756-200212200-00022
– volume: 7
  start-page: e1700994
  year: 2018
  ident: CR28
  article-title: Skin conformal polymer electrodes for clinical ECG and EEG recordings
  publication-title: Adv. Healthc. Mater.
  doi: 10.1002/adhm.201700994
– volume: 116
  start-page: 799
  year: 2005
  end-page: 806
  ident: CR29
  article-title: Evaluation of commercially available electrodes and gels for recording of slow EEG potentials
  publication-title: Clin. Neurophysiol.
  doi: 10.1016/j.clinph.2004.10.001
– volume: 89
  start-page: 1123
  year: 2001
  end-page: 1134
  ident: CR47
  article-title: Motor imagery and direct brain–computer communication
  publication-title: Proc. IEEE
  doi: 10.1109/5.939829
– volume: 8
  start-page: 036020
  year: 2011
  ident: CR60
  article-title: SSVEP-based Bremen–BCI interface—boosting information transfer rates
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2560/8/3/036020
– volume: 56
  start-page: 112
  year: 2010
  end-page: 119
  ident: CR26
  article-title: Review of wireless and wearable electroencephalogram systems and brain-computer interfaces - a mini-review
  publication-title: Gerontology
  doi: 10.1159/000230807
– volume: 65
  start-page: 104
  year: 2018
  end-page: 112
  ident: CR30
  article-title: Enhancing detection of SSVEPs for a high-speed brain speller using task-related component analysis
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2017.2694818
– volume: 6
  start-page: 046002
  year: 2009
  ident: CR20
  article-title: An online multi-channel SSVEP-based brain–computer interface using a canonical correlation analysis method
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2560/6/4/046002
– volume: 28
  start-page: 1850018
  year: 2018
  ident: CR37
  article-title: Control of a 7-DOF robotic arm system with an SSVEP-based BCI
  publication-title: Int. J. Neural Syst.
  doi: 10.1142/S0129065718500181
– volume: 62
  start-page: 2553
  year: 2015
  end-page: 2567
  ident: CR41
  article-title: Real-time neuroimaging and cognitive monitoring using wearable dry EEG
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2015.2481482
– ident: CR33
– volume: 1
  start-page: 73
  year: 2015
  end-page: 76
  ident: CR50
  article-title: Synchronization in wireless biomedical-sensor networks with Bluetooth Low Energy
  publication-title: Curr. Dir. Biomed. Eng.
– volume: 112
  start-page: E6058
  year: 2015
  end-page: E6067
  ident: CR44
  article-title: High-speed spelling with a noninvasive brain–computer interface
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1508080112
– volume: 9
  start-page: 283
  year: 2001
  end-page: 288
  ident: CR54
  article-title: Information transfer rate in a five-classes brain–computer interface
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/7333.948456
– ident: CR40
– volume: 2010
  start-page: 702357
  year: 2010
  ident: CR2
  article-title: A survey of stimulation methods used in SSVEP-based BCIs
  publication-title: Comput. Intell. Neurosci.
  doi: 10.1155/2010/702357
– volume: 32
  start-page: 1145
  year: 2011
  end-page: 1153
  ident: CR22
  article-title: A time–frequency convolutional neural network for the offline classification of steady-state visual evoked potential responses
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/j.patrec.2011.02.022
– volume: 81
  start-page: 340
  year: 2018
  end-page: 349
  ident: CR35
  article-title: Review on portable EEG technology in educational research
  publication-title: Comput. Hum. Behav.
  doi: 10.1016/j.chb.2017.12.037
– volume: 6
  start-page: 169
  year: 2012
  ident: CR5
  article-title: How many people could use an SSVEP BCI?
  publication-title: Front. Neurosci.
– volume: 137
  start-page: 346
  year: 2001
  end-page: 353
  ident: CR13
  article-title: Human EEG responses to 1–100 Hz flicker: resonance phenomena in visual cortex and their potential correlation to cognitive phenomena
  publication-title: Exp. Brain Res.
  doi: 10.1007/s002210100682
– volume: 97
  start-page: 620
  year: 2013
  end-page: 628
  ident: CR45
  article-title: An intelligent wheelchair using situation awareness and obstacle detection
  publication-title: Procedia
– volume: 74
  start-page: 100
  year: 2013
  end-page: 108
  ident: CR6
  article-title: Brain–machine interface in chronic stroke rehabilitation: a controlled study
  publication-title: Ann. Neurol.
  doi: 10.1002/ana.23879
– volume: 83
  start-page: 172
  year: 2015
  end-page: 179
  ident: CR7
  article-title: Brain–machine interfaces in neurorehabilitation of stroke
  publication-title: Neurobiol. Dis.
  doi: 10.1016/j.nbd.2014.11.025
– ident: CR17
– volume: 29
  start-page: 1701312
  year: 2017
  ident: CR49
  article-title: Scalable manufacturing of solderable and stretchable physiologic sensing systems
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201701312
– volume: 14
  start-page: 026015
  year: 2017
  ident: CR46
  article-title: The hybrid BCI system for movement control by combining motor imagery and moving onset visual evoked potential
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2552/aa5d5f
– ident: CR34
– volume: 7
  start-page: 46697
  year: 2017
  ident: CR42
  article-title: Soft electronics enabled ergonomic human–computer interaction for swallowing training
  publication-title: Sci. Rep.
  doi: 10.1038/srep46697
– ident: CR55
– volume: 12
  start-page: 231
  year: 2018
  end-page: 241
  ident: CR32
  article-title: Wireless EEG system achieving high throughput and reduced energy consumption through lossless and near-lossless compression
  publication-title: IEEE Trans. Biomed. Circuits Syst.
  doi: 10.1109/TBCAS.2017.2779324
– ident: CR59
– volume: 174
  start-page: 96
  year: 2012
  end-page: 102
  ident: CR27
  article-title: A 3D printed dry electrode for ECG/EEG recording
  publication-title: Sens. Actuators A
  doi: 10.1016/j.sna.2011.12.017
– volume: 1
  start-page: 120
  year: 2014
  end-page: 126
  ident: CR53
  article-title: Fabric-based stretchable electronics with mechanically optimized designs and prestrained composite substrates
  publication-title: Extreme Mech. Lett.
  doi: 10.1016/j.eml.2014.12.010
– volume: 241
  start-page: 1244
  year: 2017
  end-page: 1255
  ident: CR25
  article-title: Towards gel-free electrodes: a systematic study of electrode–skin impedance
  publication-title: Sens. Actuators B
  doi: 10.1016/j.snb.2016.10.005
– volume: 115
  start-page: 5377
  year: 2018
  end-page: 5382
  ident: CR39
  article-title: Wireless, intraoral hybrid electronics for real-time quantification of sodium intake toward hypertension management
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1719573115
– volume: 1
  start-page: 1097
  year: 2012
  end-page: 1105
  ident: CR43
  article-title: Imagenet classification with deep convolutional neural networks
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 12
  start-page: e0172578
  year: 2017
  ident: CR31
  article-title: A convolutional neural network for steady state visual evoked potential classification under ambulatory environment
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0172578
– volume: 2007
  start-page: 94561
  year: 2007
  ident: 91_CR19
  publication-title: Comput. Intell Neurosci.
  doi: 10.1155/2007/94561
– ident: 91_CR55
– volume: 12
  start-page: 1211
  year: 2012
  ident: 91_CR8
  publication-title: Sensors
  doi: 10.3390/s120201211
– volume: 34
  start-page: 397
  year: 1996
  ident: 91_CR23
  publication-title: Med. Biol. Eng. Comput.
  doi: 10.1007/BF02523842
– volume: 91
  start-page: 796
  year: 2017
  ident: 91_CR38
  publication-title: Biosens. Bioelectron.
  doi: 10.1016/j.bios.2017.01.044
– volume: 112
  start-page: 3920
  year: 2015
  ident: 91_CR15
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1424875112
– volume: 174
  start-page: 96
  year: 2012
  ident: 91_CR27
  publication-title: Sens. Actuators A
  doi: 10.1016/j.sna.2011.12.017
– volume: 56
  start-page: 112
  year: 2010
  ident: 91_CR26
  publication-title: Gerontology
  doi: 10.1159/000230807
– volume: 241
  start-page: 1244
  year: 2017
  ident: 91_CR25
  publication-title: Sens. Actuators B
  doi: 10.1016/j.snb.2016.10.005
– ident: 91_CR36
  doi: 10.1109/ICACI.2018.8377615
– volume: 62
  start-page: 2553
  year: 2015
  ident: 91_CR41
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2015.2481482
– ident: 91_CR58
– ident: 91_CR33
– volume: 97
  start-page: 620
  year: 2013
  ident: 91_CR45
  publication-title: Procedia
– volume: 13
  start-page: 2487
  year: 2002
  ident: 91_CR56
  publication-title: Neuroreport
  doi: 10.1097/00001756-200212200-00022
– volume: 14
  start-page: 026015
  year: 2017
  ident: 91_CR46
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2552/aa5d5f
– volume: 65
  start-page: 104
  year: 2018
  ident: 91_CR30
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2017.2694818
– ident: 91_CR40
  doi: 10.1007/978-3-642-39454-6_69
– volume: 7
  start-page: e1700994
  year: 2018
  ident: 91_CR28
  publication-title: Adv. Healthc. Mater.
  doi: 10.1002/adhm.201700994
– volume: 23
  start-page: 515
  year: 2013
  ident: 91_CR1
  publication-title: Curr. Biol.
  doi: 10.1016/j.cub.2013.02.013
– volume: 9
  start-page: 283
  year: 2001
  ident: 91_CR54
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/7333.948456
– volume: 24
  start-page: 1450013
  year: 2014
  ident: 91_CR52
  publication-title: Int. J. Neural Syst.
  doi: 10.1142/S0129065714500130
– volume: 112
  start-page: E6058
  year: 2015
  ident: 91_CR44
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1508080112
– volume: 2010
  start-page: 702357
  year: 2010
  ident: 91_CR2
  publication-title: Comput. Intell. Neurosci.
  doi: 10.1155/2010/702357
– ident: 91_CR17
– ident: 91_CR9
– ident: 91_CR34
– volume: 83
  start-page: 172
  year: 2015
  ident: 91_CR7
  publication-title: Neurobiol. Dis.
  doi: 10.1016/j.nbd.2014.11.025
– volume: 28
  start-page: 1850018
  year: 2018
  ident: 91_CR37
  publication-title: Int. J. Neural Syst.
  doi: 10.1142/S0129065718500181
– ident: 91_CR57
– volume: 74
  start-page: 100
  year: 2013
  ident: 91_CR6
  publication-title: Ann. Neurol.
  doi: 10.1002/ana.23879
– volume: 12
  start-page: 231
  year: 2018
  ident: 91_CR32
  publication-title: IEEE Trans. Biomed. Circuits Syst.
  doi: 10.1109/TBCAS.2017.2779324
– volume: 29
  start-page: 1701312
  year: 2017
  ident: 91_CR49
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201701312
– volume: 7
  start-page: 26010
  year: 2010
  ident: 91_CR3
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2560/7/2/026010
– ident: 91_CR21
– volume: 54
  start-page: 1172
  year: 2007
  ident: 91_CR18
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2006.889197
– volume: 6
  start-page: 169
  year: 2012
  ident: 91_CR5
  publication-title: Front. Neurosci.
– volume: 7
  start-page: 46697
  year: 2017
  ident: 91_CR42
  publication-title: Sci. Rep.
  doi: 10.1038/srep46697
– volume: 14
  start-page: 234
  year: 2006
  ident: 91_CR10
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2006.875576
– volume: 13
  start-page: 172
  year: 2005
  ident: 91_CR12
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2005.847369
– volume: 27
  start-page: 64
  year: 2008
  ident: 91_CR11
  publication-title: IEEE Eng. Med. Biol. Mag.
  doi: 10.1109/MEMB.2008.923958
– volume: 12
  start-page: e0172578
  year: 2017
  ident: 91_CR31
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0172578
– volume: 8
  start-page: 036020
  year: 2011
  ident: 91_CR60
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2560/8/3/036020
– ident: 91_CR59
  doi: 10.1109/IJCNN.2014.6889955
– volume: 6334
  start-page: 336
  year: 2010
  ident: 91_CR4
  publication-title: Lect. Notes Artif. Int.
– volume: 32
  start-page: 1145
  year: 2011
  ident: 91_CR22
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/j.patrec.2011.02.022
– volume: 81
  start-page: 340
  year: 2018
  ident: 91_CR35
  publication-title: Comput. Hum. Behav.
  doi: 10.1016/j.chb.2017.12.037
– volume: 1
  start-page: 1097
  year: 2012
  ident: 91_CR43
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 1
  start-page: 73
  year: 2015
  ident: 91_CR50
  publication-title: Curr. Dir. Biomed. Eng.
  doi: 10.1515/cdbme-2015-0019
– ident: 91_CR51
  doi: 10.1109/EMBC.2015.7318805
– volume: 6
  start-page: 046002
  year: 2009
  ident: 91_CR20
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2560/6/4/046002
– volume: 116
  start-page: 799
  year: 2005
  ident: 91_CR29
  publication-title: Clin. Neurophysiol.
  doi: 10.1016/j.clinph.2004.10.001
– volume: 137
  start-page: 346
  year: 2001
  ident: 91_CR13
  publication-title: Exp. Brain Res.
  doi: 10.1007/s002210100682
– volume: 21
  start-page: 271
  year: 2000
  ident: 91_CR24
  publication-title: Physiol. Meas.
  doi: 10.1088/0967-3334/21/2/307
– volume: 1
  start-page: 120
  year: 2014
  ident: 91_CR53
  publication-title: Extreme Mech. Lett.
  doi: 10.1016/j.eml.2014.12.010
– volume: 46
  start-page: 1057
  year: 2010
  ident: 91_CR14
  publication-title: Electron. Lett.
  doi: 10.1049/el.2010.0923
– volume: 1
  start-page: 331
  year: 2003
  ident: 91_CR16
  publication-title: PsychNology J.
– volume: 115
  start-page: 5377
  year: 2018
  ident: 91_CR39
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1719573115
– volume: 89
  start-page: 1123
  year: 2001
  ident: 91_CR47
  publication-title: Proc. IEEE
  doi: 10.1109/5.939829
– volume: 134
  start-page: 9
  year: 2004
  ident: 91_CR48
  publication-title: J. Neurosci. Methods
  doi: 10.1016/j.jneumeth.2003.10.009
SSID ssj0002144504
Score 2.4732332
Snippet Variation in human brains creates difficulty in implementing electroencephalography into universal brain–machine interfaces. Conventional...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 412
SubjectTerms 639/166
639/301/1005
9/10
Aerosols
Algorithms
Artificial neural networks
Brain
Circuits
Classification
Deep learning
Electrodes
Electroencephalography
Electromagnetic interference
Electronic systems
Electronics
Engineering
Evoked potentials
Eye movements
Flexible components
Information transfer
Interfaces
Keyboards
Machine learning
Man-machine interfaces
Motor vehicles
Neural networks
Portability
Real time
Steady state
Time domain analysis
Wheelchairs
Title Fully portable and wireless universal brain–machine interfaces enabled by flexible scalp electronics and deep learning algorithm
URI https://link.springer.com/article/10.1038/s42256-019-0091-7
https://www.proquest.com/docview/2622641093
Volume 1
WOSCitedRecordID wos000571252900005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 2522-5839
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0002144504
  issn: 2522-5839
  databaseCode: P5Z
  dateStart: 20190101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 2522-5839
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0002144504
  issn: 2522-5839
  databaseCode: K7-
  dateStart: 20190101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2522-5839
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0002144504
  issn: 2522-5839
  databaseCode: BENPR
  dateStart: 20190101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database
  customDbUrl:
  eissn: 2522-5839
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0002144504
  issn: 2522-5839
  databaseCode: M2P
  dateStart: 20190101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PS8MwFA66efDiD1SczpGDJyWsTdqmPYnKhiCOIQrDS0mTdAr75boJu4n_gv-hf4l5Wbuh4C5eemnzCHyveS95L9-H0KkJka6rKSMilAHxlNmwCuE7xHeBri3QoWSpFZvgrVbY6UTt_MAty9sqizXRLtRqKOGMvE4DuPIJ5EcXo1cCqlFQXc0lNNZR2aXUBT-_5WRxxgJ0YL7jFcVMFtYzz_gvbKEjYpILl_Cf4WiZY_4qi9po09z-7zx30FaeZ-LLuWPsojU92EMfsOGcYZtyJz2NxUBh4CrumeUOT-ctGmZQArIRX--ffdtoqTFQSoxT6N3C2l61UjiZ4RSoNMFKZmAe4aWeTmbtKq1HONek6GLR65pJTp77--ix2Xi4viG5CAORLKQT4mrmsTQx-0DHDGSUq4AFkkttwlgi3FSL1BER8zlw6YlERkpxRaXwpFS-9gJ2gEqD4UAfIuzR1Es5Y8YYUOIEkYaqq6NDBfI3SlWQU2ARy5yhHIQyerGtlLMwnsMXG_higC_mFXS2GDKa03Os-rhaQBbnf2oWL_GqoPMC9OXrP40drTZ2jDap9TLoRqui0mQ81SdoQ75NXrJxDZWvGq32fc26q3ne0bZ5tv2nbyAU9P0
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3BbtQwEB2VggSXAgLEtgV8gAvIamI7cXJAFQKqVltWHIrUm3HsSYu03S6bbdHeEL_Af_BR_RI8TtIVSPTWA-fEo8R-Hns84_cAnoclMk1RSG4Ll3PlQ8BqbZbwLCW6thwLJ-soNqFHo-LwsPy4Ar_6uzBUVtn7xOio_amjM_ItkdOVTyI_2p5-5aQaRdnVXkKjhcUQF99CyNa83nsXxveFEDvvD97u8k5VgDtZiDlPUSpZVyGwSTyiFNrnMnfaYfDLlU1rtHViS5lpIoezlSu91144q5zzGapcBrs34KaShSau_qHml2c6RD-WJapPnspiq1FhvlDIXvKwmUm5_nP5W-5p_0rDxtVt5-7_1i_3YK3bR7M3LfDvwwpOHsAPCqgXLIYU1RiZnXhGXMzj4M7ZWVuCEhpVJItx8f3nSSwkRUaUGbOaatMYxqtknlULVhNVKFlpAoynbKkX1ES74eunrNPcOGJ2fBQ6ZX588hA-XctvP4LVyekEHwNTola1ljIYI8qfvETKKidYeJL38X4AST_2xnUM7CQEMjaxEkAWpoWLCXAxBBejB_Dyssm0pR-56uXNHiKm80SNWeJjAK96kC0f_9PY-tXGnsHt3YMP-2Z_bzTcgDsiIpwq7zZhdT47wydwy53PvzSzp3GKMPh83dj7DVS9UPM
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VghAXfgSIhQI-wAVkbWIncXJAqKKsqBategCpN-P4p0XabpfNFrQ31Ffo2_A4PElnnKQrkOitB86JR_n5ZuzxjL8P4AVOkWnqheSmtAXPHCasxuQJz1Oiayt8aWWIYhNqMin396u9DfjVn4Whtso-JsZA7Y4t7ZEPRUFHPon8aBi6toi9ndHb-TdOClJUae3lNFqIjP3qB6ZvzZvdHfzXL4UYvf_07gPvFAa4laVY8tTLTIYak5zEeS-FcoUsrLIeY3Rt0uBNSEwlc0VEcaa2lXPKCWsya13us0Ki3WtwHWfhnHxsrPjF_g5RkeVJ1hdSZTlsMvQdSt8rjgublKs_p8L1-vavkmyc6UZ3_udvdBdud-trtt06xD3Y8LP7cEqJ9orFVKOeemZmjhFH8xTDPDtpW1NwUE1yGb9_nh3FBlPPiEpjEahnjfl4xMyxesUCUYiSlQbhPWdrHaEm2sWnn7NOi-OAmekBfpTl4dED-Hwlr_0QNmfHM_8IWCZCFpSUaIyogIrKU7U58aUj2R_nBpD0ONC2Y2YngZCpjh0CstQtdDRCRxN0tBrAq4sh85aW5LKbt3q46C5CNXqNlQG87gG3vvxPY48vN_YcbiLk9MfdyfgJ3BIR7NSQtwWby8WJfwo37Pfl12bxLHoLgy9XDb1zwbhZrQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fully+portable+and+wireless+universal+brain%E2%80%93machine+interfaces+enabled+by+flexible+scalp+electronics+and+deep+learning+algorithm&rft.jtitle=Nature+machine+intelligence&rft.au=Mahmood+Musa&rft.au=Mzurikwao+Deogratias&rft.au=Yun-Soung%2C+Kim&rft.au=Lee%2C+Yongkuk&rft.date=2019-09-01&rft.pub=Nature+Publishing+Group&rft.eissn=2522-5839&rft.volume=1&rft.issue=9&rft.spage=412&rft.epage=422&rft_id=info:doi/10.1038%2Fs42256-019-0091-7&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2522-5839&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2522-5839&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2522-5839&client=summon