A parallelizable augmented Lagrangian method applied to large-scale non-convex-constrained optimization problems

We contribute improvements to a Lagrangian dual solution approach applied to large-scale optimization problems whose objective functions are convex, continuously differentiable and possibly nonlinear, while the non-relaxed constraint set is compact but not necessarily convex. Such problems arise, fo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical programming Jg. 175; H. 1-2; S. 503 - 536
Hauptverfasser: Boland, Natashia, Christiansen, Jeffrey, Dandurand, Brian, Eberhard, Andrew, Oliveira, Fabricio
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Berlin/Heidelberg Springer Berlin Heidelberg 01.05.2019
Springer Nature B.V
Schlagworte:
ISSN:0025-5610, 1436-4646
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract We contribute improvements to a Lagrangian dual solution approach applied to large-scale optimization problems whose objective functions are convex, continuously differentiable and possibly nonlinear, while the non-relaxed constraint set is compact but not necessarily convex. Such problems arise, for example, in the split-variable deterministic reformulation of stochastic mixed-integer optimization problems. We adapt the augmented Lagrangian method framework to address the presence of nonconvexity in the non-relaxed constraint set and to enable efficient parallelization. The development of our approach is most naturally compared with the development of proximal bundle methods and especially with their use of serious step conditions. However, deviations from these developments allow for an improvement in efficiency with which parallelization can be utilized. Pivotal in our modification to the augmented Lagrangian method is an integration of the simplicial decomposition method and the nonlinear block Gauss–Seidel method. An adaptation of a serious step condition associated with proximal bundle methods allows for the approximation tolerance to be automatically adjusted. Under mild conditions optimal dual convergence is proven, and we report computational results on test instances from the stochastic optimization literature. We demonstrate improvement in parallel speedup over a baseline parallel approach.
AbstractList We contribute improvements to a Lagrangian dual solution approach applied to large-scale optimization problems whose objective functions are convex, continuously differentiable and possibly nonlinear, while the non-relaxed constraint set is compact but not necessarily convex. Such problems arise, for example, in the split-variable deterministic reformulation of stochastic mixed-integer optimization problems. We adapt the augmented Lagrangian method framework to address the presence of nonconvexity in the non-relaxed constraint set and to enable efficient parallelization. The development of our approach is most naturally compared with the development of proximal bundle methods and especially with their use of serious step conditions. However, deviations from these developments allow for an improvement in efficiency with which parallelization can be utilized. Pivotal in our modification to the augmented Lagrangian method is an integration of the simplicial decomposition method and the nonlinear block Gauss–Seidel method. An adaptation of a serious step condition associated with proximal bundle methods allows for the approximation tolerance to be automatically adjusted. Under mild conditions optimal dual convergence is proven, and we report computational results on test instances from the stochastic optimization literature. We demonstrate improvement in parallel speedup over a baseline parallel approach.
Author Dandurand, Brian
Eberhard, Andrew
Oliveira, Fabricio
Boland, Natashia
Christiansen, Jeffrey
Author_xml – sequence: 1
  givenname: Natashia
  surname: Boland
  fullname: Boland, Natashia
  organization: Georgia Institute of Technology
– sequence: 2
  givenname: Jeffrey
  surname: Christiansen
  fullname: Christiansen, Jeffrey
  organization: RMIT University
– sequence: 3
  givenname: Brian
  surname: Dandurand
  fullname: Dandurand, Brian
  organization: RMIT University
– sequence: 4
  givenname: Andrew
  surname: Eberhard
  fullname: Eberhard, Andrew
  email: andy.eberhard@rmit.edu.au
  organization: RMIT University
– sequence: 5
  givenname: Fabricio
  surname: Oliveira
  fullname: Oliveira, Fabricio
  organization: Aalto University
BookMark eNp9kE9r3DAQxUVIIJs0HyA3Q89KZizJso9L6D9YyCU9C9keO15syZW0Jemnr7ZbCBSa0xzm_d6beVfs3HlHjN0i3CGAvo8ICJoD1hxLJXhzxjYoRcVlJatztgEoFVcVwiW7inEPACjqesPWbbHaYOeZ5umXbWcq7GFcyCXqi50dg3XjZF2xUHr2fWHXdZ7yJvlitmEkHjubkXwL77z7SS_HEVOwk8sqv6Zpya5p8q5Yg8_uS_zALgY7R7r5O6_Z98-fnh6-8t3jl28P2x3vRF0mjm3bq94KqHXdliQaLQRpiW1FpKzGru5ko7q-hEZbOSjVNwKrWvY9UjVoKa7Zx5NvDv5xoJjM3h-Cy5GmBGgkNkpWWYUnVRd8jIEGs4ZpseHVIJhjseZUrMnFmmOxpsmM_ofppvTnyePj87tkeSJjTnEjhbeb_g_9BkrhkIM
CitedBy_id crossref_primary_10_3390_en17051233
crossref_primary_10_1007_s10589_023_00532_w
crossref_primary_10_1007_s12532_021_00212_y
crossref_primary_10_1007_s10898_018_0728_9
crossref_primary_10_1016_j_ejor_2020_10_027
crossref_primary_10_1109_TSTE_2024_3450503
crossref_primary_10_1137_22M1487321
crossref_primary_10_1109_TPWRS_2018_2885805
crossref_primary_10_1007_s40518_023_00211_8
crossref_primary_10_1007_s10898_022_01138_y
crossref_primary_10_1109_TSG_2024_3446873
crossref_primary_10_1109_TSG_2024_3358805
crossref_primary_10_1016_j_omega_2021_102480
crossref_primary_10_1016_j_apenergy_2023_122588
crossref_primary_10_1016_j_ejor_2022_01_044
crossref_primary_10_1016_j_renene_2023_119198
crossref_primary_10_1038_s41598_024_67168_6
crossref_primary_10_1111_itor_70001
crossref_primary_10_1016_j_apm_2023_10_014
crossref_primary_10_3390_math12131954
Cites_doi 10.1145/641876.641880
10.1137/120865987
10.1137/0314056
10.1007/BFb0120700
10.1007/s10107-016-1000-z
10.1016/0898-1221(76)90003-1
10.1016/S0167-6377(98)00050-9
10.1007/BF00927673
10.1007/s101070100280
10.1016/j.ijepes.2015.04.009
10.1016/0167-6377(92)90046-6
10.1007/BF01582566
10.1016/j.dam.2008.06.021
10.1016/j.orl.2013.02.003
10.1007/s10107-003-0374-x
10.1007/BF01581204
10.1023/A:1017501703105
10.1007/978-3-642-59073-3_7
10.1002/nav.3800040113
10.1007/BF01584323
10.1590/0101-7438.2014.034.03.0647
10.1007/978-3-642-82118-9
10.1007/BF00941400
10.1007/BF01580219
10.1051/m2an/197509R200411
10.1007/s10107-012-0528-9
10.1007/978-1-4614-0237-4
10.1561/2200000016
10.1145/2063384.2063470
10.1287/moor.20.3.634
10.1137/0805023
10.1007/s10107-014-0809-6
10.1137/1.9781611971309
10.1080/10556788.2014.966824
10.1137/0111043
10.1016/S0167-6377(99)00074-7
10.1515/9781400873173
10.1007/s10589-015-9762-4
10.1287/moor.1.2.97
10.1093/imanum/drq024
10.1137/S1052623495288064
10.1515/9781400841059
10.1007/BF02191984
ContentType Journal Article
Copyright Springer-Verlag GmbH Germany, part of Springer Nature and Mathematical Optimization Society 2018
Mathematical Programming is a copyright of Springer, (2018). All Rights Reserved.
Copyright_xml – notice: Springer-Verlag GmbH Germany, part of Springer Nature and Mathematical Optimization Society 2018
– notice: Mathematical Programming is a copyright of Springer, (2018). All Rights Reserved.
DBID AAYXX
CITATION
3V.
7SC
7WY
7WZ
7XB
87Z
88I
8AL
8AO
8FD
8FE
8FG
8FK
8FL
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
HCIFZ
JQ2
K60
K6~
K7-
L.-
L6V
L7M
L~C
L~D
M0C
M0N
M2P
M7S
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
DOI 10.1007/s10107-018-1253-9
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Science Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni Edition)
ProQuest Materials Science & Engineering
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
Technology collection
ProQuest One Community College
ProQuest Central
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ProQuest ABI/INFORM Global
Computing Database
Science Database
Engineering Database (subscription)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Business (OCUL)
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
DatabaseTitle CrossRef
ProQuest Business Collection (Alumni Edition)
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
ABI/INFORM Complete
ProQuest One Applied & Life Sciences
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest Business Collection
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ABI/INFORM Global (Corporate)
ProQuest One Business
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Pharma Collection
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
ProQuest Central Korea
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest Computing (Alumni Edition)
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
Materials Science & Engineering Collection
ProQuest One Business (Alumni)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList ProQuest Business Collection (Alumni Edition)

Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central (subscription)
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Mathematics
EISSN 1436-4646
EndPage 536
ExternalDocumentID 10_1007_s10107_018_1253_9
GrantInformation_xml – fundername: Australian Research Council
  grantid: ARC DP140100985
  funderid: http://dx.doi.org/10.13039/501100000923
GroupedDBID --Z
-52
-5D
-5G
-BR
-EM
-~C
-~X
.4S
.86
.DC
.VR
06D
0R~
0VY
199
1N0
203
29M
2J2
2JN
2JY
2KG
2KM
2LR
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5VS
67Z
6NX
6TJ
78A
7WY
8FL
8TC
8UJ
8VB
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABWNU
ABXPI
ACAOD
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACNCT
ACOKC
ACOMO
ACPIV
ACUHS
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEMOZ
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHQJS
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJRNO
AJZVZ
AKVCP
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
B0M
BA0
BAPOH
BDATZ
BENPR
BEZIV
BGNMA
BPHCQ
BSONS
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EAD
EAP
EBA
EBLON
EBR
EBS
EBU
ECS
EDO
EIOEI
EJD
EMI
EMK
EPL
ESBYG
EST
ESX
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IAO
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K1G
K60
K6~
K7-
KDC
KOV
LAS
LLZTM
M0C
M2P
M4Y
MA-
N9A
NB0
NPVJJ
NQJWS
NU0
O93
O9G
O9I
O9J
OAM
P19
P2P
P9R
PF0
PROAC
PT4
PT5
Q2X
QOK
QOS
QWB
R89
R9I
RHV
RNS
ROL
RPX
RSV
S16
S27
S3B
SAP
SDD
SDH
SDM
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TH9
TN5
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
VC2
W23
W48
WH7
WK8
YLTOR
Z45
Z5O
Z7R
Z7S
Z7X
Z7Y
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8N
Z8R
Z8T
Z8W
Z92
ZL0
ZMTXR
~02
~8M
~EX
--K
-Y2
1B1
1OL
1SB
28-
2P1
2VQ
5QI
88I
8AO
8FE
8FG
AAPKM
AARHV
AAYTO
AAYXX
ABBRH
ABDBE
ABFSG
ABJCF
ABQSL
ABRTQ
ABULA
ABUWG
ACBXY
ACSTC
ADHKG
ADXHL
AEBTG
AEFIE
AEKMD
AEZWR
AFDZB
AFEXP
AFFHD
AFFNX
AFGCZ
AFHIU
AFKRA
AFOHR
AGGDS
AGQPQ
AHPBZ
AHWEU
AIXLP
AJBLW
AMVHM
ARAPS
ATHPR
AYFIA
AZQEC
BBWZM
BGLVJ
CAG
CCPQU
CITATION
COF
DWQXO
FRNLG
GNUQQ
H~9
K6V
KOW
L6V
M7S
N2Q
NDZJH
NQ-
O9-
P62
PHGZM
PHGZT
PQBIZ
PQBZA
PQGLB
PQQKQ
PTHSS
R4E
RNI
RPZ
RZK
S1Z
S26
S28
SCLPG
T16
UZXMN
VFIZW
XPP
ZWQNP
7SC
7XB
8AL
8FD
8FK
JQ2
L.-
L7M
L~C
L~D
M0N
PKEHL
PQEST
PQUKI
PRINS
PUEGO
Q9U
ID FETCH-LOGICAL-c382t-1bbd5da30878b2e39733e741b6ee5a71c8c495cd2097a4f55d931684dd1e6f743
IEDL.DBID RSV
ISICitedReferencesCount 25
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000465626900015&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0025-5610
IngestDate Thu Sep 25 00:46:07 EDT 2025
Sat Nov 29 03:34:00 EST 2025
Tue Nov 18 22:05:39 EST 2025
Fri Feb 21 02:32:39 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1-2
Keywords Nonlinear block Gauss–Seidel method
Augmented Lagrangian method
Proximal bundle method
90-08
Simplicial decomposition method
90C06
90C15
90C26
Parallel computing
90C30
90C46
90C25
90C11
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c382t-1bbd5da30878b2e39733e741b6ee5a71c8c495cd2097a4f55d931684dd1e6f743
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2009419546
PQPubID 25307
PageCount 34
ParticipantIDs proquest_journals_2009419546
crossref_primary_10_1007_s10107_018_1253_9
crossref_citationtrail_10_1007_s10107_018_1253_9
springer_journals_10_1007_s10107_018_1253_9
PublicationCentury 2000
PublicationDate 2019-05-01
PublicationDateYYYYMMDD 2019-05-01
PublicationDate_xml – month: 05
  year: 2019
  text: 2019-05-01
  day: 01
PublicationDecade 2010
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationSubtitle A Publication of the Mathematical Optimization Society
PublicationTitle Mathematical programming
PublicationTitleAbbrev Math. Program
PublicationYear 2019
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References The MathWorks, Natick: MATLAB 2012b (2014)
National Computing Infrastructure (NCI): NCI Website. http://www.nci.org.au. Last Accessed 19 Nov 2016
GertzEWrightSObject-oriented software for quadratic programmingACM Trans. Math. Softw.2003291588120014541068.9058610.1145/641876.641880
Von HohenbalkenBSimplicial decomposition in nonlinear programming algorithmsMath. Program.197713149684497020362.9008610.1007/BF01584323
RockafellarRTAugmented Lagrangians and applications of the proximal point algorithm in convex programmingMath. Oper. Res.197612971164189190402.9007610.1287/moor.1.2.97
EcksteinJYaoWUnderstanding the Convergence of the Alternating Direction Method of Multipliers: Theoretical and Computational Perspectives2014New BrunswickRutgers University1330.90074Tech. rep
Ahmed, S., Garcia, R., Kong, N., Ntaimo, L., Parija, G., Qiu, F., Sen, S.: SIPLIB: A stochastic integer programming test problem library (2015). http://www.isye.gatech.edu/sahmed/siplib
RockafellarRMonotone operators and the proximal point algorithmSIAM J. Control Optim.19761458778984104830358.9005310.1137/0314056
RockafellarRConvex Analysis1970PrincetonPrinceton University Press0193.1840110.1515/9781400873173
HathawayRJBezdekJCGrouped coordinate minimization using Newton’s method for inexact minimization in one vector coordinateJ. Optim. Theory Appl.199171350351611371510793.9007310.1007/BF00941400
BertsekasDConstrained Optimization and Lagrange Multiplier Methods1982LondonAcademic Press0572.90067
RuszczyńskiANonlinear Optimization2006PrincetonPrinceton University Press1108.9000110.1515/9781400841059
Bertsekas, D.: Incremental aggregated proximal and augmented Lagrangian algorithms. arXiv preprint arXiv:1509.09257 (2015)
HareWSagastizábalCSolodovMA proximal bundle method for nonsmooth nonconvex functions with inexact informationComput. Optim. Appl.20166312834413411343.9006910.1007/s10589-015-9762-4
LubinMMartinKPetraCSandıkçıBOn parallelizing dual decomposition in stochastic integer programmingOper. Res. Lett.201341325225830488391286.9010210.1016/j.orl.2013.02.003
ChenGTeboulleMA proximal-based decomposition method for convex minimization problemsMath. Program.1994648110112741730823.9009710.1007/BF01582566
HestenesMRMultiplier and gradient methodsJ. Optim. Theory Appl.196943033202718090174.2070510.1007/BF00927673
COmputational INfrastructure for Operations Research. http://www.coin-or.org/. Last Accessed 28 Jan (2016)
BirgeJRLouveauxFIntroduction to Stochastic Programming2011BerlinSpringer1223.9000110.1007/978-1-4614-0237-4
ChatzipanagiotisNDentchevaDZavlanosMAn augmented Lagrangian method for distributed optimizationMath. Program.2014152140543433694871327.90198
PowellMJDFletcherRA method for nonlinear constraints in minimization problemsOptimization1969New YorkAcademic Press
EcksteinJSilvaPA practical relative error criterion for augmented lagrangiansMath. Program.2013141131934830972891362.9031210.1007/s10107-012-0528-9
GlowinskiRMarroccoASur l’approximation, par elements finis d’ordre un, et la resolution, par penalisation-dualité, d’une classe de problems de dirichlet non linearesRevue Française d’Automatique, Informatique, et Recherche Opérationelle1975941760368.6505310.1051/m2an/197509R200411
FischerFHelmbergCA parallel bundle framework for asynchronous subspace optimization of nonsmooth convex functionsSIAM J. Optim.201424279582232011951297.9008410.1137/120865987
ShorNMinimization Methods for Non-differentiable Functions1985New YorkSpringer0561.9005810.1007/978-3-642-82118-9
BertsekasDConvex Optimization Algorithms2015BelmontAthena Scientific1347.90001
LinXPhamMRuszczyńskiAAlternating linearization for structured regularization problemsJ. Mach. Learn. Res.2014153447348132771671319.62146
Clarke, F.: Optimization and Nonsmooth Analysis. Society for Industrial and Applied Mathematics (1990)
MulveyJRuszczyńskiAA diagonal quadratic approximation method for large scale linear programsOper. Res. Lett.199212420521511867940767.9004710.1016/0167-6377(92)90046-6
Bodur, M., Dash, S., Günlük, O., Luedtke, J.: Strengthened Benders cuts for stochastic integer programs with continuous recourse (2014). http://www.optimization-online.org/DB_FILE/2014/03/4263.pdf. Last Accessed 13 Jan (2015)
HildrethCA quadratic programming procedureNav. Res. Logist. Q.1957479858910010.1002/nav.3800040113361
TsengPConvergence of a block coordinate descent method for nondifferentiable minimizationJ. Optim. Theory Appl.200110947549418350691006.6506210.1023/A:1017501703105
BertsekasDNonlinear Programming1999BelmontAthena Scientific1015.90077
BonettiniSInexact block coordinate descent methods with application to non-negative matrix factorizationIMA J. Numer. Anal.20113141431145228467611235.6506110.1093/imanum/drq024
RuszczyńskiAOn convergence of an augmented Lagrangian decomposition method for sparse convex optimizationMath. Oper. Res.199520363465613547740845.9009810.1287/moor.20.3.634
KiwielKCApproximations in proximal bundle methods and decomposition of convex programsJ. Optim. Theory Appl.199584352954813260740824.9011010.1007/BF02191984
EcksteinJBertsekasDOn the Douglas–Rachford splitting method and the proximal point algorithm for maximal monotone operatorsMath. Program.1992551–329331811681830765.9007310.1007/BF01581204
GadeDHackebeilGRyanSMWatsonJPWetsRJBWoodruffDLObtaining lower bounds from the progressive hedging algorithm for stochastic mixed-integer programsMath. Program.20161571476734920671338.9028210.1007/s10107-016-1000-z
KiwielKRosaCRuszczyńskiAProximal decomposition via alternating linearizationSIAM J. Optim.19999366868916810470958.6506810.1137/S1052623495288064
Hamdi, A., Mahey, P., Dussault, J.P.: Recent Advances in Optimization: Proceedings of the 8th French–German Conference on Optimization Trier, July 21–26, 1996, chap. A New Decomposition Method in Nonconvex Programming via a Separable Augmented Lagrangian, pp. 90–104. Springer Berlin Heidelberg, Berlin, Heidelberg (1997)
MaheyPOualibouchSTaoPDProximal decomposition on the graph of a maximal monotone operatorSIAM J. Optim.19955245446613302060834.9010510.1137/0805023
GrippoLSciandroneMOn the convergence of the block nonlinear Gauss–Seidel method under convex constraintsOper. Res. Lett.200026312713617468330955.9012810.1016/S0167-6377(99)00074-7
Lubin, M., Petra, C., Anitescu, M., Zavala, V.: Scalable stochastic optimization of complex energy systems. In: Proceedings of 2011 International Conference for High Performance Computing, Networking, Storage and Analysis, pp. 64:164:10. ACM, Seattle, WA (2011)
AmorHBDesrosiersJFrangioniAOn the choice of explicit stabilizing terms in column generationDiscrete Appl. Math.200915761167118425024361169.9039510.1016/j.dam.2008.06.021
Lemaréchal, C.: An Extension of Davidon Methods to Non differentiable Problems, pp. 95–109. Springer, Berlin Heidelberg (1975)
TappendenRRichtárikPBükeBSeparable approximations and decomposition methods for the augmented LagrangianOptim. Methods Softw.201530364366833598151325.9006510.1080/10556788.2014.966824
HollowayCAn extension of the Frank and Wolfe method of feasible directionsMath. Program.19746114273349480283.9004210.1007/BF01580219
de OliveiraWSagastizábalCBundle methods in the XXIst century: a bird’s-eye viewPesqui. Oper.20143464767010.1590/0101-7438.2014.034.03.0647
de OliveiraWSagastizábalCLemaréchalCConvex proximal bundle methods in depth: a unified analysis for inexact oraclesMath. Program.2014148124127732748521327.9032110.1007/s10107-014-0809-6
IBM Corporation: IBM ILOG CPLEX V12.5. http://www-01.ibm.com/software/commerce/optimization/cplex-optimizer/. Last Accessed 28 Jan (2016)
BoydSParikhNChuEPeleatoBEcksteinJDistributed optimization and statistical learning via the alternating direction method of multipliersFound. Trends Mach. Learn.20113111221229.9012210.1561/2200000016
FeizollahiMJCostleyMAhmedSGrijalvaSLarge-scale decentralized unit commitmentInt. J. Electr. Power Energy Syst.2015739710610.1016/j.ijepes.2015.04.009
GabayDMercierBA dual algorithm for the solution of nonlinear variational problems via finite element approximationComput. Math. Appl.1976217400352.6503410.1016/0898-1221(76)90003-1
Boland, N., Christiansen, J., Dandurand, B., Eberhard, A., Linderoth, J., Luedtke, J., Oliveira, F.: Progressive hedging with a Frank–Wolfe based method for computing stochastic mixed-integer programming Lagrangian dual bounds. Optimization Online (2016). http://www.optimization-online.org/DB_HTML/2016/03/5391.html
HeBLiaoLZHanDYangHA new inexact alternating directions method for monotone variational inequalitiesMath. Program.20029210311818922981009.9010810.1007/s101070100280
CarøeCCSchultzRDual decomposition in stochastic integer programmingOper. Res. Lett.1999241374516849091063.9003710.1016/S0167-6377(98)00050-9
Ntaimo, L.: Decomposition algorithms for stochastic combinatorial optimization: Computational experiments and extensions. Ph.D. thesis (2004)
WargaJMinimizing certain convex functionsSIAM J. Appl. Math.1963115885931626360128.0580110.1137/0111043
EcksteinJA practical general approximation criterion for methods of multipliers based on Bregman distancesMath. Program.2003961618619741671023.9004810.1007/s10107-003-0374-x
IBM Corporation: IBM ILOG CPLEX Optimization Studio CPLEX Users Manual. http://www.ibm.com/support/knowledgecenter/en/SSSA5P_12.6.1/ilog.odms.studio.help/pdf/usrcplex.pdf. Last Accessed 22 Aug (2016)
C Hildreth (1253_CR23) 1957; 4
J Warga (1253_CR25) 1963; 11
RJ Hathaway (1253_CR48) 1991; 71
D Gabay (1253_CR30) 1976; 2
J Mulvey (1253_CR34) 1992; 12
1253_CR15
1253_CR59
MJD Powell (1253_CR8) 1969
1253_CR57
S Bonettini (1253_CR21) 2011; 31
1253_CR56
1253_CR55
1253_CR10
W Hare (1253_CR12) 2016; 63
1253_CR54
W de Oliveira (1253_CR11) 2014; 34
L Grippo (1253_CR22) 2000; 26
1253_CR53
1253_CR52
1253_CR51
1253_CR50
JR Birge (1253_CR1) 2011
J Eckstein (1253_CR27) 2013; 141
E Gertz (1253_CR58) 2003; 29
D Gade (1253_CR45) 2016; 157
R Rockafellar (1253_CR9) 1976; 14
P Tseng (1253_CR24) 2001; 109
1253_CR28
D Bertsekas (1253_CR18) 2015
A Ruszczyński (1253_CR4) 2006
B He (1253_CR39) 2002; 92
M Lubin (1253_CR17) 2013; 41
P Mahey (1253_CR43) 1995; 5
B Von Hohenbalken (1253_CR20) 1977; 13
1253_CR60
RT Rockafellar (1253_CR46) 1976; 1
R Glowinski (1253_CR31) 1975; 9
F Fischer (1253_CR16) 2014; 24
MJ Feizollahi (1253_CR44) 2015; 73
W de Oliveira (1253_CR13) 2014; 148
CC Carøe (1253_CR5) 1999; 24
R Rockafellar (1253_CR47) 1970
HB Amor (1253_CR14) 2009; 157
G Chen (1253_CR38) 1994; 64
KC Kiwiel (1253_CR49) 1995; 84
D Bertsekas (1253_CR3) 1999
MR Hestenes (1253_CR7) 1969; 4
A Ruszczyński (1253_CR35) 1995; 20
X Lin (1253_CR37) 2014; 15
J Eckstein (1253_CR26) 2003; 96
C Holloway (1253_CR19) 1974; 6
J Eckstein (1253_CR42) 2014
N Chatzipanagiotis (1253_CR32) 2014; 152
J Eckstein (1253_CR41) 1992; 55
D Bertsekas (1253_CR6) 1982
S Boyd (1253_CR29) 2011; 3
1253_CR40
K Kiwiel (1253_CR36) 1999; 9
R Tappenden (1253_CR33) 2015; 30
N Shor (1253_CR2) 1985
References_xml – reference: RuszczyńskiANonlinear Optimization2006PrincetonPrinceton University Press1108.9000110.1515/9781400841059
– reference: RockafellarRMonotone operators and the proximal point algorithmSIAM J. Control Optim.19761458778984104830358.9005310.1137/0314056
– reference: RockafellarRTAugmented Lagrangians and applications of the proximal point algorithm in convex programmingMath. Oper. Res.197612971164189190402.9007610.1287/moor.1.2.97
– reference: GlowinskiRMarroccoASur l’approximation, par elements finis d’ordre un, et la resolution, par penalisation-dualité, d’une classe de problems de dirichlet non linearesRevue Française d’Automatique, Informatique, et Recherche Opérationelle1975941760368.6505310.1051/m2an/197509R200411
– reference: Clarke, F.: Optimization and Nonsmooth Analysis. Society for Industrial and Applied Mathematics (1990)
– reference: Lemaréchal, C.: An Extension of Davidon Methods to Non differentiable Problems, pp. 95–109. Springer, Berlin Heidelberg (1975)
– reference: ShorNMinimization Methods for Non-differentiable Functions1985New YorkSpringer0561.9005810.1007/978-3-642-82118-9
– reference: HathawayRJBezdekJCGrouped coordinate minimization using Newton’s method for inexact minimization in one vector coordinateJ. Optim. Theory Appl.199171350351611371510793.9007310.1007/BF00941400
– reference: BertsekasDNonlinear Programming1999BelmontAthena Scientific1015.90077
– reference: BertsekasDConvex Optimization Algorithms2015BelmontAthena Scientific1347.90001
– reference: RuszczyńskiAOn convergence of an augmented Lagrangian decomposition method for sparse convex optimizationMath. Oper. Res.199520363465613547740845.9009810.1287/moor.20.3.634
– reference: Boland, N., Christiansen, J., Dandurand, B., Eberhard, A., Linderoth, J., Luedtke, J., Oliveira, F.: Progressive hedging with a Frank–Wolfe based method for computing stochastic mixed-integer programming Lagrangian dual bounds. Optimization Online (2016). http://www.optimization-online.org/DB_HTML/2016/03/5391.html
– reference: HeBLiaoLZHanDYangHA new inexact alternating directions method for monotone variational inequalitiesMath. Program.20029210311818922981009.9010810.1007/s101070100280
– reference: TappendenRRichtárikPBükeBSeparable approximations and decomposition methods for the augmented LagrangianOptim. Methods Softw.201530364366833598151325.9006510.1080/10556788.2014.966824
– reference: LinXPhamMRuszczyńskiAAlternating linearization for structured regularization problemsJ. Mach. Learn. Res.2014153447348132771671319.62146
– reference: FeizollahiMJCostleyMAhmedSGrijalvaSLarge-scale decentralized unit commitmentInt. J. Electr. Power Energy Syst.2015739710610.1016/j.ijepes.2015.04.009
– reference: Ahmed, S., Garcia, R., Kong, N., Ntaimo, L., Parija, G., Qiu, F., Sen, S.: SIPLIB: A stochastic integer programming test problem library (2015). http://www.isye.gatech.edu/sahmed/siplib
– reference: The MathWorks, Natick: MATLAB 2012b (2014)
– reference: HareWSagastizábalCSolodovMA proximal bundle method for nonsmooth nonconvex functions with inexact informationComput. Optim. Appl.20166312834413411343.9006910.1007/s10589-015-9762-4
– reference: COmputational INfrastructure for Operations Research. http://www.coin-or.org/. Last Accessed 28 Jan (2016)
– reference: KiwielKRosaCRuszczyńskiAProximal decomposition via alternating linearizationSIAM J. Optim.19999366868916810470958.6506810.1137/S1052623495288064
– reference: BirgeJRLouveauxFIntroduction to Stochastic Programming2011BerlinSpringer1223.9000110.1007/978-1-4614-0237-4
– reference: GabayDMercierBA dual algorithm for the solution of nonlinear variational problems via finite element approximationComput. Math. Appl.1976217400352.6503410.1016/0898-1221(76)90003-1
– reference: MaheyPOualibouchSTaoPDProximal decomposition on the graph of a maximal monotone operatorSIAM J. Optim.19955245446613302060834.9010510.1137/0805023
– reference: WargaJMinimizing certain convex functionsSIAM J. Appl. Math.1963115885931626360128.0580110.1137/0111043
– reference: PowellMJDFletcherRA method for nonlinear constraints in minimization problemsOptimization1969New YorkAcademic Press
– reference: GrippoLSciandroneMOn the convergence of the block nonlinear Gauss–Seidel method under convex constraintsOper. Res. Lett.200026312713617468330955.9012810.1016/S0167-6377(99)00074-7
– reference: HildrethCA quadratic programming procedureNav. Res. Logist. Q.1957479858910010.1002/nav.3800040113361
– reference: AmorHBDesrosiersJFrangioniAOn the choice of explicit stabilizing terms in column generationDiscrete Appl. Math.200915761167118425024361169.9039510.1016/j.dam.2008.06.021
– reference: TsengPConvergence of a block coordinate descent method for nondifferentiable minimizationJ. Optim. Theory Appl.200110947549418350691006.6506210.1023/A:1017501703105
– reference: Bodur, M., Dash, S., Günlük, O., Luedtke, J.: Strengthened Benders cuts for stochastic integer programs with continuous recourse (2014). http://www.optimization-online.org/DB_FILE/2014/03/4263.pdf. Last Accessed 13 Jan (2015)
– reference: LubinMMartinKPetraCSandıkçıBOn parallelizing dual decomposition in stochastic integer programmingOper. Res. Lett.201341325225830488391286.9010210.1016/j.orl.2013.02.003
– reference: Hamdi, A., Mahey, P., Dussault, J.P.: Recent Advances in Optimization: Proceedings of the 8th French–German Conference on Optimization Trier, July 21–26, 1996, chap. A New Decomposition Method in Nonconvex Programming via a Separable Augmented Lagrangian, pp. 90–104. Springer Berlin Heidelberg, Berlin, Heidelberg (1997)
– reference: EcksteinJA practical general approximation criterion for methods of multipliers based on Bregman distancesMath. Program.2003961618619741671023.9004810.1007/s10107-003-0374-x
– reference: National Computing Infrastructure (NCI): NCI Website. http://www.nci.org.au. Last Accessed 19 Nov 2016
– reference: KiwielKCApproximations in proximal bundle methods and decomposition of convex programsJ. Optim. Theory Appl.199584352954813260740824.9011010.1007/BF02191984
– reference: EcksteinJSilvaPA practical relative error criterion for augmented lagrangiansMath. Program.2013141131934830972891362.9031210.1007/s10107-012-0528-9
– reference: de OliveiraWSagastizábalCLemaréchalCConvex proximal bundle methods in depth: a unified analysis for inexact oraclesMath. Program.2014148124127732748521327.9032110.1007/s10107-014-0809-6
– reference: BoydSParikhNChuEPeleatoBEcksteinJDistributed optimization and statistical learning via the alternating direction method of multipliersFound. Trends Mach. Learn.20113111221229.9012210.1561/2200000016
– reference: BonettiniSInexact block coordinate descent methods with application to non-negative matrix factorizationIMA J. Numer. Anal.20113141431145228467611235.6506110.1093/imanum/drq024
– reference: HollowayCAn extension of the Frank and Wolfe method of feasible directionsMath. Program.19746114273349480283.9004210.1007/BF01580219
– reference: Von HohenbalkenBSimplicial decomposition in nonlinear programming algorithmsMath. Program.197713149684497020362.9008610.1007/BF01584323
– reference: RockafellarRConvex Analysis1970PrincetonPrinceton University Press0193.1840110.1515/9781400873173
– reference: ChatzipanagiotisNDentchevaDZavlanosMAn augmented Lagrangian method for distributed optimizationMath. Program.2014152140543433694871327.90198
– reference: EcksteinJYaoWUnderstanding the Convergence of the Alternating Direction Method of Multipliers: Theoretical and Computational Perspectives2014New BrunswickRutgers University1330.90074Tech. rep
– reference: IBM Corporation: IBM ILOG CPLEX V12.5. http://www-01.ibm.com/software/commerce/optimization/cplex-optimizer/. Last Accessed 28 Jan (2016)
– reference: Ntaimo, L.: Decomposition algorithms for stochastic combinatorial optimization: Computational experiments and extensions. Ph.D. thesis (2004)
– reference: de OliveiraWSagastizábalCBundle methods in the XXIst century: a bird’s-eye viewPesqui. Oper.20143464767010.1590/0101-7438.2014.034.03.0647
– reference: EcksteinJBertsekasDOn the Douglas–Rachford splitting method and the proximal point algorithm for maximal monotone operatorsMath. Program.1992551–329331811681830765.9007310.1007/BF01581204
– reference: FischerFHelmbergCA parallel bundle framework for asynchronous subspace optimization of nonsmooth convex functionsSIAM J. Optim.201424279582232011951297.9008410.1137/120865987
– reference: CarøeCCSchultzRDual decomposition in stochastic integer programmingOper. Res. Lett.1999241374516849091063.9003710.1016/S0167-6377(98)00050-9
– reference: Bertsekas, D.: Incremental aggregated proximal and augmented Lagrangian algorithms. arXiv preprint arXiv:1509.09257 (2015)
– reference: GadeDHackebeilGRyanSMWatsonJPWetsRJBWoodruffDLObtaining lower bounds from the progressive hedging algorithm for stochastic mixed-integer programsMath. Program.20161571476734920671338.9028210.1007/s10107-016-1000-z
– reference: IBM Corporation: IBM ILOG CPLEX Optimization Studio CPLEX Users Manual. http://www.ibm.com/support/knowledgecenter/en/SSSA5P_12.6.1/ilog.odms.studio.help/pdf/usrcplex.pdf. Last Accessed 22 Aug (2016)
– reference: ChenGTeboulleMA proximal-based decomposition method for convex minimization problemsMath. Program.1994648110112741730823.9009710.1007/BF01582566
– reference: GertzEWrightSObject-oriented software for quadratic programmingACM Trans. Math. Softw.2003291588120014541068.9058610.1145/641876.641880
– reference: BertsekasDConstrained Optimization and Lagrange Multiplier Methods1982LondonAcademic Press0572.90067
– reference: MulveyJRuszczyńskiAA diagonal quadratic approximation method for large scale linear programsOper. Res. Lett.199212420521511867940767.9004710.1016/0167-6377(92)90046-6
– reference: Lubin, M., Petra, C., Anitescu, M., Zavala, V.: Scalable stochastic optimization of complex energy systems. In: Proceedings of 2011 International Conference for High Performance Computing, Networking, Storage and Analysis, pp. 64:164:10. ACM, Seattle, WA (2011)
– reference: HestenesMRMultiplier and gradient methodsJ. Optim. Theory Appl.196943033202718090174.2070510.1007/BF00927673
– ident: 1253_CR53
– volume: 29
  start-page: 58
  issue: 1
  year: 2003
  ident: 1253_CR58
  publication-title: ACM Trans. Math. Softw.
  doi: 10.1145/641876.641880
– volume: 24
  start-page: 795
  issue: 2
  year: 2014
  ident: 1253_CR16
  publication-title: SIAM J. Optim.
  doi: 10.1137/120865987
– volume-title: Optimization
  year: 1969
  ident: 1253_CR8
– volume: 14
  start-page: 877
  issue: 5
  year: 1976
  ident: 1253_CR9
  publication-title: SIAM J. Control Optim.
  doi: 10.1137/0314056
– ident: 1253_CR57
– ident: 1253_CR10
  doi: 10.1007/BFb0120700
– ident: 1253_CR15
– ident: 1253_CR40
– volume: 157
  start-page: 47
  issue: 1
  year: 2016
  ident: 1253_CR45
  publication-title: Math. Program.
  doi: 10.1007/s10107-016-1000-z
– volume: 2
  start-page: 17
  year: 1976
  ident: 1253_CR30
  publication-title: Comput. Math. Appl.
  doi: 10.1016/0898-1221(76)90003-1
– volume: 24
  start-page: 37
  issue: 1
  year: 1999
  ident: 1253_CR5
  publication-title: Oper. Res. Lett.
  doi: 10.1016/S0167-6377(98)00050-9
– volume: 4
  start-page: 303
  year: 1969
  ident: 1253_CR7
  publication-title: J. Optim. Theory Appl.
  doi: 10.1007/BF00927673
– ident: 1253_CR56
– ident: 1253_CR52
– volume: 92
  start-page: 103
  year: 2002
  ident: 1253_CR39
  publication-title: Math. Program.
  doi: 10.1007/s101070100280
– volume: 73
  start-page: 97
  year: 2015
  ident: 1253_CR44
  publication-title: Int. J. Electr. Power Energy Syst.
  doi: 10.1016/j.ijepes.2015.04.009
– volume: 12
  start-page: 205
  issue: 4
  year: 1992
  ident: 1253_CR34
  publication-title: Oper. Res. Lett.
  doi: 10.1016/0167-6377(92)90046-6
– volume: 64
  start-page: 81
  year: 1994
  ident: 1253_CR38
  publication-title: Math. Program.
  doi: 10.1007/BF01582566
– volume: 157
  start-page: 1167
  issue: 6
  year: 2009
  ident: 1253_CR14
  publication-title: Discrete Appl. Math.
  doi: 10.1016/j.dam.2008.06.021
– volume: 41
  start-page: 252
  issue: 3
  year: 2013
  ident: 1253_CR17
  publication-title: Oper. Res. Lett.
  doi: 10.1016/j.orl.2013.02.003
– volume: 96
  start-page: 61
  issue: 1
  year: 2003
  ident: 1253_CR26
  publication-title: Math. Program.
  doi: 10.1007/s10107-003-0374-x
– volume: 55
  start-page: 293
  issue: 1–3
  year: 1992
  ident: 1253_CR41
  publication-title: Math. Program.
  doi: 10.1007/BF01581204
– volume: 109
  start-page: 475
  year: 2001
  ident: 1253_CR24
  publication-title: J. Optim. Theory Appl.
  doi: 10.1023/A:1017501703105
– ident: 1253_CR28
  doi: 10.1007/978-3-642-59073-3_7
– volume-title: Nonlinear Programming
  year: 1999
  ident: 1253_CR3
– volume-title: Understanding the Convergence of the Alternating Direction Method of Multipliers: Theoretical and Computational Perspectives
  year: 2014
  ident: 1253_CR42
– ident: 1253_CR51
– ident: 1253_CR55
– volume: 4
  start-page: 79
  year: 1957
  ident: 1253_CR23
  publication-title: Nav. Res. Logist. Q.
  doi: 10.1002/nav.3800040113
– volume: 13
  start-page: 49
  issue: 1
  year: 1977
  ident: 1253_CR20
  publication-title: Math. Program.
  doi: 10.1007/BF01584323
– volume: 34
  start-page: 647
  year: 2014
  ident: 1253_CR11
  publication-title: Pesqui. Oper.
  doi: 10.1590/0101-7438.2014.034.03.0647
– volume-title: Minimization Methods for Non-differentiable Functions
  year: 1985
  ident: 1253_CR2
  doi: 10.1007/978-3-642-82118-9
– volume: 71
  start-page: 503
  issue: 3
  year: 1991
  ident: 1253_CR48
  publication-title: J. Optim. Theory Appl.
  doi: 10.1007/BF00941400
– volume: 6
  start-page: 14
  issue: 1
  year: 1974
  ident: 1253_CR19
  publication-title: Math. Program.
  doi: 10.1007/BF01580219
– volume: 9
  start-page: 41
  year: 1975
  ident: 1253_CR31
  publication-title: Revue Française d’Automatique, Informatique, et Recherche Opérationelle
  doi: 10.1051/m2an/197509R200411
– volume: 141
  start-page: 319
  issue: 1
  year: 2013
  ident: 1253_CR27
  publication-title: Math. Program.
  doi: 10.1007/s10107-012-0528-9
– volume-title: Introduction to Stochastic Programming
  year: 2011
  ident: 1253_CR1
  doi: 10.1007/978-1-4614-0237-4
– volume: 3
  start-page: 1
  issue: 1
  year: 2011
  ident: 1253_CR29
  publication-title: Found. Trends Mach. Learn.
  doi: 10.1561/2200000016
– ident: 1253_CR59
  doi: 10.1145/2063384.2063470
– volume: 15
  start-page: 3447
  year: 2014
  ident: 1253_CR37
  publication-title: J. Mach. Learn. Res.
– volume: 20
  start-page: 634
  issue: 3
  year: 1995
  ident: 1253_CR35
  publication-title: Math. Oper. Res.
  doi: 10.1287/moor.20.3.634
– volume: 5
  start-page: 454
  issue: 2
  year: 1995
  ident: 1253_CR43
  publication-title: SIAM J. Optim.
  doi: 10.1137/0805023
– volume: 148
  start-page: 241
  issue: 1
  year: 2014
  ident: 1253_CR13
  publication-title: Math. Program.
  doi: 10.1007/s10107-014-0809-6
– ident: 1253_CR60
  doi: 10.1137/1.9781611971309
– volume: 30
  start-page: 643
  issue: 3
  year: 2015
  ident: 1253_CR33
  publication-title: Optim. Methods Softw.
  doi: 10.1080/10556788.2014.966824
– volume: 11
  start-page: 588
  year: 1963
  ident: 1253_CR25
  publication-title: SIAM J. Appl. Math.
  doi: 10.1137/0111043
– ident: 1253_CR50
– volume: 26
  start-page: 127
  issue: 3
  year: 2000
  ident: 1253_CR22
  publication-title: Oper. Res. Lett.
  doi: 10.1016/S0167-6377(99)00074-7
– volume: 152
  start-page: 405
  issue: 1
  year: 2014
  ident: 1253_CR32
  publication-title: Math. Program.
– volume-title: Convex Analysis
  year: 1970
  ident: 1253_CR47
  doi: 10.1515/9781400873173
– ident: 1253_CR54
– volume: 63
  start-page: 1
  year: 2016
  ident: 1253_CR12
  publication-title: Comput. Optim. Appl.
  doi: 10.1007/s10589-015-9762-4
– volume-title: Constrained Optimization and Lagrange Multiplier Methods
  year: 1982
  ident: 1253_CR6
– volume: 1
  start-page: 97
  issue: 2
  year: 1976
  ident: 1253_CR46
  publication-title: Math. Oper. Res.
  doi: 10.1287/moor.1.2.97
– volume: 31
  start-page: 1431
  issue: 4
  year: 2011
  ident: 1253_CR21
  publication-title: IMA J. Numer. Anal.
  doi: 10.1093/imanum/drq024
– volume: 9
  start-page: 668
  issue: 3
  year: 1999
  ident: 1253_CR36
  publication-title: SIAM J. Optim.
  doi: 10.1137/S1052623495288064
– volume-title: Convex Optimization Algorithms
  year: 2015
  ident: 1253_CR18
– volume-title: Nonlinear Optimization
  year: 2006
  ident: 1253_CR4
  doi: 10.1515/9781400841059
– volume: 84
  start-page: 529
  issue: 3
  year: 1995
  ident: 1253_CR49
  publication-title: J. Optim. Theory Appl.
  doi: 10.1007/BF02191984
SSID ssj0001388
Score 2.4134402
Snippet We contribute improvements to a Lagrangian dual solution approach applied to large-scale optimization problems whose objective functions are convex,...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 503
SubjectTerms Approximation
Calculus of Variations and Optimal Control; Optimization
Combinatorics
Full Length Paper
Gauss-Seidel method
Lagrange multiplier
Mathematical and Computational Physics
Mathematical Methods in Physics
Mathematics
Mathematics and Statistics
Mathematics of Computing
Numerical Analysis
Optimization
Parallel processing
Theoretical
SummonAdditionalLinks – databaseName: Science Database
  dbid: M2P
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV09T8MwELWgMMDAN6JQkAcmkEXz1dgTqhAVQ1t1AKlblNhOhRSa0qSIn8-d47SARBemKEpiWXqXu3f2-R0h124CgUFKzWK_7TOfpw6LBS6HcamVlhDSlEG6Hw6HfDwWI7vgVtiyytonGketcolr5He4iu-jPFnnfvbOsGsU7q7aFhqbZAuYjYMlXQN3tPTEjsd53bIVeUK9q1kdnXNM0SXkUG7gMfEzLq3I5q_9URN2evv_nfAB2bOEk3YrCzkkG3p6RHa_yRDC3WCp3Vock1mXoh54lmlT8ZVpGi8mRrpT0X48gdg2AZOiVetpGlcslpY5zbConBUAuqbTfMpMQfsnXgrTiALeysFBvdmTn9T2silOyEvv8fnhidm-DEx63C2ZkyQqUDFqCfLE1cBoPE8DM0k6Wgdx6EguIe2Sym2LMPbTIFAC22P5Sjm6kwJlOSUNmIY-IzT1OOQzmATJxBdtkSgJBpKG0vFhxEA3SbtGJZJWtBynnEUruWUEMgIgIwQyEk1ys_xkVil2rHu5VYMX2Z-3iFbINcltDf_q8Z-Dna8f7ILsANsSVbVkizTK-UJfkm35Ub4W8ytjuV9UX_TR
  priority: 102
  providerName: ProQuest
Title A parallelizable augmented Lagrangian method applied to large-scale non-convex-constrained optimization problems
URI https://link.springer.com/article/10.1007/s10107-018-1253-9
https://www.proquest.com/docview/2009419546
Volume 175
WOSCitedRecordID wos000465626900015&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1436-4646
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001388
  issn: 0025-5610
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwED-c80Ef_Banc-TBJyXQzzV5VHEIujHmty-lTdIh1G2sm_jne0nbTUUFfblSmoaQu-Z-11x-B3DoxOgYhFA08iyPeiyxacT17zAmlFQCXZo0mr4KOh328MC7xTnurMx2L7ckzUr94bCbbdIkMepxfJfyClTR2zFdr6F3fTdbfm2XsbJOqwYH5Vbmd118dkZzhPllU9T4mtbav0a5DqsFtCQnuS1swIIabMLKB8JBvGvPWFqzLRidEM38nabK5HalikTTviHplOQq6qMX66PxkLzINIlyvEomQ5Lq9HGaoXoVGQwH1KSuv-lLZkpOYKshLkUvxRlPUlStybbhtnV-c3ZBiwoMVLjMmVA7jqUvI80ayGJHIXZxXYUYJG4q5UeBLZjAAEtIx-JB5CW-L7kuhOVJaatmguBkBxZxGGoXSOIyjFx0uCNij1s8lgJNIQmE7WGPvqqBVaoiFAU9uR5yGs6JlfXUhji1oZ7akNfgaPbKKOfm-K1xvdRvWHymma7ByT3NedeswXGpz_njHzvb-1PrfVhGmMXzNMk6LE7GU3UAS-J18pyNG1AJ7h8bUD0973R7eHcZUJRt60xLp6tlcI2y6z81jKW_Ayfh8W0
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NT9swFH8qDAk4MNiG6GCbD3BhstYkTmsfEEJsCERb9VAkblliOxVSaAspH_un-Bt5z0laQIIbh52iKI5l2b_3ZT__HsC2n6Bh0NryWDQEFzL1eKxoO0xqa6xGk2bcSrdb3a48P1e9GjxUd2EorbLSiU5Rm5GmPfJftIsviJ6suT--4lQ1ik5XqxIaBSxO7b87DNnyvZPfuL47vn_0p394zMuqAlwH0p9wL0lMaGJiwpOJb9EeB4FFu5o0rQ3jlqelxqBBG7-hWrFIw9AoKu4kjPFsM0WDi_3OwQdBzGKUKuj3pprfC6SsSsSSX1KdohZX9TyX5Ikxmx8GXD23gzPn9sV5rDNzRx__twlahZXSoWYHhQSsQc0OP8HyE5pFfOtMuWnzzzA-YMR3nmXWZbRllsU3A0dNalg7HqDtHqDIsKK0NosLL51NRiyjpHmeI6gtG46G3CXs39Mjd4U2sNUIFfBlebOVlbV68i9w9i4TsA7zOAy7ASwNJMZrFOTpRKiGSoxGAUhb2hPYY2jr0KhQEOmSlJ2GnEUzOmkCToTAiQg4karD7vSXccFI8lbjrQosUamc8miGlDr8rOA2-_xqZ1_f7uwHLB73O-2ofdI93YQl9CxVkRm6BfOT6xv7DRb07eQiv_7upIbB3_dG4SMbXFEg
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFD7oFNEH7-K85sEnJayXdEsehzoU5xh4YW-lTdIh1G2snfjzPellm6KC-FRK0xByTnO-05x8H8CZE2JgkFLTgFmMMh7ZNBDmdxiXWmmJIU1llm43Oh3e64luoXOalNXu5ZZkfqbBsDQN0tpIRbW5g292VjKJGZDjuVQswhIzdfQmXX94ni7Ftst5qdlqgEK5rfldF58D0wxtftkgzeJOa-PfI96E9QJykmbuI1uwoAfbsDZHRIh391P21mQHRk1iGMHjWGc1X7EmwaSfkXcq0g76GN366FQkF58mQY5jSToksSkrpwmaXZPBcECzkvZ3c0kyKQpsNcQl6rU4-0kKNZtkF55a14-XN7RQZqDS5U5K7TBUngoMmyAPHY2YxnU1YpOwrrUXNGzJJSZeUjmWaAQs8jwljEAWU8rW9QhByx5UcBh6H0jkcsxoTBokQyYsESqJLhI1pM2wR09XwSrN4suCttwMOfZnhMtman2cWt9MrS-qcD59ZZRzdvzW-Ki0tV98vonR5hTMcOHVq3BR2nb2-MfODv7U-hRWulctv33buTuEVURiIq-kPIJKOp7oY1iWb-lLMj7JnPoD6wn1-g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+parallelizable+augmented+Lagrangian+method+applied+to+large-scale+non-convex-constrained+optimization+problems&rft.jtitle=Mathematical+programming&rft.au=Boland%2C+Natashia&rft.au=Christiansen%2C+Jeffrey&rft.au=Dandurand%2C+Brian&rft.au=Eberhard%2C+Andrew&rft.date=2019-05-01&rft.pub=Springer+Berlin+Heidelberg&rft.issn=0025-5610&rft.eissn=1436-4646&rft.volume=175&rft.issue=1-2&rft.spage=503&rft.epage=536&rft_id=info:doi/10.1007%2Fs10107-018-1253-9&rft.externalDocID=10_1007_s10107_018_1253_9
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0025-5610&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0025-5610&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0025-5610&client=summon