Noether-like theorems for causal variational principles

The connection between symmetries and conservation laws as made by Noether’s theorem is extended to the context of causal variational principles and causal fermion systems. Different notions of continuous symmetries are introduced. It is proven that these symmetries give rise to corresponding conser...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Calculus of variations and partial differential equations Ročník 55; číslo 2; s. 1 - 41
Hlavní autoři: Finster, Felix, Kleiner, Johannes
Médium: Journal Article
Jazyk:angličtina
Vydáno: Berlin/Heidelberg Springer Berlin Heidelberg 01.04.2016
Springer Nature B.V
Témata:
ISSN:0944-2669, 1432-0835
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:The connection between symmetries and conservation laws as made by Noether’s theorem is extended to the context of causal variational principles and causal fermion systems. Different notions of continuous symmetries are introduced. It is proven that these symmetries give rise to corresponding conserved quantities, expressed in terms of so-called surface layer integrals. In a suitable limiting case, the Noether-like theorems for causal fermion systems reproduce charge conservation and the conservation of energy and momentum in Minkowski space. Thus the conservation of charge and energy-momentum are found to be special cases of general conservation laws which are intrinsic to causal fermion systems.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:0944-2669
1432-0835
DOI:10.1007/s00526-016-0966-y