A Globally Convergent Algorithm for Nonconvex Optimization Based on Block Coordinate Update
Nonconvex optimization arises in many areas of computational science and engineering. However, most nonconvex optimization algorithms are only known to have local convergence or subsequence convergence properties. In this paper, we propose an algorithm for nonconvex optimization and establish its gl...
Saved in:
| Published in: | Journal of scientific computing Vol. 72; no. 2; pp. 700 - 734 |
|---|---|
| Main Authors: | , |
| Format: | Journal Article |
| Language: | English |
| Published: |
New York
Springer US
01.08.2017
Springer Nature B.V |
| Subjects: | |
| ISSN: | 0885-7474, 1573-7691 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Nonconvex optimization arises in many areas of computational science and engineering. However, most nonconvex optimization algorithms are only known to have local convergence or subsequence convergence properties. In this paper, we propose an algorithm for nonconvex optimization and establish its global convergence (of the whole sequence) to a critical point. In addition, we give its asymptotic convergence rate and numerically demonstrate its efficiency. In our algorithm, the variables of the underlying problem are either treated as one block or multiple disjoint blocks. It is assumed that each non-differentiable component of the objective function, or each constraint, applies only to one block of variables. The differentiable components of the objective function, however, can involve multiple blocks of variables together. Our algorithm updates one block of variables at a time by minimizing a certain prox-linear surrogate, along with an extrapolation to accelerate its convergence. The order of update can be either deterministically cyclic or randomly shuffled for each cycle. In fact, our convergence analysis only needs that each block be updated at least once in every fixed number of iterations. We show its global convergence (of the whole sequence) to a critical point under fairly loose conditions including, in particular, the Kurdyka–Łojasiewicz condition, which is satisfied by a broad class of nonconvex/nonsmooth applications. These results, of course, remain valid when the underlying problem is convex. We apply our convergence results to the coordinate descent iteration for non-convex regularized linear regression, as well as a modified rank-one residue iteration for nonnegative matrix factorization. We show that both applications have global convergence. Numerically, we tested our algorithm on nonnegative matrix and tensor factorization problems, where random shuffling clearly improves the chance to avoid low-quality local solutions. |
|---|---|
| AbstractList | Nonconvex optimization arises in many areas of computational science and engineering. However, most nonconvex optimization algorithms are only known to have local convergence or subsequence convergence properties. In this paper, we propose an algorithm for nonconvex optimization and establish its global convergence (of the whole sequence) to a critical point. In addition, we give its asymptotic convergence rate and numerically demonstrate its efficiency. In our algorithm, the variables of the underlying problem are either treated as one block or multiple disjoint blocks. It is assumed that each non-differentiable component of the objective function, or each constraint, applies only to one block of variables. The differentiable components of the objective function, however, can involve multiple blocks of variables together. Our algorithm updates one block of variables at a time by minimizing a certain prox-linear surrogate, along with an extrapolation to accelerate its convergence. The order of update can be either deterministically cyclic or randomly shuffled for each cycle. In fact, our convergence analysis only needs that each block be updated at least once in every fixed number of iterations. We show its global convergence (of the whole sequence) to a critical point under fairly loose conditions including, in particular, the Kurdyka–Łojasiewicz condition, which is satisfied by a broad class of nonconvex/nonsmooth applications. These results, of course, remain valid when the underlying problem is convex. We apply our convergence results to the coordinate descent iteration for non-convex regularized linear regression, as well as a modified rank-one residue iteration for nonnegative matrix factorization. We show that both applications have global convergence. Numerically, we tested our algorithm on nonnegative matrix and tensor factorization problems, where random shuffling clearly improves the chance to avoid low-quality local solutions. |
| Author | Xu, Yangyang Yin, Wotao |
| Author_xml | – sequence: 1 givenname: Yangyang orcidid: 0000-0002-4163-3723 surname: Xu fullname: Xu, Yangyang email: yangyang.xu@ua.edu organization: Department of Mathematics, University of Alabama – sequence: 2 givenname: Wotao orcidid: 0000-0001-6697-9731 surname: Yin fullname: Yin, Wotao organization: Department of Mathematics, UCLA |
| BookMark | eNp9kEtLAzEUhYMoWKs_wF3A9Whu5pFkWYtWoejGrlyETCapU6dJTaJYf70zVhAEXZ0L93z3cY7QvvPOIHQK5BwIYRcRiIAyI8AykrMqI3toBCXLM1YJ2EcjwnmZsYIVh-goxhUhRHBBR-hxgmedr1XXbfHUuzcTlsYlPOmWPrTpaY2tD_jOOz303vH9JrXr9kOl1jt8qaJp8FB0Xj_3uA9N61QyeLFpejlGB1Z10Zx86xgtrq8epjfZ_H52O53MM51zmjJQ3NSWNwpqWpOmLq0uOIfKkrwEZllVU9NQoa0SWpWNKCwrgda0qWwhNKnyMTrbzd0E__JqYpIr_xpcv1JSATyHHArSu9jOpYOPMRgrdZu-HklBtZ0EIock5S5J2ScphyTlQMIvchPatQrbfxm6Y2LvdUsTfm76G_oEIBiIWA |
| CitedBy_id | crossref_primary_10_1007_s11045_021_00818_4 crossref_primary_10_1016_j_coche_2018_12_007 crossref_primary_10_1109_TSP_2017_2778695 crossref_primary_10_1007_s10898_022_01168_6 crossref_primary_10_1007_s40305_017_0183_1 crossref_primary_10_1287_moor_2022_1256 crossref_primary_10_1016_j_sigpro_2020_107537 crossref_primary_10_1109_TCYB_2019_2950337 crossref_primary_10_1109_TII_2017_2777144 crossref_primary_10_1007_s11401_021_0253_x crossref_primary_10_1137_21M1430613 crossref_primary_10_1007_s10915_025_02976_0 crossref_primary_10_1080_00207160_2020_1723562 crossref_primary_10_1007_s10589_022_00394_8 crossref_primary_10_1007_s11263_022_01709_2 crossref_primary_10_1007_s10107_022_01836_1 crossref_primary_10_1016_j_apm_2024_115784 crossref_primary_10_1016_j_jfranklin_2023_04_021 crossref_primary_10_1007_s11424_024_3568_3 crossref_primary_10_1016_j_nima_2023_169028 crossref_primary_10_1109_TNNLS_2019_2947156 crossref_primary_10_1109_TNNLS_2022_3166931 crossref_primary_10_1109_TSP_2021_3118493 crossref_primary_10_1016_j_eswa_2021_116491 crossref_primary_10_1109_TNNLS_2021_3051650 crossref_primary_10_1109_ACCESS_2025_3596642 crossref_primary_10_1109_JBHI_2022_3140455 crossref_primary_10_1137_21M1449099 crossref_primary_10_1109_TIM_2020_2998564 crossref_primary_10_1007_s10898_022_01180_w crossref_primary_10_1080_10556788_2020_1746963 crossref_primary_10_1109_TAC_2024_3386061 crossref_primary_10_1109_TIP_2019_2937734 crossref_primary_10_1016_j_sigpro_2022_108694 crossref_primary_10_1016_j_radphyschem_2025_112654 crossref_primary_10_1109_TCNS_2022_3213706 crossref_primary_10_1007_s10589_018_0037_8 crossref_primary_10_1109_TSP_2020_2996374 crossref_primary_10_1109_TIM_2023_3328069 crossref_primary_10_1007_s10589_024_00574_8 crossref_primary_10_1016_j_dsp_2022_103734 crossref_primary_10_1109_ACCESS_2019_2933845 crossref_primary_10_1007_s40324_023_00340_6 crossref_primary_10_1287_ijoo_2019_0022 crossref_primary_10_1007_s13278_022_00898_5 crossref_primary_10_1109_TWC_2022_3177840 crossref_primary_10_3390_jmse11091713 crossref_primary_10_1007_s10957_023_02348_4 crossref_primary_10_1109_TKDE_2022_3206881 crossref_primary_10_1137_21M140376X crossref_primary_10_1109_TWC_2022_3204786 crossref_primary_10_1109_TCSVT_2020_2989659 crossref_primary_10_1016_j_inffus_2024_102501 crossref_primary_10_1109_TSP_2019_2959240 crossref_primary_10_1016_j_cam_2025_116973 crossref_primary_10_1016_j_insmatheco_2022_01_005 crossref_primary_10_1109_TSP_2020_3026177 crossref_primary_10_1109_TWC_2020_3021036 crossref_primary_10_1109_LCOMM_2023_3264935 crossref_primary_10_1631_FITEE_1900341 crossref_primary_10_1109_TAES_2021_3098160 crossref_primary_10_1016_j_ins_2021_12_055 crossref_primary_10_1109_LCOMM_2020_3027904 crossref_primary_10_1016_j_jmaa_2024_128925 crossref_primary_10_1371_journal_pcbi_1009044 crossref_primary_10_1038_s41524_024_01377_5 crossref_primary_10_1007_s11075_019_00705_x crossref_primary_10_1109_JSEN_2022_3153629 crossref_primary_10_1137_16M1084705 crossref_primary_10_1016_j_cjche_2018_08_027 crossref_primary_10_1016_j_cam_2020_112785 crossref_primary_10_1109_TGCN_2023_3288519 crossref_primary_10_1016_j_patcog_2022_109102 crossref_primary_10_1109_TPWRS_2020_3049135 crossref_primary_10_1080_02331934_2024_2439559 crossref_primary_10_6339_22_JDS1048 crossref_primary_10_1007_s10898_024_01382_4 crossref_primary_10_1137_20M136205X crossref_primary_10_1007_s10898_025_01495_4 crossref_primary_10_1109_TWC_2022_3189396 crossref_primary_10_1007_s10107_019_01364_5 crossref_primary_10_1007_s11590_023_01976_z crossref_primary_10_1017_S0962492918000016 crossref_primary_10_1080_10556788_2019_1658758 crossref_primary_10_1109_LSP_2018_2875251 crossref_primary_10_1109_TPAMI_2020_3012955 crossref_primary_10_1007_s10915_024_02715_x crossref_primary_10_1002_nav_70007 crossref_primary_10_3233_ICA_230718 crossref_primary_10_1007_s10107_020_01599_7 crossref_primary_10_3390_sym16020154 crossref_primary_10_1109_TIP_2021_3061908 crossref_primary_10_1137_21M145313X crossref_primary_10_3390_s19122708 crossref_primary_10_1007_s10994_019_05819_w crossref_primary_10_1109_ACCESS_2024_3356173 crossref_primary_10_1109_TSP_2022_3154969 crossref_primary_10_1137_20M1363388 crossref_primary_10_1016_j_eswa_2025_126652 crossref_primary_10_1109_TSP_2022_3150402 crossref_primary_10_1016_j_jksuci_2022_11_017 crossref_primary_10_1109_TKDE_2019_2932063 crossref_primary_10_1088_1361_6560_ac3842 crossref_primary_10_1137_23M1603959 crossref_primary_10_1109_TMI_2018_2807590 crossref_primary_10_1109_TKDE_2023_3279369 crossref_primary_10_1016_j_jappgeo_2018_06_005 crossref_primary_10_1016_j_sigpro_2023_109219 crossref_primary_10_1007_s10957_025_02799_x crossref_primary_10_1007_s40314_020_01395_1 crossref_primary_10_1007_s10915_024_02548_8 crossref_primary_10_1007_s11075_024_01965_y crossref_primary_10_1007_s11704_019_8374_z crossref_primary_10_1007_s10589_025_00708_6 crossref_primary_10_1109_LRA_2024_3387138 crossref_primary_10_1007_s10898_024_01451_8 crossref_primary_10_1016_j_sigpro_2018_04_006 crossref_primary_10_1109_JSTARS_2023_3238653 crossref_primary_10_1109_TSP_2017_2698365 crossref_primary_10_3390_jmse12071220 crossref_primary_10_1007_s00607_023_01210_9 crossref_primary_10_1007_s11431_020_1840_4 crossref_primary_10_1137_17M1142624 crossref_primary_10_3390_s23239379 crossref_primary_10_1137_22M1487321 crossref_primary_10_1080_10618600_2023_2213279 crossref_primary_10_1007_s10589_022_00433_4 crossref_primary_10_1109_TSP_2019_2899294 crossref_primary_10_1109_TSP_2020_2975910 crossref_primary_10_1007_s10957_018_1272_y crossref_primary_10_1007_s10107_024_02103_1 crossref_primary_10_1109_TGRS_2018_2832721 crossref_primary_10_1109_TAC_2020_3027647 crossref_primary_10_1109_TNNLS_2020_2985850 |
| Cites_doi | 10.1137/S1052623402411459 10.1137/110840364 10.1007/s12532-014-0074-y 10.1007/BF00939948 10.1137/110840054 10.1007/s12532-012-0044-1 10.5802/aif.1384 10.3934/ipi.2016012 10.1038/44565 10.1287/moor.1100.0449 10.1023/A:1023673105317 10.1007/s10044-015-0485-z 10.1007/s10107-007-0133-5 10.1137/080716542 10.1007/s10107-014-0800-2 10.1080/10556789908805730 10.1137/070697835 10.1214/10-AOAS388 10.1214/09-AOS729 10.1137/030601296 10.1109/TSP.2006.881199 10.1007/s10107-012-0569-0 10.1137/120891009 10.1007/s10107-011-0484-9 10.1198/016214501753382273 10.1007/s10107-012-0614-z 10.1137/S0097539792240406 10.1002/nav.3800040113 10.1090/S0002-9947-09-05048-X 10.1137/050644641 10.1007/s10898-013-0035-4 10.1137/100802001 10.1137/120887795 10.1002/env.3170050203 10.1016/S0167-8655(01)00070-8 10.1137/120887679 10.1007/s10107-015-0871-8 10.1016/j.acha.2009.04.002 10.1023/A:1017501703105 10.1137/07070111X 10.1007/s10107-007-0170-0 10.1007/s10957-012-0167-6 10.1007/978-94-007-0602-6_13 10.5802/aif.1638 10.1145/1553374.1553463 10.4310/AMSA.2016.v1.n1.a2 10.1007/s10208-017-9366-8 |
| ContentType | Journal Article |
| Copyright | Springer Science+Business Media New York 2017 Springer Science+Business Media New York 2017. |
| Copyright_xml | – notice: Springer Science+Business Media New York 2017 – notice: Springer Science+Business Media New York 2017. |
| DBID | AAYXX CITATION 8FE 8FG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS |
| DOI | 10.1007/s10915-017-0376-0 |
| DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central ProQuest Technology Collection ProQuest One Community College ProQuest Central Korea ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China |
| DatabaseTitle | CrossRef Advanced Technologies & Aerospace Collection Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection ProQuest One Academic Eastern Edition SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | Advanced Technologies & Aerospace Collection |
| Database_xml | – sequence: 1 dbid: P5Z name: Advanced Technologies & Aerospace Database url: https://search.proquest.com/hightechjournals sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Sciences (General) Mathematics |
| EISSN | 1573-7691 |
| EndPage | 734 |
| ExternalDocumentID | 10_1007_s10915_017_0376_0 |
| GrantInformation_xml | – fundername: National Science Foundation grantid: DMS-1317602 funderid: http://dx.doi.org/10.13039/100000001 – fundername: Army Research Office grantid: MURI W911NF-09-1-0383 funderid: http://dx.doi.org/10.13039/100000183 |
| GroupedDBID | -52 -5D -5G -BR -EM -Y2 -~C -~X .86 .DC .VR 06D 0R~ 0VY 199 1N0 1SB 2.D 203 28- 29L 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 53G 5GY 5QI 5VS 67Z 6NX 78A 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFFNX AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AI. AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BAPOH BBWZM BDATZ BENPR BGLVJ BGNMA BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ H~9 I09 IHE IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K7- KDC KOV KOW LAK LLZTM M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P9R PF- PT4 PT5 QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SDD SDH SDM SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW VH1 W23 W48 WH7 WK8 YLTOR Z45 Z5O Z7R Z7S Z7X Z7Y Z7Z Z83 Z86 Z88 Z8M Z8N Z8T Z92 ZMTXR ZWQNP ~A9 ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG AEZWR AFDZB AFFHD AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PQGLB 8FE 8FG AZQEC DWQXO GNUQQ JQ2 P62 PKEHL PQEST PQQKQ PQUKI PRINS |
| ID | FETCH-LOGICAL-c382t-1a8ebf8da1b2b0db5fc48816f03517f76b2ed29cfa9ca5d94f7512b2d6f49c063 |
| IEDL.DBID | P5Z |
| ISICitedReferencesCount | 166 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000406014800011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0885-7474 |
| IngestDate | Wed Nov 05 02:29:18 EST 2025 Sat Nov 29 01:56:17 EST 2025 Tue Nov 18 22:38:16 EST 2025 Fri Feb 21 02:36:41 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Keywords | Nonsmooth optimization Nonconvex optimization Prox-linear Block coordinate descent Whole sequence convergence Kurdyka–Łojasiewicz inequality |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c382t-1a8ebf8da1b2b0db5fc48816f03517f76b2ed29cfa9ca5d94f7512b2d6f49c063 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-4163-3723 0000-0001-6697-9731 |
| PQID | 2918313140 |
| PQPubID | 2043771 |
| PageCount | 35 |
| ParticipantIDs | proquest_journals_2918313140 crossref_citationtrail_10_1007_s10915_017_0376_0 crossref_primary_10_1007_s10915_017_0376_0 springer_journals_10_1007_s10915_017_0376_0 |
| PublicationCentury | 2000 |
| PublicationDate | 2017-08-01 |
| PublicationDateYYYYMMDD | 2017-08-01 |
| PublicationDate_xml | – month: 08 year: 2017 text: 2017-08-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | Journal of scientific computing |
| PublicationTitleAbbrev | J Sci Comput |
| PublicationYear | 2017 |
| Publisher | Springer US Springer Nature B.V |
| Publisher_xml | – name: Springer US – name: Springer Nature B.V |
| References | Attouch, Bolte, Redont, Soubeyran (CR4) 2010; 35 Bagirov, Jin, Karmitsa, Al Nuaimat, Sultanova (CR6) 2013; 157 CR37 Xu, Yin (CR62) 2016; 10 CR35 Xu (CR59) 2015; 7 CR34 Wen, Yin, Zhang (CR58) 2012; 4 Burke, Lewis, Overton (CR15) 2005; 15 CR31 Kim, He, Park (CR28) 2014; 58 Luo, Tseng (CR39) 1992; 72 Łojasiewicz (CR36) 1993; 43 Zhang (CR63) 2010; 38 Hoyer (CR27) 2004; 5 CR2 Attouch, Bolte, Svaiter (CR5) 2013; 137 Bolte, Daniilidis, Lewis (CR11) 2007; 17 Breheny, Huang (CR14) 2011; 5 Kruger (CR30) 2003; 116 Fuduli, Gaudioso, Giallombardo (CR21) 2004; 14 Rockafellar, Wets (CR52) 2009 Paatero, Tapper (CR47) 1994; 5 Razaviyayn, Hong, Luo (CR49) 2013; 23 Chang, Hsieh, Lin (CR16) 2008; 9 CR46 Lai, Xu, Yin (CR32) 2013; 51 Peng, Wu, Xu, Yan, Yin (CR48) 2016; 1 Saha, Tewari (CR53) 2013; 23 CR40 Beck, Teboulle (CR7) 2009; 2 Mohan, Fazel (CR41) 2012; 13 Lee, Seung (CR33) 1999; 401 Bolte, Sabach, Teboulle (CR13) 2014; 146 Blumensath, Davies (CR10) 2009; 27 CR19 Beck, Tetruashvili (CR8) 2013; 23 CR17 Bolte, Daniilidis, Ley, Mazet (CR12) 2010; 362 Ghadimi, Lan (CR22) 2016; 156 CR54 Richtárik, Takáč (CR51) 2014; 144 Tseng, Yun (CR56) 2009; 117 Welling, Weber (CR57) 2001; 22 Kolda, Bader (CR29) 2009; 51 Nocedal, Wright (CR45) 2006 Chen (CR18) 2012; 134 Lu, Xiao (CR38) 2015; 152 Fan, Li (CR20) 2001; 96 Natarajan (CR42) 1995; 24 CR26 Nesterov (CR43) 2012; 22 CR25 Recht, Fazel, Parrilo (CR50) 2010; 52 Hildreth (CR24) 1957; 4 Tseng (CR55) 2001; 109 Attouch, Bolte (CR3) 2009; 116 Bertsekas (CR9) 1999 Xu, Akrotirianakis, Chakraborty (CR60) 2016; 19 Aharon, Elad, Bruckstein (CR1) 2006; 54 Grippo, Sciandrone (CR23) 1999; 10 Nesterov (CR44) 2013 Xu, Yin (CR61) 2013; 6 B Recht (376_CR50) 2010; 52 A Saha (376_CR53) 2013; 23 Y Xu (376_CR59) 2015; 7 376_CR31 Z Wen (376_CR58) 2012; 4 M Aharon (376_CR1) 2006; 54 376_CR35 376_CR34 A Fuduli (376_CR21) 2004; 14 376_CR26 H Attouch (376_CR5) 2013; 137 Z Peng (376_CR48) 2016; 1 Y Xu (376_CR60) 2016; 19 P Tseng (376_CR55) 2001; 109 H Attouch (376_CR3) 2009; 116 H Attouch (376_CR4) 2010; 35 C Hildreth (376_CR24) 1957; 4 S Ghadimi (376_CR22) 2016; 156 BK Natarajan (376_CR42) 1995; 24 Y Nesterov (376_CR43) 2012; 22 R Rockafellar (376_CR52) 2009 J Bolte (376_CR12) 2010; 362 376_CR40 M Razaviyayn (376_CR49) 2013; 23 Y Xu (376_CR62) 2016; 10 J Fan (376_CR20) 2001; 96 M Welling (376_CR57) 2001; 22 KW Chang (376_CR16) 2008; 9 T Kolda (376_CR29) 2009; 51 376_CR46 P Tseng (376_CR56) 2009; 117 DP Bertsekas (376_CR9) 1999 AM Bagirov (376_CR6) 2013; 157 376_CR37 Z Lu (376_CR38) 2015; 152 Y Xu (376_CR61) 2013; 6 P Richtárik (376_CR51) 2014; 144 J Nocedal (376_CR45) 2006 P Paatero (376_CR47) 1994; 5 CH Zhang (376_CR63) 2010; 38 S Łojasiewicz (376_CR36) 1993; 43 P Hoyer (376_CR27) 2004; 5 376_CR54 X Chen (376_CR18) 2012; 134 T Blumensath (376_CR10) 2009; 27 J Kim (376_CR28) 2014; 58 K Mohan (376_CR41) 2012; 13 D Lee (376_CR33) 1999; 401 P Breheny (376_CR14) 2011; 5 ZQ Luo (376_CR39) 1992; 72 J Bolte (376_CR11) 2007; 17 Y Nesterov (376_CR44) 2013 376_CR2 AY Kruger (376_CR30) 2003; 116 376_CR25 376_CR17 J Bolte (376_CR13) 2014; 146 376_CR19 A Beck (376_CR8) 2013; 23 A Beck (376_CR7) 2009; 2 JV Burke (376_CR15) 2005; 15 L Grippo (376_CR23) 1999; 10 MJ Lai (376_CR32) 2013; 51 |
| References_xml | – volume: 14 start-page: 743 issue: 3 year: 2004 end-page: 756 ident: CR21 article-title: Minimizing nonconvex nonsmooth functions via cutting planes and proximity control publication-title: SIAM J. Optim. doi: 10.1137/S1052623402411459 – volume: 51 start-page: 927 issue: 2 year: 2013 end-page: 957 ident: CR32 article-title: Improved iteratively reweighted least squares for unconstrained smoothed minimization publication-title: SIAM J. Numer. Anal. doi: 10.1137/110840364 – volume: 5 start-page: 1457 year: 2004 end-page: 1469 ident: CR27 article-title: Non-negative matrix factorization with sparseness constraints publication-title: J. Mach. Learn. Res. – volume: 7 start-page: 39 issue: 1 year: 2015 end-page: 70 ident: CR59 article-title: Alternating proximal gradient method for sparse nonnegative tucker decomposition publication-title: Math. Program. Comput. doi: 10.1007/s12532-014-0074-y – volume: 72 start-page: 7 issue: 1 year: 1992 end-page: 35 ident: CR39 article-title: On the convergence of the coordinate descent method for convex differentiable minimization publication-title: J. Optim. Theory Appl. doi: 10.1007/BF00939948 – volume: 23 start-page: 576 issue: 1 year: 2013 end-page: 601 ident: CR53 article-title: On the nonasymptotic convergence of cyclic coordinate descent methods publication-title: SIAM J. Optim. doi: 10.1137/110840054 – volume: 4 start-page: 333 issue: 4 year: 2012 end-page: 361 ident: CR58 article-title: Solving a low-rank factorization model for matrix completion by a nonlinear successive over-relaxation algorithm publication-title: Math. Program. Comput. doi: 10.1007/s12532-012-0044-1 – volume: 43 start-page: 1575 issue: 5 year: 1993 end-page: 1595 ident: CR36 article-title: Sur la géométrie semi-et sous-analytique publication-title: Ann. Inst. Fourier (Grenoble) doi: 10.5802/aif.1384 – ident: CR35 – year: 1999 ident: CR9 publication-title: Nonlinear Programming – ident: CR54 – volume: 10 start-page: 563 issue: 2 year: 2016 end-page: 583 ident: CR62 article-title: A fast patch-dictionary method for whole image recovery publication-title: Inverse Probl. Imaging doi: 10.3934/ipi.2016012 – ident: CR25 – volume: 401 start-page: 788 issue: 6755 year: 1999 end-page: 791 ident: CR33 article-title: Learning the parts of objects by non-negative matrix factorization publication-title: Nature doi: 10.1038/44565 – volume: 35 start-page: 438 issue: 2 year: 2010 end-page: 457 ident: CR4 article-title: Proximal alternating minimization and projection methods for nonconvex problems: an approach based on the Kurdyka–Lojasiewicz inequality publication-title: Math. Oper. Res. doi: 10.1287/moor.1100.0449 – volume: 116 start-page: 3325 issue: 3 year: 2003 end-page: 3358 ident: CR30 article-title: On fréchet subdifferentials publication-title: J. Math. Sci. doi: 10.1023/A:1023673105317 – volume: 19 start-page: 989 issue: 4 year: 2016 end-page: 1005 ident: CR60 article-title: Proximal gradient method for huberized support vector machine publication-title: Pattern Anal. Appl. doi: 10.1007/s10044-015-0485-z – volume: 116 start-page: 5 issue: 1 year: 2009 end-page: 16 ident: CR3 article-title: On the convergence of the proximal algorithm for nonsmooth functions involving analytic features publication-title: Math. Program. doi: 10.1007/s10107-007-0133-5 – ident: CR46 – volume: 2 start-page: 183 issue: 1 year: 2009 end-page: 202 ident: CR7 article-title: A fast iterative shrinkage–thresholding algorithm for linear inverse problems publication-title: SIAM J. Imaging Sci. doi: 10.1137/080716542 – ident: CR19 – volume: 152 start-page: 615 issue: 1–2 year: 2015 end-page: 642 ident: CR38 article-title: On the complexity analysis of randomized block-coordinate descent methods publication-title: Math. Program. doi: 10.1007/s10107-014-0800-2 – volume: 10 start-page: 587 issue: 4 year: 1999 end-page: 637 ident: CR23 article-title: Globally convergent block-coordinate techniques for unconstrained optimization publication-title: Optim. Methods Softw. doi: 10.1080/10556789908805730 – year: 2009 ident: CR52 publication-title: Variational Analysis – volume: 52 start-page: 471 issue: 3 year: 2010 end-page: 501 ident: CR50 article-title: Guaranteed minimum-rank solutions of linear matrix equations via nuclear norm minimization publication-title: SIAM Rev. doi: 10.1137/070697835 – volume: 1 start-page: 57 issue: 1 year: 2016 end-page: 119 ident: CR48 article-title: Coordinate friendly structures, algorithms and applications publication-title: Ann. Math. Sci. Appl. – volume: 5 start-page: 232 issue: 1 year: 2011 end-page: 253 ident: CR14 article-title: Coordinate descent algorithms for nonconvex penalized regression, with applications to biological feature selection publication-title: Ann. Appl. Stat. doi: 10.1214/10-AOAS388 – volume: 146 start-page: 459 issue: 1 year: 2014 end-page: 494 ident: CR13 article-title: Proximal alternating linearized minimization for nonconvex and nonsmooth problems publication-title: Math. – volume: 38 start-page: 894 issue: 2 year: 2010 end-page: 942 ident: CR63 article-title: Nearly unbiased variable selection under minimax concave penalty publication-title: Ann. Stat. doi: 10.1214/09-AOS729 – ident: CR26 – year: 2006 ident: CR45 publication-title: Numerical Optimization, Springer Series in Operations Research and Financial Engineering. – volume: 15 start-page: 751 issue: 3 year: 2005 end-page: 779 ident: CR15 article-title: A robust gradient sampling algorithm for nonsmooth, nonconvex optimization publication-title: SIAM J. Optim. doi: 10.1137/030601296 – volume: 54 start-page: 4311 issue: 11 year: 2006 end-page: 4322 ident: CR1 article-title: K-SVD: an algorithm for designing overcomplete dictionaries for sparse representation publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2006.881199 – ident: CR2 – ident: CR37 – volume: 134 start-page: 71 issue: 1 year: 2012 end-page: 99 ident: CR18 article-title: Smoothing methods for nonsmooth, nonconvex minimization publication-title: Math. Program. doi: 10.1007/s10107-012-0569-0 – volume: 23 start-page: 1126 issue: 2 year: 2013 end-page: 1153 ident: CR49 article-title: A unified convergence analysis of block successive minimization methods for nonsmooth optimization publication-title: SIAM J. Optim. doi: 10.1137/120891009 – year: 2013 ident: CR44 publication-title: Introductory lectures on convex optimization: a basic course – volume: 137 start-page: 91 issue: 1–2 year: 2013 end-page: 129 ident: CR5 article-title: Convergence of descent methods for semi-algebraic and tame problems: proximal algorithms, forward–backward splitting, and regularized Gauss–Seidel methods publication-title: Math. Program. doi: 10.1007/s10107-011-0484-9 – ident: CR40 – volume: 96 start-page: 1348 issue: 456 year: 2001 end-page: 1360 ident: CR20 article-title: Variable selection via nonconcave penalized likelihood and its oracle properties publication-title: J. Am. Stat. Assoc. doi: 10.1198/016214501753382273 – volume: 144 start-page: 1 issue: 1 year: 2014 end-page: 38 ident: CR51 article-title: Iteration complexity of randomized block-coordinate descent methods for minimizing a composite function publication-title: Math. Program. doi: 10.1007/s10107-012-0614-z – volume: 24 start-page: 227 issue: 2 year: 1995 end-page: 234 ident: CR42 article-title: Sparse approximate solutions to linear systems publication-title: SIAM J. Comput. doi: 10.1137/S0097539792240406 – volume: 4 start-page: 79 issue: 1 year: 1957 end-page: 85 ident: CR24 article-title: A quadratic programming procedure publication-title: Naval Res. Logist. Q. doi: 10.1002/nav.3800040113 – volume: 362 start-page: 3319 issue: 6 year: 2010 end-page: 3363 ident: CR12 article-title: Characterizations of łojasiewicz inequalities: subgradient flows, talweg, convexity publication-title: Trans. Am. Math. Soc. doi: 10.1090/S0002-9947-09-05048-X – volume: 17 start-page: 1205 issue: 4 year: 2007 end-page: 1223 ident: CR11 article-title: The Lojasiewicz inequality for nonsmooth subanalytic functions with applications to subgradient dynamical systems publication-title: SIAM J. Optim. doi: 10.1137/050644641 – volume: 58 start-page: 285 issue: 2 year: 2014 end-page: 319 ident: CR28 article-title: Algorithms for nonnegative matrix and tensor factorizations: a unified view based on block coordinate descent framework publication-title: J. Global Optim. doi: 10.1007/s10898-013-0035-4 – volume: 22 start-page: 341 issue: 2 year: 2012 end-page: 362 ident: CR43 article-title: Efficiency of coordinate descent methods on huge-scale optimization problems publication-title: SIAM J. Optim. doi: 10.1137/100802001 – ident: CR17 – ident: CR31 – volume: 6 start-page: 1758 issue: 3 year: 2013 end-page: 1789 ident: CR61 article-title: A block coordinate descent method for regularized multiconvex optimization with applications to nonnegative tensor factorization and completion publication-title: SIAM J. Imaging Sci. doi: 10.1137/120887795 – volume: 5 start-page: 111 issue: 2 year: 1994 end-page: 126 ident: CR47 article-title: Positive matrix factorization: a non-negative factor model with optimal utilization of error estimates of data values publication-title: Environmetrics doi: 10.1002/env.3170050203 – ident: CR34 – volume: 22 start-page: 1255 issue: 12 year: 2001 end-page: 1261 ident: CR57 article-title: Positive tensor factorization publication-title: Pattern Recogn. Lett. doi: 10.1016/S0167-8655(01)00070-8 – volume: 23 start-page: 2037 issue: 4 year: 2013 end-page: 2060 ident: CR8 article-title: On the convergence of block coordinate descent type methods publication-title: SIAM J. Optim. doi: 10.1137/120887679 – volume: 156 start-page: 59 issue: 1 year: 2016 end-page: 99 ident: CR22 article-title: Accelerated gradient methods for nonconvex nonlinear and stochastic programming publication-title: Math. Program. doi: 10.1007/s10107-015-0871-8 – volume: 27 start-page: 265 issue: 3 year: 2009 end-page: 274 ident: CR10 article-title: Iterative hard thresholding for compressed sensing publication-title: Appl. Comput. Harmon. Anal. doi: 10.1016/j.acha.2009.04.002 – volume: 109 start-page: 475 issue: 3 year: 2001 end-page: 494 ident: CR55 article-title: Convergence of a block coordinate descent method for nondifferentiable minimization publication-title: J. Optim. Theory Appl. doi: 10.1023/A:1017501703105 – volume: 51 start-page: 455 issue: 3 year: 2009 ident: CR29 article-title: Tensor decompositions and applications publication-title: SIAM Rev. doi: 10.1137/07070111X – volume: 9 start-page: 1369 year: 2008 end-page: 1398 ident: CR16 article-title: Coordinate descent method for large-scale l2-loss linear support vector machines publication-title: J. Mach. Learn. Res. – volume: 117 start-page: 387 issue: 1 year: 2009 end-page: 423 ident: CR56 article-title: A coordinate gradient descent method for nonsmooth separable minimization publication-title: Math. Program. doi: 10.1007/s10107-007-0170-0 – volume: 157 start-page: 416 issue: 2 year: 2013 end-page: 435 ident: CR6 article-title: Subgradient method for nonconvex nonsmooth optimization publication-title: J. Optim. Theory Appl. doi: 10.1007/s10957-012-0167-6 – volume: 13 start-page: 3441 issue: 1 year: 2012 end-page: 3473 ident: CR41 article-title: Iterative reweighted algorithms for matrix rank minimization publication-title: J. Mach. Learn. Res. – volume: 362 start-page: 3319 issue: 6 year: 2010 ident: 376_CR12 publication-title: Trans. Am. Math. Soc. doi: 10.1090/S0002-9947-09-05048-X – volume: 109 start-page: 475 issue: 3 year: 2001 ident: 376_CR55 publication-title: J. Optim. Theory Appl. doi: 10.1023/A:1017501703105 – volume: 13 start-page: 3441 issue: 1 year: 2012 ident: 376_CR41 publication-title: J. Mach. Learn. Res. – volume-title: Numerical Optimization, Springer Series in Operations Research and Financial Engineering. year: 2006 ident: 376_CR45 – volume: 2 start-page: 183 issue: 1 year: 2009 ident: 376_CR7 publication-title: SIAM J. Imaging Sci. doi: 10.1137/080716542 – volume: 15 start-page: 751 issue: 3 year: 2005 ident: 376_CR15 publication-title: SIAM J. Optim. doi: 10.1137/030601296 – volume: 51 start-page: 455 issue: 3 year: 2009 ident: 376_CR29 publication-title: SIAM Rev. doi: 10.1137/07070111X – volume: 23 start-page: 2037 issue: 4 year: 2013 ident: 376_CR8 publication-title: SIAM J. Optim. doi: 10.1137/120887679 – volume-title: Variational Analysis year: 2009 ident: 376_CR52 – volume: 137 start-page: 91 issue: 1–2 year: 2013 ident: 376_CR5 publication-title: Math. Program. doi: 10.1007/s10107-011-0484-9 – ident: 376_CR19 – volume: 156 start-page: 59 issue: 1 year: 2016 ident: 376_CR22 publication-title: Math. Program. doi: 10.1007/s10107-015-0871-8 – volume: 27 start-page: 265 issue: 3 year: 2009 ident: 376_CR10 publication-title: Appl. Comput. Harmon. Anal. doi: 10.1016/j.acha.2009.04.002 – volume: 22 start-page: 1255 issue: 12 year: 2001 ident: 376_CR57 publication-title: Pattern Recogn. Lett. doi: 10.1016/S0167-8655(01)00070-8 – volume: 35 start-page: 438 issue: 2 year: 2010 ident: 376_CR4 publication-title: Math. Oper. Res. doi: 10.1287/moor.1100.0449 – volume: 51 start-page: 927 issue: 2 year: 2013 ident: 376_CR32 publication-title: SIAM J. Numer. Anal. doi: 10.1137/110840364 – volume: 23 start-page: 576 issue: 1 year: 2013 ident: 376_CR53 publication-title: SIAM J. Optim. doi: 10.1137/110840054 – volume: 7 start-page: 39 issue: 1 year: 2015 ident: 376_CR59 publication-title: Math. Program. Comput. doi: 10.1007/s12532-014-0074-y – volume: 19 start-page: 989 issue: 4 year: 2016 ident: 376_CR60 publication-title: Pattern Anal. Appl. doi: 10.1007/s10044-015-0485-z – volume: 4 start-page: 333 issue: 4 year: 2012 ident: 376_CR58 publication-title: Math. Program. Comput. doi: 10.1007/s12532-012-0044-1 – ident: 376_CR46 – volume: 54 start-page: 4311 issue: 11 year: 2006 ident: 376_CR1 publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2006.881199 – volume-title: Nonlinear Programming year: 1999 ident: 376_CR9 – volume: 38 start-page: 894 issue: 2 year: 2010 ident: 376_CR63 publication-title: Ann. Stat. doi: 10.1214/09-AOS729 – volume: 72 start-page: 7 issue: 1 year: 1992 ident: 376_CR39 publication-title: J. Optim. Theory Appl. doi: 10.1007/BF00939948 – ident: 376_CR35 – volume: 22 start-page: 341 issue: 2 year: 2012 ident: 376_CR43 publication-title: SIAM J. Optim. doi: 10.1137/100802001 – ident: 376_CR25 doi: 10.1007/978-94-007-0602-6_13 – volume: 14 start-page: 743 issue: 3 year: 2004 ident: 376_CR21 publication-title: SIAM J. Optim. doi: 10.1137/S1052623402411459 – ident: 376_CR31 doi: 10.5802/aif.1638 – ident: 376_CR26 – volume: 23 start-page: 1126 issue: 2 year: 2013 ident: 376_CR49 publication-title: SIAM J. Optim. doi: 10.1137/120891009 – volume: 4 start-page: 79 issue: 1 year: 1957 ident: 376_CR24 publication-title: Naval Res. Logist. Q. doi: 10.1002/nav.3800040113 – volume: 116 start-page: 3325 issue: 3 year: 2003 ident: 376_CR30 publication-title: J. Math. Sci. doi: 10.1023/A:1023673105317 – volume: 146 start-page: 459 issue: 1 year: 2014 ident: 376_CR13 publication-title: Math. – volume: 401 start-page: 788 issue: 6755 year: 1999 ident: 376_CR33 publication-title: Nature doi: 10.1038/44565 – volume: 157 start-page: 416 issue: 2 year: 2013 ident: 376_CR6 publication-title: J. Optim. Theory Appl. doi: 10.1007/s10957-012-0167-6 – ident: 376_CR17 – volume: 24 start-page: 227 issue: 2 year: 1995 ident: 376_CR42 publication-title: SIAM J. Comput. doi: 10.1137/S0097539792240406 – ident: 376_CR40 doi: 10.1145/1553374.1553463 – volume: 96 start-page: 1348 issue: 456 year: 2001 ident: 376_CR20 publication-title: J. Am. Stat. Assoc. doi: 10.1198/016214501753382273 – volume: 134 start-page: 71 issue: 1 year: 2012 ident: 376_CR18 publication-title: Math. Program. doi: 10.1007/s10107-012-0569-0 – volume: 116 start-page: 5 issue: 1 year: 2009 ident: 376_CR3 publication-title: Math. Program. doi: 10.1007/s10107-007-0133-5 – volume: 5 start-page: 1457 year: 2004 ident: 376_CR27 publication-title: J. Mach. Learn. Res. – volume: 10 start-page: 587 issue: 4 year: 1999 ident: 376_CR23 publication-title: Optim. Methods Softw. doi: 10.1080/10556789908805730 – volume: 1 start-page: 57 issue: 1 year: 2016 ident: 376_CR48 publication-title: Ann. Math. Sci. Appl. doi: 10.4310/AMSA.2016.v1.n1.a2 – ident: 376_CR54 – volume: 52 start-page: 471 issue: 3 year: 2010 ident: 376_CR50 publication-title: SIAM Rev. doi: 10.1137/070697835 – volume: 144 start-page: 1 issue: 1 year: 2014 ident: 376_CR51 publication-title: Math. Program. doi: 10.1007/s10107-012-0614-z – volume-title: Introductory lectures on convex optimization: a basic course year: 2013 ident: 376_CR44 – ident: 376_CR2 – volume: 10 start-page: 563 issue: 2 year: 2016 ident: 376_CR62 publication-title: Inverse Probl. Imaging doi: 10.3934/ipi.2016012 – volume: 9 start-page: 1369 year: 2008 ident: 376_CR16 publication-title: J. Mach. Learn. Res. – ident: 376_CR34 doi: 10.1007/s10208-017-9366-8 – volume: 5 start-page: 111 issue: 2 year: 1994 ident: 376_CR47 publication-title: Environmetrics doi: 10.1002/env.3170050203 – volume: 58 start-page: 285 issue: 2 year: 2014 ident: 376_CR28 publication-title: J. Global Optim. doi: 10.1007/s10898-013-0035-4 – volume: 152 start-page: 615 issue: 1–2 year: 2015 ident: 376_CR38 publication-title: Math. Program. doi: 10.1007/s10107-014-0800-2 – volume: 117 start-page: 387 issue: 1 year: 2009 ident: 376_CR56 publication-title: Math. Program. doi: 10.1007/s10107-007-0170-0 – volume: 17 start-page: 1205 issue: 4 year: 2007 ident: 376_CR11 publication-title: SIAM J. Optim. doi: 10.1137/050644641 – volume: 5 start-page: 232 issue: 1 year: 2011 ident: 376_CR14 publication-title: Ann. Appl. Stat. doi: 10.1214/10-AOAS388 – ident: 376_CR37 – volume: 6 start-page: 1758 issue: 3 year: 2013 ident: 376_CR61 publication-title: SIAM J. Imaging Sci. doi: 10.1137/120887795 – volume: 43 start-page: 1575 issue: 5 year: 1993 ident: 376_CR36 publication-title: Ann. Inst. Fourier (Grenoble) doi: 10.5802/aif.1384 |
| SSID | ssj0009892 |
| Score | 2.5899427 |
| Snippet | Nonconvex optimization arises in many areas of computational science and engineering. However, most nonconvex optimization algorithms are only known to have... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 700 |
| SubjectTerms | Algorithms Computational Mathematics and Numerical Analysis Convergence Critical point Factorization Iterative methods Mathematical and Computational Engineering Mathematical and Computational Physics Mathematics Mathematics and Statistics Methods Optimization Sparsity Tensors Theoretical Variables |
| SummonAdditionalLinks | – databaseName: SpringerLink Contemporary (1997 - Present) dbid: RSV link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA8yPehB3VScTsnBgx8E2jRdk-McDi9OUScDD6VJGx1u3Vir6H_vS9euKirorZAPwkte3i997_0eQgcWZ7LJLUmcyLgZGZMk0K5NlGfo04TmXhRkxSa8bpf3--Iqz-NOimj3wiWZ3dQfkt2EbQLNPGKBVhB4py-CteOmXsP1zV3JtMuzSsigPS4BrMwKV-Z3U3w2RiXC_OIUzWxNZ-1fq1xHqzm0xK3ZWaiihSiuoZWLOS9rUkPVXJUTfJjzTR9toPsWnjH_D99w2wShm3zMFLeGD-PpIH0cYcC1uDuOswD1V3wJl8woz97Ep2AEQ2w-wCg-wXB4yw5iwK-4NzH_EjZRr3N22z4nec0FohxOU2IHPJKah4EtqbRC6WoFKm43tfE4etprShqFVCgdCBW4oWDaA8ggadjUTCjAO1uoEo_jaBthKkOXWpoFyrGZsnRgTJ-WjjCBcS6P6sgqhO-rnJDc1MUY-iWVshGmD8L0jTB9q46O50MmMzaO3zo3ih31c8VMfCrgDrNhQdB8Uuxg2fzjZDt_6r2Llml2BEygYANV0ulztIeW1Es6SKb72Xl9B3Tm410 priority: 102 providerName: Springer Nature |
| Title | A Globally Convergent Algorithm for Nonconvex Optimization Based on Block Coordinate Update |
| URI | https://link.springer.com/article/10.1007/s10915-017-0376-0 https://www.proquest.com/docview/2918313140 |
| Volume | 72 |
| WOSCitedRecordID | wos000406014800011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 1573-7691 dateEnd: 20241212 omitProxy: false ssIdentifier: ssj0009892 issn: 0885-7474 databaseCode: P5Z dateStart: 19970301 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Computer Science Database customDbUrl: eissn: 1573-7691 dateEnd: 20241212 omitProxy: false ssIdentifier: ssj0009892 issn: 0885-7474 databaseCode: K7- dateStart: 19970301 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1573-7691 dateEnd: 20241212 omitProxy: false ssIdentifier: ssj0009892 issn: 0885-7474 databaseCode: BENPR dateStart: 19970301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVAVX databaseName: Springer LINK customDbUrl: eissn: 1573-7691 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009892 issn: 0885-7474 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB4V6KGX8qxYHisfOACVVcebbOwTWhCoEtKy4lGhcohiJ4ZVl-zCplX775nJOkQgwaWXKFJsK_LMeD57xvMB7AgVmq4ShndyCjOGoeGpiwJuYyqfpp2K87Qim4j7fXV9rQf-wG3q0yrrNbFaqLOxpTPyb1Kj8gUd3A8cTB44sUZRdNVTaMzBAlVJIOqGQfSzKbqrKlJkNKSII2wO66jm7OqcDihtLeYCbYyLl36pAZuv4qOV2zlZ_N8fXoLPHnCy3kxDluFDXqzAsjfpKdv1daf3VuGmx2YMAKN_7IiS0eleZsl6o1sctry7Z4hvWX9cVInqf9kZLjb3_hYnO0RnmDF6Qef4C7vjnnZYII5lVxM6U1iDq5Pjy6Pv3HMvcNtRsuRBqnLjVJYGRhqRmchZNPWg6yjyGLu4a2SeSW1dqm0aZTp0MUIHI7OuC7VF3PMF5otxka8DkyaLpHBhanEyrHApuUBnOpoS5CKVt0DUM59YX5ic-DFGSVNSmYSVoLASElYiWrD_3GUyq8rxXuOtWkCJN9Bp0kinBV9rETef3xxs4_3BNuGTrHSKMgS3YL58_J1vw0f7pxxOH9uwcHjcH5y3Ye405u1KV_F5fvHjCddD7O8 |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Jb9QwFH4qBQkuhQJVpxTwASQWWThOMrYPCA2FqtWUgUMrVeIQYsemVaeZoROW_il-I-9lIQKJ3nrgFimxJcffW-y3fACPhE7sUAvLY09hxiSxPA9pxJ2i9mkmaOXzmmxCTSb68NB8WIKfXS0MpVV2OrFW1MXM0R35C2kQfFGM54FX8y-cWKMoutpRaDSwGPvz73hkW7zcfYP7-1jK7bf7Wzu8ZRXgLtay4lGuvQ26yCMrrShsGhyCOBoGiqmpoIZW-kIaF3Lj8rQwSVBoFK0shiExDi06znsFriaxViRXY8X7Jr-6JmFGwU05uulJF0VtSvVMRGlyiguUaS7-tIO9c_tXPLY2c9s3_7cfdAtWWoeajRoJWIUlX96G1VZlLdiTtq_20zvwccQahoPpOduiZHuqO63YaPoZl1EdnTL039lkVtaJ-D_Ye1Smp22VKnuNxr5g9IDG_wSH4_qOS_TT2cGc7kzuwsGlLHINlstZ6deBSVukUoQkd_jznQg5mfhgY0MJgKn2AxDdTmeubbxO_B_TrG8ZTeDIEBwZgSMTA3j2e8i86Tpy0cebHSCyVgEtsh4NA3jeQap__c_JNi6e7CFc39l_t5ft7U7G9-CGrPFM2ZCbsFydffX34Zr7Vh0vzh7UksHg02Uj7RcuPEgK |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ZS8QwEA6iIvrgLd7mwQcPgm023SaP67Eo6ip4IPhQmrTRxbW7bKvov3em27oqKohvhRyETCYz6XzzDSHrjhS6Kh3NKjGGGYXQLLSey4yP9GnKSj8O82ITfqMhb27UeVHnNC3R7mVIspfTgCxNSbbTiezOh8Q35SLozGcOaAiDN_uQQBw9PtcvrvusuzKvigya5DHwm0UZ1vxuis-Gqe9tfgmQ5nanPvHvFU-S8cLlpLXeGZkiA3EyTcZO3_la02kyVah4SjcKHurNGXJbo72KAK1XuofgdMzTzGitddfuNrP7Rwr-Lm20kxy4_kLP4PJ5LLI66S4Yx4jiBxjLBxgOb9xmAn4tvergP4ZZclU_uNw7ZEUtBmYqkmfMDWWsrYxCV3PtRNqzBlTfrVqMRPrWr2oeR1wZGyoTepES1gdXQvOoaoUy4AfNkcGkncTzhHIdedyxIjQVVxjHhmgSra4oBMx5Ml4gTimIwBRE5VgvoxX0KZZxMwPYzAA3M3AWyNb7kE6PpeO3zsuldINCYdOAK7jbXFgQNG-X0uw3_zjZ4p96r5GR8_16cHLUOF4iozw_DYglXCaDWfcpXiHD5jlrpt3V_Bi_AUAQ7yU |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Globally+Convergent+Algorithm+for+Nonconvex+Optimization+Based+on+Block+Coordinate+Update&rft.jtitle=Journal+of+scientific+computing&rft.au=Xu%2C+Yangyang&rft.au=Yin%2C+Wotao&rft.date=2017-08-01&rft.pub=Springer+Nature+B.V&rft.issn=0885-7474&rft.eissn=1573-7691&rft.volume=72&rft.issue=2&rft.spage=700&rft.epage=734&rft_id=info:doi/10.1007%2Fs10915-017-0376-0 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0885-7474&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0885-7474&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0885-7474&client=summon |