R/C buildings’ seismic damage prediction based on semi-supervised automatic differentiation variational inference deep autoencoder

Structural damage from earthquakes has been assessed using a variety of methodologies, both statistical and, more recently, utilizing Machine Learning (ML) algorithms. The effectiveness of data-driven procedures, even when applied to extremely time-consuming scenarios and data sets that reflect subs...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physics. Conference series Jg. 2647; H. 19; S. 192015 - 192023
Hauptverfasser: Demertzis, K, Kostinakis, K, Morfidis, K, Iliadis, L
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Bristol IOP Publishing 01.06.2024
Schlagworte:
ISSN:1742-6588, 1742-6596
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Structural damage from earthquakes has been assessed using a variety of methodologies, both statistical and, more recently, utilizing Machine Learning (ML) algorithms. The effectiveness of data-driven procedures, even when applied to extremely time-consuming scenarios and data sets that reflect substantial expertise and research, completely depends on the quality of the underlying data. The performance of the intelligent model can also be impacted by a lack of in-depth knowledge and expertise in using complex machine learning architectures. This can also prevent some crucial hyperparameters from being adjusted, which ultimately reduces the algorithm’s reliability and generalizability. The present research offers a Bayesian-based semi-supervised Automatic Differentiation Variational Inference (ADVI) deep autoencoder for forecasting seismic damage of R/C buildings. It is a state-of-the-art, intelligent technology that automatically converts the variables in the issue into actual coordinate space using an upgraded ADVI technique. Finally, using a brand-new Adaptive Learning Rate Gradient Algorithm (ALRGA), it chooses a technique in this area that is a function of the changed variables and optimizes its parameters. Using the sophisticated ADVI technique to establish a posterior distribution without having an analytical solution is an upgraded version of the semi-supervised learning method. Estimating seismic damage to buildings is accelerated and greatly simplified by the suggested methodology, which eliminates the computational complexity of the analytical methods. By performing Nonlinear Time History Analyses of 3D R/C structures exposed to 65 earthquakes, a realistic dataset for the model evaluation is produced. The system’s strong generalizability and the proposed methodology’s detailed convergence stability reveal that it is a valuable method that can outperform other ML algorithms.
AbstractList Structural damage from earthquakes has been assessed using a variety of methodologies, both statistical and, more recently, utilizing Machine Learning (ML) algorithms. The effectiveness of data-driven procedures, even when applied to extremely time-consuming scenarios and data sets that reflect substantial expertise and research, completely depends on the quality of the underlying data. The performance of the intelligent model can also be impacted by a lack of in-depth knowledge and expertise in using complex machine learning architectures. This can also prevent some crucial hyperparameters from being adjusted, which ultimately reduces the algorithm’s reliability and generalizability. The present research offers a Bayesian-based semi-supervised Automatic Differentiation Variational Inference (ADVI) deep autoencoder for forecasting seismic damage of R/C buildings. It is a state-of-the-art, intelligent technology that automatically converts the variables in the issue into actual coordinate space using an upgraded ADVI technique. Finally, using a brand-new Adaptive Learning Rate Gradient Algorithm (ALRGA), it chooses a technique in this area that is a function of the changed variables and optimizes its parameters. Using the sophisticated ADVI technique to establish a posterior distribution without having an analytical solution is an upgraded version of the semi-supervised learning method. Estimating seismic damage to buildings is accelerated and greatly simplified by the suggested methodology, which eliminates the computational complexity of the analytical methods. By performing Nonlinear Time History Analyses of 3D R/C structures exposed to 65 earthquakes, a realistic dataset for the model evaluation is produced. The system’s strong generalizability and the proposed methodology’s detailed convergence stability reveal that it is a valuable method that can outperform other ML algorithms.
Author Demertzis, K
Iliadis, L
Kostinakis, K
Morfidis, K
Author_xml – sequence: 1
  givenname: K
  surname: Demertzis
  fullname: Demertzis, K
  organization: Hellenic Open University School of Science and Technology, Informatics Studies, Aristotle 18, 26335, Patra, Greece
– sequence: 2
  givenname: K
  surname: Kostinakis
  fullname: Kostinakis, K
  organization: Aristotle University campus Assistant Professor, Department of Civil Engineering, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
– sequence: 3
  givenname: K
  surname: Morfidis
  fullname: Morfidis, K
  organization: Earthquake Planning and Protection Organization (EPPO-ITSAK) Assistant Researcher, Terma Dasylliou, 55535, Thessaloniki, Greece
– sequence: 4
  givenname: L
  surname: Iliadis
  fullname: Iliadis, L
  organization: Democritus University of Thrace School of Engineering, Department of Civil Engineering, Kimmeria, Xanthi, Greece
BookMark eNqNkMtKxDAUhoOM4MzoOwRc18mladONIIM3GBBE1-E0SYcM04tJO-DOhS_h6_kktlMZwY2GQP7knO_n5J-hSVVXFiFMyQUlUi5oGrMoEVmyYEmcLmjWb0aoOELTQ2ly0FKeoFkIG0J4v9Ipen9cLHHeua1x1Tp8vn3gYF0oncYGSlhb3HhrnG5dXeEcgjW4F8GWLgpdY_3ODU_QtXUJ7QC5orDeVq2DPbIDPyrYYlftS9piY22zh_pbbaw_RccFbIM9-z7n6Pnm-ml5F60ebu-XV6tIc8naiGY6S1JGuRA6yxMgTFOhTSFMLIg0RDBgcQJpluWMAMR5D3ChOS-SRGsKfI7OR9_G1y-dDa3a1J3vZwuKE0lFSiTjfdfl2KV9HYK3hdKu3X-i9eC2ihI1JK-GSNUQrxqSVzRTY_K9gfxl0HhXgn_9DxqPqKubn-H-xL4AL16cRw
CitedBy_id crossref_primary_10_1007_s11069_025_07648_8
Cites_doi 10.3390/app122110754
10.1016/j.engstruct.2018.03.028
10.1061/(ASCE)ST.1943-541X.0000209
10.1016/j.advengsoft.2017.01.001
10.1016/j.engstruct.2019.109436
10.3390/rs11232765
ContentType Journal Article
Copyright Published under licence by IOP Publishing Ltd
Published under licence by IOP Publishing Ltd. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: Published under licence by IOP Publishing Ltd
– notice: Published under licence by IOP Publishing Ltd. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID O3W
TSCCA
AAYXX
CITATION
8FD
8FE
8FG
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
H8D
HCIFZ
L7M
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
DOI 10.1088/1742-6596/2647/19/192015
DatabaseName Institute of Physics Open Access Journal Titles
IOPscience (Open Access)
CrossRef
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials - QC
ProQuest Central
Technology Collection
ProQuest One
ProQuest Central
Aerospace Database
SciTech Premium Collection
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
DatabaseTitle CrossRef
Publicly Available Content Database
Advanced Technologies & Aerospace Collection
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
Aerospace Database
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
Advanced Technologies Database with Aerospace
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database
CrossRef
Database_xml – sequence: 1
  dbid: O3W
  name: Institute of Physics Open Access Journal Titles
  url: http://iopscience.iop.org/
  sourceTypes: Publisher
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1742-6596
ExternalDocumentID 10_1088_1742_6596_2647_19_192015
JPCS_2647_19_192015
GroupedDBID 1JI
29L
2WC
4.4
5B3
5GY
5PX
5VS
7.Q
AAJIO
AAJKP
ABHWH
ACAFW
ACHIP
AEFHF
AEJGL
AFKRA
AFYNE
AIYBF
AKPSB
ALMA_UNASSIGNED_HOLDINGS
ARAPS
ASPBG
ATQHT
AVWKF
AZFZN
BENPR
BGLVJ
CCPQU
CEBXE
CJUJL
CRLBU
CS3
DU5
E3Z
EBS
EDWGO
EQZZN
F5P
FRP
GROUPED_DOAJ
GX1
HCIFZ
HH5
IJHAN
IOP
IZVLO
J9A
KNG
KQ8
LAP
N5L
N9A
O3W
OK1
P2P
PIMPY
PJBAE
RIN
RNS
RO9
ROL
SY9
T37
TR2
TSCCA
UCJ
W28
XSB
~02
AAYXX
AEINN
AFFHD
CITATION
OVT
PHGZM
PHGZT
PQGLB
8FD
8FE
8FG
ABUWG
AZQEC
DWQXO
H8D
L7M
P62
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c382t-19c96721355c9b6a02c15cdf5d4508d052a246a799b20aa4b19c35c33f66cc1a3
IEDL.DBID O3W
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001329172802038&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1742-6588
IngestDate Sat Nov 01 15:11:55 EDT 2025
Sat Nov 29 03:36:34 EST 2025
Tue Nov 18 21:57:36 EST 2025
Sun Aug 18 17:30:26 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 19
Language English
License Content from this work may be used under the terms of the Creative Commons Attribution 4.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c382t-19c96721355c9b6a02c15cdf5d4508d052a246a799b20aa4b19c35c33f66cc1a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://iopscience.iop.org/article/10.1088/1742-6596/2647/19/192015
PQID 3081570823
PQPubID 4998668
PageCount 9
ParticipantIDs iop_journals_10_1088_1742_6596_2647_19_192015
proquest_journals_3081570823
crossref_citationtrail_10_1088_1742_6596_2647_19_192015
crossref_primary_10_1088_1742_6596_2647_19_192015
PublicationCentury 2000
PublicationDate 20240601
PublicationDateYYYYMMDD 2024-06-01
PublicationDate_xml – month: 06
  year: 2024
  text: 20240601
  day: 01
PublicationDecade 2020
PublicationPlace Bristol
PublicationPlace_xml – name: Bristol
PublicationTitle Journal of physics. Conference series
PublicationTitleAlternate J. Phys.: Conf. Ser
PublicationYear 2024
Publisher IOP Publishing
Publisher_xml – name: IOP Publishing
References Gomez-Cabrera (JPCS_2647_19_192015bib1) 2022; 12
Masi (JPCS_2647_19_192015bib18) 2011; 137
Morfidis (JPCS_2647_19_192015bib8) 2017
JPCS_2647_19_192015bib4
Carr (JPCS_2647_19_192015bib15) 2006
JPCS_2647_19_192015bib5
Morfidis (JPCS_2647_19_192015bib11) 2019
JPCS_2647_19_192015bib14
Morfidis (JPCS_2647_19_192015bib7) 2017; 106
JPCS_2647_19_192015bib13
Gunturi (JPCS_2647_19_192015bib16) 1992
Naeim (JPCS_2647_19_192015bib17) 2011
Demertzis (JPCS_2647_19_192015bib3) 2023; 63
Kostinakis (JPCS_2647_19_192015bib12) 2020; 75
Crisafulli (JPCS_2647_19_192015bib6) 1997
Morfidis (JPCS_2647_19_192015bib10) 2019; 197
Morfidis (JPCS_2647_19_192015bib9) 2018; 165
Nex (JPCS_2647_19_192015bib2) 2019; 11
References_xml – volume: 75
  start-page: 295
  year: 2020
  ident: JPCS_2647_19_192015bib12
  article-title: Optimization of the seismic performance of masonry infilled R/C buildings at the stage of design using artificial neural networks
  publication-title: Structural Engineering and Mechanics
– year: 2019
  ident: JPCS_2647_19_192015bib11
– year: 1992
  ident: JPCS_2647_19_192015bib16
– volume: 12
  start-page: 10754
  year: 2022
  ident: JPCS_2647_19_192015bib1
  article-title: Review of Machine-Learning Techniques Applied to Structural Health Monitoring Systems for Building and Bridge Structures
  publication-title: Appl. Sci.
  doi: 10.3390/app122110754
– ident: JPCS_2647_19_192015bib4
– volume: 165
  start-page: 120
  year: 2018
  ident: JPCS_2647_19_192015bib9
  article-title: Approaches to the rapid seismic damage prediction of r/c buildings using artificial neural networks
  publication-title: Eng Struct
  doi: 10.1016/j.engstruct.2018.03.028
– ident: JPCS_2647_19_192015bib5
– volume: 63
  year: 2023
  ident: JPCS_2647_19_192015bib3
  article-title: An interpretable machine learning method for the prediction of R/C buildings’ seismic response
  publication-title: J. Build. Eng.
– year: 1997
  ident: JPCS_2647_19_192015bib6
– year: 2017
  ident: JPCS_2647_19_192015bib8
– volume: 137
  start-page: 367
  year: 2011
  ident: JPCS_2647_19_192015bib18
  article-title: Selection of natural and synthetic accelerograms for seismic vulnerability studies on reinforced concrete frames
  publication-title: J Struct Eng
  doi: 10.1061/(ASCE)ST.1943-541X.0000209
– volume: 106
  start-page: 1
  year: 2017
  ident: JPCS_2647_19_192015bib7
  article-title: Seismic parameters’ combinations for the optimum prediction of the damage state of R/C buildings using neural networks
  publication-title: Advances in Engineering Software
  doi: 10.1016/j.advengsoft.2017.01.001
– volume: 197
  year: 2019
  ident: JPCS_2647_19_192015bib10
  article-title: Comparative evaluation of MFP and RBF neural networks’ ability for instant estimation of r/c buildings’ seismic damage level
  publication-title: Engineering Structures
  doi: 10.1016/j.engstruct.2019.109436
– ident: JPCS_2647_19_192015bib13
– ident: JPCS_2647_19_192015bib14
– year: 2006
  ident: JPCS_2647_19_192015bib15
– year: 2011
  ident: JPCS_2647_19_192015bib17
– volume: 11
  start-page: 2765
  year: 2019
  ident: JPCS_2647_19_192015bib2
  article-title: Structural Building Damage Detection with Deep Learning: Assessment of a State-of-the-Art CNN in Operational Conditions
  publication-title: Remote Sens.
  doi: 10.3390/rs11232765
SSID ssj0033337
Score 2.3711221
Snippet Structural damage from earthquakes has been assessed using a variety of methodologies, both statistical and, more recently, utilizing Machine Learning (ML)...
SourceID proquest
crossref
iop
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 192015
SubjectTerms Adaptive algorithms
Adaptive learning
Algorithms
Buildings
Complexity
Damage assessment
Differentiation
Earthquake damage
Earthquake prediction
Earthquakes
Exact solutions
Inference
Machine learning
Mathematical analysis
Semi-supervised learning
Structural damage
Upgrading
SummonAdditionalLinks – databaseName: Publicly Available Content Database
  dbid: PIMPY
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NatwwEBbJpoVe2qQ_NM0POvQqbMuWJZ1CCQ3tIWEJLSQnI49kMHR33ZU35xzyEn29PklGttwQCiWHGh9s2XMwM55vpBnNR8jHpnAIbJCyBtGBFUpLpnW4laCFqxUHO5JNyIsLdXWl53F7tI9llZNPHBz12O051G2jE07sCsKKeZIjkgkZskQn3U8WOKRCrjUSamyTndB4K52RnfnX8_n15JlzPOS4QZIzRF4VK3vwR0vimC4TjBBkkmk8ERvFI7jablfdXz57AKKzV__3E3bJyxiQ0k-jBe2RLbd8TZ4PhaHg35C7y-SU1pE72_--_UW9a_2iBWrNAn0R7dYh1RPUSwMiWooX3i1a5jdd8ENhyGz61dAalk58LP1oEfQGp-pxOZK2095Dap3rBqHQZdO69Vvy_ezzt9MvLDI3MMgV71mmQZc4t8RgBnRdmpRDJsA2whYYENpUcMOL0kita54aU9QokAvI86YsATKTvyOz5Wrp3hMqbQE5NE0BHApuXG1qYRvrUgNKOSf2iZwUVEFsax7YNX5UQ3pdqSqotgqqrYJqq0xXo2r3SfZHshtbezxBhqENVPE_9094_3AyhQehB81_-PfjA_KCYww1VqYdklm_3rgj8gxu-tavj6N13wO37gZ8
  priority: 102
  providerName: ProQuest
Title R/C buildings’ seismic damage prediction based on semi-supervised automatic differentiation variational inference deep autoencoder
URI https://iopscience.iop.org/article/10.1088/1742-6596/2647/19/192015
https://www.proquest.com/docview/3081570823
Volume 2647
WOSCitedRecordID wos001329172802038&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIOP
  databaseName: Institute of Physics Open Access Journal Titles
  customDbUrl:
  eissn: 1742-6596
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0033337
  issn: 1742-6588
  databaseCode: O3W
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: http://iopscience.iop.org/
  providerName: IOP Publishing
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1742-6596
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0033337
  issn: 1742-6588
  databaseCode: P5Z
  dateStart: 20040801
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central (New)
  customDbUrl:
  eissn: 1742-6596
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0033337
  issn: 1742-6588
  databaseCode: BENPR
  dateStart: 20040801
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1742-6596
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0033337
  issn: 1742-6588
  databaseCode: PIMPY
  dateStart: 20040801
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NbtQwELb6AxKX8i9aSuUD17CJHcf2EVat2gNLVIEoXCJn7EiR2N1ok-2ZAy_B6_EkjGOnCCGhIhFFkWPls6wZZ2Zsj2cIednkDhUbpEmD2iHJlZaJ1v5VghauVgxsSDYhFwt1daXLHTK_OQuz7qLof4XFECg4kDA6xKkZ2tAsKYQuZqjM5SzTeKMaE7tknyshvF_fO_5xEsccLxlORXqUUtGd528t_aajdrEffwjqUfuc3f8v_X5ADqLxSV8HyEOy41aPyN3RCRT6x-Tb5WxO65gnu__x9TvtXdsvW6DWLFHu0G7jt3U8K6nXfpZioXfLNum3nZc5vspsh_UYBpZOuVeGwH16jdPyuPRI2-mcIbXOdSPIR9S0bvOEfDg7fT8_T2KWhgS4YkOSadAFziPRcAFdFyZlkAmwjbA5Gn82FcywvDBS65qlxuQ1ArgAzpuiAMgMf0r2VuuVe0aotDlwaJocGOTMuNrUwjbWpQaUck4cEjnxpYIYwtxn0vhSjVvpSlWexpWnceVpXGW6CjQ-JNkNsgthPG6BSZCVVfyn-1t8fzwNkl8gjiaXkH478-gfm3tO7jE0oIJb2jHZGzZb94Lcgeuh7TcnZP_N6aK8PBnHOj5L8Rnryou35aefdZn72A
linkProvider IOP Publishing
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtUwELXaAoINb9RCAS9gaSVx7DheIIQKVauWqwoVqWITnLEjReLem8a5RexY8BP8BB_FlzDOgwohoW66IMoicTJZOGfm-DH2IeRZJRwSG8SsQnZgIteKaR1uFWjpypyDHcQm1GyWn5zoozXyY1oLE9Iqp5jYB2q7hDBGHqXIXVKFeaGXzSkLqlFhdnWS0BhgceC-fMYum3-x_xr_73POd98c7-yxUVWAQZrzjiUadIb9HiRa0GVmYg6JBFtJK7CxYmPJDReZUVqXPDZGlGiQSkjTKssAEpPid9fJFSF4HBQTjuSHKfKneKhhASZnyOz5mDmEjhyNZTqLsAWiokTjidwr_6DD9XrZ_MUJPdHt3vrfqug2uTk2qemrwQfukDW3uEuu9amt4O-Rb--iHVqO6t_-59fv1Lvaz2ug1swxmtKmDZNVAaA0cLqleOHdvGZ-1YRIGorMqlv2m9vSSVGmGzBNz0xbjwOqtJ5WT1LrXNMbhX1CrWvvk_eXUgUPyMZiuXCbhCorIIWqEsBBcONKU0pbWRcbyHPn5BZREwQKGDdmD_ogn4o-QSDPiwCeIoCnCOApEl0M4NkiyW_LZtic5AI2DFFWjJHKX-D97Qls50bnSHv478dPyfW947eHxeH-7OARuYEuI4Y8u22y0bUr95hchbOu9u2T3pMo-XjZuPwF845U5A
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Pi9UwEA-76x-8-F9cXTUHr7Ft0jTJUVafivJcRHFvIZ2kUPC9V1779uzBL-HX85M4adMVEWQFSw9p6S-ESTq_STKZIeRpUwYkNshZg-zASm0UMyY-KjAy1JqDn5JNqOVSn56akz3y6vwszKZLqv8ZFqdAwZMIk0OcztCG5qySpsqQzFVWGLyRxmTW-WafXIrxSmIqg_fi86ySBV5qOhkZkVonl56_1fYbT-1jW_5Q1iMDLW78t7bfJNeTEUqfT7BbZC-sb5MrozMo9HfItw_ZMa1Tvuz-x9fvtA9tv2qBerdC_UO7bdzeiV1KIwt6ioU-rFrW77qoe-Irtxs2YzhYOudgGaZRQM9wep6WIGk7nzekPoRuBMXImj5s75JPi5cfj1-zlK2BgdB8YIUBU-F8Eg0YMHXlcg6FBN9IX6IR6HPJHS8rp4ypee5cWSNASBCiqSqAwol75GC9WYf7hCpfgoCmKYFDyV2oXS1940PuQOsQ5CFRc99YSKHMY0aNL3bcUtfaRjnbKGcb5WwLYyc5H5LiHNlN4TwugGHYnTb92_0Fvj-aB8ovkEDTS6q4rfngH6t7Qq6evFjYd2-Wbx-SaxxtqslT7YgcDNtdeEQuw9nQ9tvH45D_CdNZ_Os
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=R%2FC+buildings%E2%80%99+seismic+damage+prediction+based+on+semi-supervised+automatic+differentiation+variational+inference+deep+autoencoder&rft.jtitle=Journal+of+physics.+Conference+series&rft.au=Demertzis%2C+K&rft.au=Kostinakis%2C+K&rft.au=Morfidis%2C+K&rft.au=Iliadis%2C+L&rft.date=2024-06-01&rft.issn=1742-6588&rft.eissn=1742-6596&rft.volume=2647&rft.issue=19&rft.spage=192015&rft_id=info:doi/10.1088%2F1742-6596%2F2647%2F19%2F192015&rft.externalDBID=n%2Fa&rft.externalDocID=10_1088_1742_6596_2647_19_192015
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1742-6588&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1742-6588&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1742-6588&client=summon