Deep Learning Algorithm Detects Presence of Disorganization of Retinal Inner Layers (DRIL)–An Early Imaging Biomarker in Diabetic Retinopathy

To develop and train a deep learning-based algorithm for detecting disorganization of retinal inner layers (DRIL) on optical coherence tomography (OCT) to screen a cohort of patients with diabetic retinopathy (DR). In this cross-sectional study, subjects over age 18, with ICD-9/10 diagnoses of type...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Translational vision science & technology Ročník 12; číslo 7; s. 6
Hlavní autoři: Singh, Rupesh, Singuri, Srinidhi, Batoki, Julia, Lin, Kimberly, Luo, Shiming, Hatipoglu, Dilara, Anand-Apte, Bela, Yuan, Alex
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States The Association for Research in Vision and Ophthalmology 06.07.2023
Témata:
ISSN:2164-2591, 2164-2591
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract To develop and train a deep learning-based algorithm for detecting disorganization of retinal inner layers (DRIL) on optical coherence tomography (OCT) to screen a cohort of patients with diabetic retinopathy (DR). In this cross-sectional study, subjects over age 18, with ICD-9/10 diagnoses of type 2 diabetes with and without retinopathy and Cirrus HD-OCT imaging performed between January 2009 to September 2019 were included in this study. After inclusion and exclusion criteria were applied, a final total of 664 patients (5992 B-scans from 1201 eyes) were included for analysis. Five-line horizontal raster scans from Cirrus HD-OCT were obtained from the shared electronic health record. Two trained graders evaluated scans for presence of DRIL. A third physician grader arbitrated any disagreements. Of 5992 B-scans analyzed, 1397 scans (∼30%) demonstrated presence of DRIL. Graded scans were used to label training data for the convolution neural network (CNN) development and training. On a single CPU system, the best performing CNN training took ∼35 mins. Labeled data were divided 90:10 for internal training/validation and external testing purpose. With this training, our deep learning network was able to predict the presence of DRIL in new OCT scans with a high accuracy of 88.3%, specificity of 90.0%, sensitivity of 82.9%, and Matthews correlation coefficient of 0.7. The present study demonstrates that a deep learning-based OCT classification algorithm can be used for rapid automated identification of DRIL. This developed tool can assist in screening for DRIL in both research and clinical decision-making settings. A deep learning algorithm can detect disorganization of retinal inner layers in OCT scans.
AbstractList To develop and train a deep learning-based algorithm for detecting disorganization of retinal inner layers (DRIL) on optical coherence tomography (OCT) to screen a cohort of patients with diabetic retinopathy (DR).PurposeTo develop and train a deep learning-based algorithm for detecting disorganization of retinal inner layers (DRIL) on optical coherence tomography (OCT) to screen a cohort of patients with diabetic retinopathy (DR).In this cross-sectional study, subjects over age 18, with ICD-9/10 diagnoses of type 2 diabetes with and without retinopathy and Cirrus HD-OCT imaging performed between January 2009 to September 2019 were included in this study. After inclusion and exclusion criteria were applied, a final total of 664 patients (5992 B-scans from 1201 eyes) were included for analysis. Five-line horizontal raster scans from Cirrus HD-OCT were obtained from the shared electronic health record. Two trained graders evaluated scans for presence of DRIL. A third physician grader arbitrated any disagreements. Of 5992 B-scans analyzed, 1397 scans (∼30%) demonstrated presence of DRIL. Graded scans were used to label training data for the convolution neural network (CNN) development and training.MethodsIn this cross-sectional study, subjects over age 18, with ICD-9/10 diagnoses of type 2 diabetes with and without retinopathy and Cirrus HD-OCT imaging performed between January 2009 to September 2019 were included in this study. After inclusion and exclusion criteria were applied, a final total of 664 patients (5992 B-scans from 1201 eyes) were included for analysis. Five-line horizontal raster scans from Cirrus HD-OCT were obtained from the shared electronic health record. Two trained graders evaluated scans for presence of DRIL. A third physician grader arbitrated any disagreements. Of 5992 B-scans analyzed, 1397 scans (∼30%) demonstrated presence of DRIL. Graded scans were used to label training data for the convolution neural network (CNN) development and training.On a single CPU system, the best performing CNN training took ∼35 mins. Labeled data were divided 90:10 for internal training/validation and external testing purpose. With this training, our deep learning network was able to predict the presence of DRIL in new OCT scans with a high accuracy of 88.3%, specificity of 90.0%, sensitivity of 82.9%, and Matthews correlation coefficient of 0.7.ResultsOn a single CPU system, the best performing CNN training took ∼35 mins. Labeled data were divided 90:10 for internal training/validation and external testing purpose. With this training, our deep learning network was able to predict the presence of DRIL in new OCT scans with a high accuracy of 88.3%, specificity of 90.0%, sensitivity of 82.9%, and Matthews correlation coefficient of 0.7.The present study demonstrates that a deep learning-based OCT classification algorithm can be used for rapid automated identification of DRIL. This developed tool can assist in screening for DRIL in both research and clinical decision-making settings.ConclusionsThe present study demonstrates that a deep learning-based OCT classification algorithm can be used for rapid automated identification of DRIL. This developed tool can assist in screening for DRIL in both research and clinical decision-making settings.A deep learning algorithm can detect disorganization of retinal inner layers in OCT scans.Translational RelevanceA deep learning algorithm can detect disorganization of retinal inner layers in OCT scans.
To develop and train a deep learning-based algorithm for detecting disorganization of retinal inner layers (DRIL) on optical coherence tomography (OCT) to screen a cohort of patients with diabetic retinopathy (DR). In this cross-sectional study, subjects over age 18, with ICD-9/10 diagnoses of type 2 diabetes with and without retinopathy and Cirrus HD-OCT imaging performed between January 2009 to September 2019 were included in this study. After inclusion and exclusion criteria were applied, a final total of 664 patients (5992 B-scans from 1201 eyes) were included for analysis. Five-line horizontal raster scans from Cirrus HD-OCT were obtained from the shared electronic health record. Two trained graders evaluated scans for presence of DRIL. A third physician grader arbitrated any disagreements. Of 5992 B-scans analyzed, 1397 scans (∼30%) demonstrated presence of DRIL. Graded scans were used to label training data for the convolution neural network (CNN) development and training. On a single CPU system, the best performing CNN training took ∼35 mins. Labeled data were divided 90:10 for internal training/validation and external testing purpose. With this training, our deep learning network was able to predict the presence of DRIL in new OCT scans with a high accuracy of 88.3%, specificity of 90.0%, sensitivity of 82.9%, and Matthews correlation coefficient of 0.7. The present study demonstrates that a deep learning-based OCT classification algorithm can be used for rapid automated identification of DRIL. This developed tool can assist in screening for DRIL in both research and clinical decision-making settings. A deep learning algorithm can detect disorganization of retinal inner layers in OCT scans.
Author Batoki, Julia
Lin, Kimberly
Luo, Shiming
Anand-Apte, Bela
Singuri, Srinidhi
Singh, Rupesh
Hatipoglu, Dilara
Yuan, Alex
Author_xml – sequence: 1
  givenname: Rupesh
  surname: Singh
  fullname: Singh, Rupesh
  organization: Cole Eye Institute, Cleveland Clinic, Cleveland, OH, USA
– sequence: 2
  givenname: Srinidhi
  surname: Singuri
  fullname: Singuri, Srinidhi
  organization: Cleveland Clinic Lerner College of Medicine, Cleveland, OH, USA
– sequence: 3
  givenname: Julia
  surname: Batoki
  fullname: Batoki, Julia
  organization: Cole Eye Institute, Cleveland Clinic, Cleveland, OH, USA
– sequence: 4
  givenname: Kimberly
  surname: Lin
  fullname: Lin, Kimberly
  organization: Cole Eye Institute, Cleveland Clinic, Cleveland, OH, USA
– sequence: 5
  givenname: Shiming
  surname: Luo
  fullname: Luo, Shiming
  organization: Cleveland Clinic Lerner College of Medicine, Cleveland, OH, USA
– sequence: 6
  givenname: Dilara
  surname: Hatipoglu
  fullname: Hatipoglu, Dilara
  organization: Case Western Reserve University, Cleveland, OH, USA
– sequence: 7
  givenname: Bela
  surname: Anand-Apte
  fullname: Anand-Apte, Bela
  organization: Cole Eye Institute, Cleveland Clinic, Cleveland, OH, USA
– sequence: 8
  givenname: Alex
  surname: Yuan
  fullname: Yuan, Alex
  organization: Cole Eye Institute, Cleveland Clinic, Cleveland, OH, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37410472$$D View this record in MEDLINE/PubMed
BookMark eNptkc1uEzEURi3UipbSFXvkZRFK6p8Ze2aFQlMg0khFFawtj3NnYpixU9upFFa8AQvekCfBIW1VEN7Yss8991rfM3TgvAOEXlAypVTI83Qb05SyqZyKJ-iYUVFMWFnTg0fnI3Qa4xeSl6jKohBP0RGXBSWFZMfoxxxgjRvQwVnX49nQ-2DTasRzSGBSxB8DRHAGsO_w3EYfeu3sN52sd7ura0jW6QEvnIOAG72FEPHZ_HrRvPr1_efM4Usdhi1ejLrf-d9aP-rwNaPWZZ1uc7nZS_xap9X2OTrs9BDh9G4_QZ_fXX66-DBprt4vLmbNxPCKpQmlwIxhXVWSDnRBTCtgSaSgmpec1pzVZf5iC0tDutbouhWS1l3Jl3LJW25qfoLe7L3rTTtmDFwKelDrYPN8W-W1VX-_OLtSvb9VlHAuZSWz4ezOEPzNBmJSo40GhkE78JuoWMV5XYuq4Bl9-bjZQ5f7GDLweg-Y4GMM0D0glKhdzmqXs6JMSSUyTf-hjU1_EsmT2uG_Nb8B7Z6vrQ
CitedBy_id crossref_primary_10_1186_s40662_024_00389_y
crossref_primary_10_4103_IJO_IJO_800_25
crossref_primary_10_3389_fphar_2025_1498814
crossref_primary_10_1038_s41598_024_63844_9
crossref_primary_10_1016_j_cmpb_2024_108253
crossref_primary_10_1080_02713683_2025_2456783
crossref_primary_10_1136_bjo_2024_326843
crossref_primary_10_1038_s41598_023_46200_1
Cites_doi 10.1016/j.media.2017.07.005
10.1167/tvst.10.3.29
10.1007/978-3-030-87000-3_16
10.1001/jamaophthalmol.2015.0972
10.1016/j.jdiacomp.2019.05.006
10.1167/iovs.18-24955
10.1109/CVPR.2018.00907
10.1016/j.preteyeres.2019.04.003
10.1063/1.4992835
10.1016/j.ophtha.2021.04.027
10.1007/s11042-020-09292-9
10.1007/978-3-319-46349-0_5
10.1016/j.patcog.2019.02.023
10.1109/ICCV.2017.74
10.1016/j.ajo.2018.08.037
10.1038/s41598-020-75816-w
10.1007/s11739-020-02583-x
10.1001/jamaophthalmol.2017.6256
10.1109/CVPR.2015.7298594
10.1016/j.ophtha.2019.12.015
10.1001/jamaophthalmol.2014.2350
10.1001/jamaophthalmol.2018.4484
10.1001/jamaophthalmol.2021.2309
10.1016/j.ophtha.2018.04.007
10.1609/aaai.v31i1.11231
10.1109/Access.6287639
10.1186/s12864-019-6413-7
ContentType Journal Article
Copyright Copyright 2023 The Authors 2023
Copyright_xml – notice: Copyright 2023 The Authors 2023
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1167/tvst.12.7.6
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
DocumentTitleAlternate Deep Learning Detects DRIL
EISSN 2164-2591
ExternalDocumentID PMC10337787
37410472
10_1167_tvst_12_7_6
Genre Journal Article
GrantInformation_xml – fundername: NEI NIH HHS
  grantid: R01 EY026181
GroupedDBID 53G
AAYXX
ALMA_UNASSIGNED_HOLDINGS
CITATION
EBS
EJD
GROUPED_DOAJ
M~E
OK1
RPM
TRV
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-c382t-11e2cc2f850fea40cb6ed0761a353193295741bedc0fbca9b6719f53d7d3b3c93
ISICitedReferencesCount 10
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001108906600014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2164-2591
IngestDate Thu Aug 21 18:37:12 EDT 2025
Fri Jul 11 16:36:06 EDT 2025
Thu Apr 03 07:02:46 EDT 2025
Tue Nov 18 22:14:49 EST 2025
Sat Nov 29 03:28:27 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
License http://creativecommons.org/licenses/by-nc-nd/4.0
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c382t-11e2cc2f850fea40cb6ed0761a353193295741bedc0fbca9b6719f53d7d3b3c93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
RS and SS contributed equally to this work.
OpenAccessLink http://dx.doi.org/10.1167/tvst.12.7.6
PMID 37410472
PQID 2833996843
PQPubID 23479
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_10337787
proquest_miscellaneous_2833996843
pubmed_primary_37410472
crossref_primary_10_1167_tvst_12_7_6
crossref_citationtrail_10_1167_tvst_12_7_6
PublicationCentury 2000
PublicationDate 20230706
PublicationDateYYYYMMDD 2023-07-06
PublicationDate_xml – month: 7
  year: 2023
  text: 20230706
  day: 6
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Translational vision science & technology
PublicationTitleAlternate Transl Vis Sci Technol
PublicationYear 2023
Publisher The Association for Research in Vision and Ophthalmology
Publisher_xml – name: The Association for Research in Vision and Ophthalmology
References Putzu (bib28) 2020; 79
Krizhevsky (bib15) 2012
Babiuch (bib5) 2019; 137
Zhao (bib25) 2017; 1864
Szegedy (bib17) 2017
Joltikov (bib8) 2018; 59
Bengio (bib24) 2012
Soekhoe (bib30) 2016
Gerendas (bib11) 2021; 139
Selvaraju (bib20) 2017
Loo (bib13) 2020; 127
Yoon (bib12) 2020; 10
Gjoreski (bib31) 2020; 8
Luque (bib22) 2019; 91
Ehlers (bib14) 2021; 10
Das (bib4) 2018; 136
Teo (bib1) 2021; 128
Szegedy (bib16) 2015
Bar-David (bib19) 2021
Zur (bib7) 2018; 196
Zoph (bib18) 2018
Ting (bib10) 2019; 72
Chicco (bib21) 2020; 21
Sun (bib3) 2014; 132
Nadri (bib9) 2019; 33
Venerito (bib29) 2021; 16
Mesnil (bib23) 2012
Olson (bib27) 2018
Wong (bib2) 2018; 125
Radwan (bib6) 2015; 133
Litjens (bib26) 2017; 42
References_xml – volume: 42
  start-page: 60
  year: 2017
  ident: bib26
  article-title: A survey on deep learning in medical image analysis
  publication-title: Med Image Anal
  doi: 10.1016/j.media.2017.07.005
– volume: 10
  start-page: 29
  year: 2021
  ident: bib14
  article-title: Longitudinal higher-order OCT assessment of quantitative fluid dynamics and the total retinal fluid index in neovascular AMD
  publication-title: Transl Vis Sci Technol
  doi: 10.1167/tvst.10.3.29
– start-page: 148
  volume-title: Ophthalmic Medical Image Analysis
  year: 2021
  ident: bib19
  article-title: Impact of data augmentation on retinal OCT image segmentation for diabetic macular edema analysis
  doi: 10.1007/978-3-030-87000-3_16
– volume: 133
  start-page: 820
  year: 2015
  ident: bib6
  article-title: Association of disorganization of retinal inner layers with vision after resolution of center-involved diabetic macular edema
  publication-title: JAMA Ophthalmol
  doi: 10.1001/jamaophthalmol.2015.0972
– volume: 33
  start-page: 550
  year: 2019
  ident: bib9
  article-title: Disorganization of retinal inner layers correlates with ellipsoid zone disruption and retinal nerve fiber layer thinning in diabetic retinopathy
  publication-title: J Diabetes Complications
  doi: 10.1016/j.jdiacomp.2019.05.006
– volume: 59
  start-page: 5481
  year: 2018
  ident: bib8
  article-title: Disorganization of retinal inner layers (DRIL) and neuroretinal dysfunction in early diabetic retinopathy
  publication-title: Invest Ophthalmol Vis Sci
  doi: 10.1167/iovs.18-24955
– start-page: 8697
  volume-title: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition
  year: 2018
  ident: bib18
  article-title: Learning transferable architectures for scalable image recognition
  doi: 10.1109/CVPR.2018.00907
– volume: 72
  start-page: 100759
  year: 2019
  ident: bib10
  article-title: Deep learning in ophthalmology: the technical and clinical considerations
  publication-title: Progr Retinal Eye Res
  doi: 10.1016/j.preteyeres.2019.04.003
– start-page: 17
  volume-title: Proceedings of ICML workshop on unsupervised and transfer learning
  year: 2012
  ident: bib24
  article-title: Deep Learning of Representations for Unsupervised and Transfer Learning
– volume: 1864
  start-page: 020018
  year: 2017
  ident: bib25
  article-title: Research on the deep learning of the small sample data based on transfer learning
  publication-title: AIP Conference Proc
  doi: 10.1063/1.4992835
– volume: 128
  start-page: 1580
  year: 2021
  ident: bib1
  article-title: Global prevalence of diabetic retinopathy and projection of burden through 2045: systematic review and meta-analysis
  publication-title: Ophthalmology
  doi: 10.1016/j.ophtha.2021.04.027
– volume: 79
  start-page: 26995
  year: 2020
  ident: bib28
  article-title: Convolutional neural networks for relevance feedback in content based image retrieval
  publication-title: Multimedia Tools Appl
  doi: 10.1007/s11042-020-09292-9
– volume-title: Advances in Intelligent Data Analysis XV
  year: 2016
  ident: bib30
  article-title: On the impact of data set size in transfer learning using deep neural networks
  doi: 10.1007/978-3-319-46349-0_5
– volume: 91
  start-page: 216
  year: 2019
  ident: bib22
  article-title: The impact of class imbalance in classification performance metrics based on the binary confusion matrix
  publication-title: Pattern Recognition
  doi: 10.1016/j.patcog.2019.02.023
– start-page: 618
  volume-title: 2017 IEEE International Conference on Computer Vision (ICCV)
  year: 2017
  ident: bib20
  article-title: Grad-CAM: visual explanations from deep networks via gradient-based localization
  doi: 10.1109/ICCV.2017.74
– volume: 196
  start-page: 129
  year: 2018
  ident: bib7
  article-title: Disorganization of retinal inner layers as a biomarker for idiopathic epiretinal membrane after macular surgery—the DREAM Study
  publication-title: Am J Ophthalmol
  doi: 10.1016/j.ajo.2018.08.037
– volume: 10
  start-page: 18852
  year: 2020
  ident: bib12
  article-title: Optical coherence tomography-based deep-learning model for detecting central serous chorioretinopathy
  publication-title: Sci Rep
  doi: 10.1038/s41598-020-75816-w
– start-page: 97
  volume-title: Proceedings of ICML Workshop on Unsupervised and Transfer Learning
  year: 2012
  ident: bib23
  article-title: Unsupervised and transfer learning challenge: a deep learning approach
– volume: 16
  start-page: 1457
  year: 2021
  ident: bib29
  article-title: A convolutional neural network with transfer learning for automatic discrimination between low and high-grade synovitis: a pilot study
  publication-title: Intern Emerg Med
  doi: 10.1007/s11739-020-02583-x
– start-page: 84
  volume-title: Proceedings of the 25th International Conference on Neural Information Processing Systems - Volume 1
  year: 2012
  ident: bib15
  article-title: ImageNet classification with deep convolutional neural networks
– volume: 136
  start-page: 202
  year: 2018
  ident: bib4
  article-title: Disorganization of inner retina and outer retinal morphology in diabetic macular edema
  publication-title: JAMA Ophthalmol
  doi: 10.1001/jamaophthalmol.2017.6256
– start-page: 1
  volume-title: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
  year: 2015
  ident: bib16
  article-title: Going deeper with convolutions
  doi: 10.1109/CVPR.2015.7298594
– volume: 127
  start-page: 793
  year: 2020
  ident: bib13
  article-title: Beyond performance metrics: automatic deep learning retinal OCT analysis reproduces clinical trial outcome
  publication-title: Ophthalmology
  doi: 10.1016/j.ophtha.2019.12.015
– volume: 132
  start-page: 1309
  year: 2014
  ident: bib3
  article-title: Disorganization of the retinal inner layers as a predictor of visual acuity in eyes with center-involved diabetic macular edema
  publication-title: JAMA Ophthalmol
  doi: 10.1001/jamaophthalmol.2014.2350
– volume: 137
  start-page: 38
  year: 2019
  ident: bib5
  article-title: Association of disorganization of retinal inner layers with visual acuity response to anti–vascular endothelial growth factor therapy for macular edema secondary to retinal vein occlusion
  publication-title: JAMA Ophthalmol
  doi: 10.1001/jamaophthalmol.2018.4484
– volume: 139
  start-page: 973
  year: 2021
  ident: bib11
  article-title: Deep learning–based automated optical coherence tomography segmentation in clinical routine: getting closer
  publication-title: JAMA Ophthalmol
  doi: 10.1001/jamaophthalmol.2021.2309
– volume: 125
  start-page: 1608
  year: 2018
  ident: bib2
  article-title: Guidelines on diabetic eye care: the international council of ophthalmology recommendations for screening, follow-up, referral, and treatment based on resource settings
  publication-title: Ophthalmology
  doi: 10.1016/j.ophtha.2018.04.007
– volume-title: Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence
  year: 2017
  ident: bib17
  article-title: Inception-v4, inception-ResNet and the impact of residual connections on learning
  doi: 10.1609/aaai.v31i1.11231
– volume: 8
  start-page: 70590
  year: 2020
  ident: bib31
  article-title: Machine learning and end-to-end deep learning for monitoring driver distractions from physiological and visual signals
  publication-title: IEEE Access
  doi: 10.1109/Access.6287639
– volume: 21
  start-page: 6
  year: 2020
  ident: bib21
  article-title: The advantages of the Matthews correlation coefficient (MCC) over F1 score and accuracy in binary classification evaluation
  publication-title: BMC Genomics
  doi: 10.1186/s12864-019-6413-7
– start-page: 31
  volume-title: Proceedings of the 32nd International Conference on Neural Information Processing Systems
  year: 2018
  ident: bib27
  article-title: Modern neural networks generalize on small data sets
SSID ssj0000685446
Score 2.3016868
Snippet To develop and train a deep learning-based algorithm for detecting disorganization of retinal inner layers (DRIL) on optical coherence tomography (OCT) to...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 6
SubjectTerms Adolescent
Artificial Intelligence
Biomarkers
Cross-Sectional Studies
Deep Learning
Diabetes Mellitus, Type 2 - diagnosis
Diabetes Mellitus, Type 2 - diagnostic imaging
Diabetic Retinopathy - diagnostic imaging
Fluorescein Angiography - methods
Humans
Retrospective Studies
Tomography, Optical Coherence - methods
Visual Acuity
Title Deep Learning Algorithm Detects Presence of Disorganization of Retinal Inner Layers (DRIL)–An Early Imaging Biomarker in Diabetic Retinopathy
URI https://www.ncbi.nlm.nih.gov/pubmed/37410472
https://www.proquest.com/docview/2833996843
https://pubmed.ncbi.nlm.nih.gov/PMC10337787
Volume 12
WOSCitedRecordID wos001108906600014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2164-2591
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000685446
  issn: 2164-2591
  databaseCode: DOA
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2164-2591
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000685446
  issn: 2164-2591
  databaseCode: M~E
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLa6gdBeEIhbuVRGGhJQBRK7iZPHwkBUlGnahrS3KHGcNVKbVGta7Yl_wA_i33GOnaTJNiR44KWqHNdR833xufhcCNlPQCgymaSWAtlsjRInseJA2fBeBSLymXRHqa-bTYjDQ__sLDjq9X7VuTCbuchz__IyWP5XqGEMwMbU2X-Au1kUBuA7gA6fADt8_hXwB0ot67Kp58Px_LwA-3-2gJ2l1JEbRzrhSGpfga69uU3GNJVJSt0oa4I9uYbTCFVyVEMPjifTVyywxvnQFEWeLEyDow9ZscAYH4xrH5oAGx2cD8sU2O-4c26sReO8dkCaxPZhnVqELCyvufpP4Cba93O8XqrVrD28NmnyJ3gKlcyylle2MN24Mfu7kTtTUy7ha4Y9UKoo1srfwbiOja2qZet9kYGFZ4HV5nQ2cdYiq2jtyN7NcsLDk-pysyrRGSzedWYBnsuFZgcHfQvLaW6FZRPCWF_aIbeYcAOMJvz2Y-vesz3fBUu7ygiF271v3WyP3Kl_3lWHrtk4V0N1W7rP6T1ytzJa6NiQ7T7pqfwB-YlEozXRaEM0WhGN1kSjRUqvEA2HKqJRTTRqiEZfI83eAMmoJhmtSEYbktEspzXJaItkD8n3z59OP36xquYeluQ-Ky3HUUxKlvqunapoZMvYUwk61SKOYoGzwIVHFMM_t9NYRkHsCSdIXZ6IhMdcBvwR2c2LXD0h1Ev5yIcLPlY_ZFJEErR2WzkidWKZerJP3tbPOJRV5XtswDIPtQXsiRCxCR0WitDrk_1m8tIUfLl52ssarBA2ZDxli3JVrFch6Oug9Hv-iPfJYwNes1CNep_4HVibCVjsvXslz2a66Ltjcy5Auj7946LPyN72fXlOdsuLtXpBbstNma0uBmRHnPkD7XIaaKr-BgIxzpI
linkProvider ISSN International Centre
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+Learning+Algorithm+Detects+Presence+of+Disorganization+of+Retinal+Inner+Layers+%28DRIL%29-An+Early+Imaging+Biomarker+in+Diabetic+Retinopathy&rft.jtitle=Translational+vision+science+%26+technology&rft.au=Singh%2C+Rupesh&rft.au=Singuri%2C+Srinidhi&rft.au=Batoki%2C+Julia&rft.au=Lin%2C+Kimberly&rft.date=2023-07-06&rft.eissn=2164-2591&rft.volume=12&rft.issue=7&rft.spage=6&rft_id=info:doi/10.1167%2Ftvst.12.7.6&rft_id=info%3Apmid%2F37410472&rft.externalDocID=37410472
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2164-2591&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2164-2591&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2164-2591&client=summon