Computational methods for image reconstruction
Reconstructing images from indirect measurements is a central problem in many applications, including the subject of this special issue, quantitative susceptibility mapping (QSM). The process of image reconstruction typically requires solving an inverse problem that is ill‐posed and large‐scale and...
Saved in:
| Published in: | NMR in biomedicine Vol. 30; no. 4; pp. np - n/a |
|---|---|
| Main Authors: | , |
| Format: | Journal Article |
| Language: | English |
| Published: |
England
Wiley Subscription Services, Inc
01.04.2017
|
| Subjects: | |
| ISSN: | 0952-3480, 1099-1492, 1099-1492 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Reconstructing images from indirect measurements is a central problem in many applications, including the subject of this special issue, quantitative susceptibility mapping (QSM). The process of image reconstruction typically requires solving an inverse problem that is ill‐posed and large‐scale and thus challenging to solve. Although the research field of inverse problems is thriving and very active with diverse applications, in this part of the special issue we will focus on recent advances in inverse problems that are specific to deconvolution problems, the class of problems to which QSM belongs. We will describe analytic tools that can be used to investigate underlying ill‐posedness and apply them to the QSM reconstruction problem and the related extensively studied image deblurring problem. We will discuss state‐of‐the‐art computational tools and methods for image reconstruction, including regularization approaches and regularization parameter selection methods. We finish by outlining some of the current trends and future challenges. Copyright © 2016 John Wiley & Sons, Ltd.
We review analytical tools and state‐of‐the‐art computational tools for solving image reconstruction problems. By comparing quantitative susceptibility mapping (QSM) with the classic image‐deblurring problem, we show that a severe challenge for QSM reconstruction is to distinguish between noise and signal contributions in the data; therefore regularization methods are crucial. We survey some regularization approaches and regularization parameter selection methods and discuss efficient numerical implementations for large‐scale QSM problems. |
|---|---|
| AbstractList | Reconstructing images from indirect measurements is a central problem in many applications, including the subject of this special issue, quantitative susceptibility mapping (QSM). The process of image reconstruction typically requires solving an inverse problem that is ill-posed and large-scale and thus challenging to solve. Although the research field of inverse problems is thriving and very active with diverse applications, in this part of the special issue we will focus on recent advances in inverse problems that are specific to deconvolution problems, the class of problems to which QSM belongs. We will describe analytic tools that can be used to investigate underlying ill-posedness and apply them to the QSM reconstruction problem and the related extensively studied image deblurring problem. We will discuss state-of-the-art computational tools and methods for image reconstruction, including regularization approaches and regularization parameter selection methods. We finish by outlining some of the current trends and future challenges. We review analytical tools and state-of-the-art computational tools for solving image reconstruction problems. By comparing quantitative susceptibility mapping (QSM) with the classic image-deblurring problem, we show that a severe challenge for QSM reconstruction is to distinguish between noise and signal contributions in the data; therefore regularization methods are crucial. We survey some regularization approaches and regularization parameter selection methods and discuss efficient numerical implementations for large-scale QSM problems. Reconstructing images from indirect measurements is a central problem in many applications, including the subject of this special issue, quantitative susceptibility mapping (QSM). The process of image reconstruction typically requires solving an inverse problem that is ill-posed and large-scale and thus challenging to solve. Although the research field of inverse problems is thriving and very active with diverse applications, in this part of the special issue we will focus on recent advances in inverse problems that are specific to deconvolution problems, the class of problems to which QSM belongs. We will describe analytic tools that can be used to investigate underlying ill-posedness and apply them to the QSM reconstruction problem and the related extensively studied image deblurring problem. We will discuss state-of-the-art computational tools and methods for image reconstruction, including regularization approaches and regularization parameter selection methods. We finish by outlining some of the current trends and future challenges. Copyright © 2016 John Wiley & Sons, Ltd. Reconstructing images from indirect measurements is a central problem in many applications, including the subject of this special issue, quantitative susceptibility mapping (QSM). The process of image reconstruction typically requires solving an inverse problem that is ill‐posed and large‐scale and thus challenging to solve. Although the research field of inverse problems is thriving and very active with diverse applications, in this part of the special issue we will focus on recent advances in inverse problems that are specific to deconvolution problems, the class of problems to which QSM belongs. We will describe analytic tools that can be used to investigate underlying ill‐posedness and apply them to the QSM reconstruction problem and the related extensively studied image deblurring problem. We will discuss state‐of‐the‐art computational tools and methods for image reconstruction, including regularization approaches and regularization parameter selection methods. We finish by outlining some of the current trends and future challenges. Copyright © 2016 John Wiley & Sons, Ltd. We review analytical tools and state‐of‐the‐art computational tools for solving image reconstruction problems. By comparing quantitative susceptibility mapping (QSM) with the classic image‐deblurring problem, we show that a severe challenge for QSM reconstruction is to distinguish between noise and signal contributions in the data; therefore regularization methods are crucial. We survey some regularization approaches and regularization parameter selection methods and discuss efficient numerical implementations for large‐scale QSM problems. Reconstructing images from indirect measurements is a central problem in many applications, including the subject of this special issue, quantitative susceptibility mapping (QSM). The process of image reconstruction typically requires solving an inverse problem that is ill-posed and large-scale and thus challenging to solve. Although the research field of inverse problems is thriving and very active with diverse applications, in this part of the special issue we will focus on recent advances in inverse problems that are specific to deconvolution problems, the class of problems to which QSM belongs. We will describe analytic tools that can be used to investigate underlying ill-posedness and apply them to the QSM reconstruction problem and the related extensively studied image deblurring problem. We will discuss state-of-the-art computational tools and methods for image reconstruction, including regularization approaches and regularization parameter selection methods. We finish by outlining some of the current trends and future challenges. Copyright © 2016 John Wiley & Sons, Ltd.Reconstructing images from indirect measurements is a central problem in many applications, including the subject of this special issue, quantitative susceptibility mapping (QSM). The process of image reconstruction typically requires solving an inverse problem that is ill-posed and large-scale and thus challenging to solve. Although the research field of inverse problems is thriving and very active with diverse applications, in this part of the special issue we will focus on recent advances in inverse problems that are specific to deconvolution problems, the class of problems to which QSM belongs. We will describe analytic tools that can be used to investigate underlying ill-posedness and apply them to the QSM reconstruction problem and the related extensively studied image deblurring problem. We will discuss state-of-the-art computational tools and methods for image reconstruction, including regularization approaches and regularization parameter selection methods. We finish by outlining some of the current trends and future challenges. Copyright © 2016 John Wiley & Sons, Ltd. |
| Author | Chung, Julianne Ruthotto, Lars |
| Author_xml | – sequence: 1 givenname: Julianne surname: Chung fullname: Chung, Julianne email: jmchung@vt.edu organization: Virginia Tech – sequence: 2 givenname: Lars surname: Ruthotto fullname: Ruthotto, Lars organization: Emory University |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/27226213$$D View this record in MEDLINE/PubMed |
| BookMark | eNqN0U1LxDAQBuAgK-66Cv4CWfDipetk0rTpURe_wI-L95C2U-3SNmvSIvvvbd1VQRQ85fJkmHnffTZqbEOMHXGYcwA8a9J6LmQod9iEQ5IEPExwxCaQSAxEqGDM9r1fAoAKBe6xMcaIEXIxYfOFrVdda9rSNqaa1dS-2NzPCutmZW2eaeYos41vXZcN5IDtFqbydLh9p-zp6vJpcRPcPV7fLs7vgkwolAGXohAEQpAUOSIalKSSLDcJFSRBmNwoQgOoCg5FbIgwBZEqitOYR0JM2elm7MrZ1458q-vSZ1RVpiHbec2V4rEEGcI_KEaRinmsenrygy5t5_qzBxUrxDCKeK-Ot6pLa8r1yvVBuLX-zKwH8w3InPXeUaGzchNg60xZaQ56KEX3peihlO8Vvz58zvyFBhv6Vla0_tPph4v7D_8ONqSYNQ |
| CitedBy_id | crossref_primary_10_1049_ipr2_12270 crossref_primary_10_1002_mrm_30006 crossref_primary_10_1002_mrm_26627 crossref_primary_10_1109_TBME_2017_2749298 |
| Cites_doi | 10.1002/cmr.b.10083 10.1016/S0377-0427(00)00414-3 10.1088/0266-5611/10/6/003 10.1137/1.9781611972344 10.1137/S1064827599354147 10.1515/JIIP.2008.011 10.1137/140957433 10.1109/TIP.2011.2181401 10.1137/080732213 10.1137/S1064827596299767 10.1007/978-0-387-92920-0 10.1002/mrm.22187/full 10.6028/jres.049.044 10.1007/BF01941141 10.1137/100812938 10.1002/ima.20040 10.1887/0750304359 10.1016/0167-2789(92)90242-F 10.1137/040605412 10.1002/mrm.22334 10.1002/cmr.b.20034 10.1023/B:JMIV.0000011320.81911.38 10.1137/1.9780898717570 10.1016/j.neuroimage.2011.08.082 10.1016/j.cam.2013.07.023 10.1137/100809787 10.1007/s10543-010-0275-3 10.6028/NIST.IR.6131 10.1016/j.imavis.2007.06.005 10.1002/mrm.21828 10.1137/1.9780898718874 10.1007/b138659 10.1007/s10543-009-0239-7 10.1137/080725891 10.1016/j.apnum.2010.10.002 10.1016/j.cviu.2011.06.011 10.1007/BFb0010291 10.1137/1.9780898717877 10.1561/2200000016 10.1007/b98874 10.1137/1.9781611973228 10.1137/S0895479899345960 10.1002/nla.1934 10.1007/s11222-012-9333-9 10.1002/mrm.25358 10.1088/0266-5611/24/3/035001 10.1137/0702016 10.1137/1.9781611971484 10.1007/s002110050158 10.1016/j.sigpro.2010.02.025 10.1137/0714044 10.1145/355993.356000 10.1137/1034115 10.1016/j.neuroimage.2012.01.004 10.1088/0266-5611/24/3/034005 10.1145/355984.355989 10.1080/00401706.1979.10489751 10.1016/j.csda.2009.05.026 10.1109/TMI.2009.2023787 10.1364/JOSAA.26.002311 10.2307/2372313 10.1137/0917016 10.1002/mrm.24384 10.1137/0914086 10.2307/2965703 10.1016/j.acha.2007.09.003 10.1137/080720796 10.1016/j.acha.2010.11.005 10.1016/j.csda.2007.05.008 10.1137/9780898717792 10.1080/01621459.1984.10478083 10.1002/mrm.25029 10.1088/1742-6596/464/1/012005 10.1023/A:1022383005969 10.1007/s10851-010-0248-9 10.1137/0902037 10.1137/1.9780898718836 10.1137/130917673 10.1002/mrm.20054 10.1002/cmr.b.10083/abstract 10.1002/mrm.23000 10.1007/BF01731984 10.1137/S0036144500358232 10.1137/140975024 10.1137/050645592 10.1145/321105.321114 10.1214/aoms/1177703732 10.1088/0266-5611/25/2/025002 10.1137/05064182X |
| ContentType | Journal Article |
| Copyright | Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd. |
| Copyright_xml | – notice: Copyright © 2016 John Wiley & Sons, Ltd. – notice: Copyright © 2017 John Wiley & Sons, Ltd. |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QO 8FD FR3 K9. P64 7X8 |
| DOI | 10.1002/nbm.3545 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Biotechnology Research Abstracts Technology Research Database Engineering Research Database ProQuest Health & Medical Complete (Alumni) Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Health & Medical Complete (Alumni) Engineering Research Database Biotechnology Research Abstracts Technology Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
| DatabaseTitleList | Engineering Research Database MEDLINE ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic CrossRef |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine Chemistry Physics |
| EISSN | 1099-1492 |
| EndPage | n/a |
| ExternalDocumentID | 4320930129 27226213 10_1002_nbm_3545 NBM3545 |
| Genre | reviewArticle Journal Article Comparative Study Review |
| GroupedDBID | --- .3N .GA .Y3 05W 0R~ 10A 123 1L6 1OB 1OC 1ZS 31~ 33P 3SF 3WU 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52V 52W 52X 53G 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAHQN AAIPD AAMMB AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABPVW ABQWH ABXGK ACAHQ ACBWZ ACCZN ACFBH ACGFS ACGOF ACIWK ACMXC ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEFGJ AEIGN AEIMD AENEX AEUYR AEYWJ AFBPY AFFPM AFGKR AFRAH AFWVQ AFZJQ AGHNM AGQPQ AGXDD AGYGG AHBTC AIACR AIDQK AIDYY AIQQE AITYG AIURR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMXJE BROTX BRXPI BY8 CS3 D-6 D-7 D-E D-F DCZOG DPXWK DR2 DRFUL DRMAN DRSTM DU5 DUUFO EBD EBS EJD EMOBN F00 F01 F04 F5P FEDTE FUBAC G-S G.N GNP GODZA H.X HBH HF~ HGLYW HHY HHZ HVGLF HZ~ IX1 J0M JPC KBYEO LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M65 MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P2Z P4D PALCI Q.N Q11 QB0 QRW R.K RIWAO RJQFR ROL RX1 SAMSI SUPJJ SV3 UB1 V2E W8V W99 WBKPD WHWMO WIB WIH WIJ WIK WJL WOHZO WQJ WVDHM WXSBR XG1 XPP XV2 ZZTAW ~IA ~WT AAYXX CITATION O8X AAHHS ACCFJ AEEZP AEQDE AEUQT AFPWT AIWBW AJBDE CGR CUY CVF ECM EIF NPM RGB RWI WRC WUP 7QO 8FD FR3 K9. P64 7X8 |
| ID | FETCH-LOGICAL-c3825-153f3e033e53d222a25e89cda9efe503ada8e2a028f10f7aee2b03b8e7b71633 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 5 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000398100400014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0952-3480 1099-1492 |
| IngestDate | Tue Oct 07 09:42:37 EDT 2025 Thu Oct 02 10:03:46 EDT 2025 Sat Nov 29 14:56:13 EST 2025 Wed Feb 19 02:41:41 EST 2025 Tue Nov 18 22:08:45 EST 2025 Sat Nov 29 07:09:07 EST 2025 Tue Nov 11 03:11:08 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Keywords | deconvolution iterative methods linear inverse problems quantitative susceptibility mapping (QSM) ill-posed regularization total variation Tikhonov |
| Language | English |
| License | http://onlinelibrary.wiley.com/termsAndConditions#vor Copyright © 2016 John Wiley & Sons, Ltd. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c3825-153f3e033e53d222a25e89cda9efe503ada8e2a028f10f7aee2b03b8e7b71633 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Article-2 ObjectType-Feature-1 ObjectType-Review-3 content type line 23 |
| PMID | 27226213 |
| PQID | 1878224661 |
| PQPubID | 2029982 |
| PageCount | 13 |
| ParticipantIDs | proquest_miscellaneous_1881750540 proquest_miscellaneous_1826687178 proquest_journals_1878224661 pubmed_primary_27226213 crossref_citationtrail_10_1002_nbm_3545 crossref_primary_10_1002_nbm_3545 wiley_primary_10_1002_nbm_3545_NBM3545 |
| PublicationCentury | 2000 |
| PublicationDate | April 2017 2017-04-00 2017-Apr 20170401 |
| PublicationDateYYYYMMDD | 2017-04-01 |
| PublicationDate_xml | – month: 04 year: 2017 text: April 2017 |
| PublicationDecade | 2010 |
| PublicationPlace | England |
| PublicationPlace_xml | – name: England – name: Oxford |
| PublicationTitle | NMR in biomedicine |
| PublicationTitleAlternate | NMR Biomed |
| PublicationYear | 2017 |
| Publisher | Wiley Subscription Services, Inc |
| Publisher_xml | – name: Wiley Subscription Services, Inc |
| References | 2011; 115 2015; 37 2010; 54 2003; 19B 1995; 72 2004; 20 2013; 69 2013; 23 2012; 59 2005; 25B 1996; 36 2010; 63 1993; 3 2009; 49 2010; 62 2014; 21 1977 2014; 256 2001; 43 1965; 2 2007; 29 1997; 92 2000 2010; 29 2013; 13 2013; 12 2008; 28 2008; 25 2008; 26 1982; 8 2008; 24 2011; 67 2000; 123 1964; 35 2014; 7 1979; 21 2012; 21 1951; 73 2012; 62 2009; 25 2010; 31 1996; 17 2012 2011 2009; 61 2010 2013; 40 1981; 2 2008; 16 2011; 40 1998 2013; 464 2008 1997 2011; 30 1996 2011; 33 2006; 5 2007 2006 2005 1999; 20 1962; 9 2002 2007; 52 2001; 22 2001; 23 2011; 3 1992; 34 2009; 26 1999 1993; 14 2004; 51 1952; 49 1977; 14 2000; 32 1999; 39 1984; 79 1988; 28 2005; 4 2014; 36 2013 2005; 15 2014; 73 2009; 2 2014; 72 2010; 90 1992; 60 2010; 51 1923 2010; 50 1994; 10 e_1_2_9_75_1 e_1_2_9_98_1 e_1_2_9_52_1 e_1_2_9_79_1 e_1_2_9_94_1 e_1_2_9_10_1 e_1_2_9_56_1 e_1_2_9_33_1 e_1_2_9_90_1 e_1_2_9_71_1 e_1_2_9_103_1 e_1_2_9_14_1 e_1_2_9_37_1 e_1_2_9_18_1 e_1_2_9_41_1 e_1_2_9_64_1 e_1_2_9_87_1 Engl H (e_1_2_9_35_1) 2000 e_1_2_9_22_1 e_1_2_9_68_1 Wang Y (e_1_2_9_9_1) 2013 e_1_2_9_6_1 e_1_2_9_60_1 e_1_2_9_2_1 Chung J (e_1_2_9_70_1) 2008; 28 e_1_2_9_26_1 e_1_2_9_49_1 Rust BW (e_1_2_9_55_1) 2000; 32 e_1_2_9_30_1 e_1_2_9_72_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_57_1 e_1_2_9_95_1 e_1_2_9_76_1 e_1_2_9_91_1 Gazzola S (e_1_2_9_53_1) 2013; 40 Hadamard J (e_1_2_9_27_1) 1923 e_1_2_9_102_1 Golub GH (e_1_2_9_28_1) 1996 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_19_1 e_1_2_9_42_1 e_1_2_9_88_1 e_1_2_9_61_1 e_1_2_9_46_1 e_1_2_9_84_1 e_1_2_9_23_1 e_1_2_9_65_1 e_1_2_9_80_1 Hansen PC (e_1_2_9_5_1) 1997 Hanke M (e_1_2_9_25_1) 1993; 3 e_1_2_9_69_1 e_1_2_9_31_1 e_1_2_9_50_1 e_1_2_9_73_1 e_1_2_9_77_1 e_1_2_9_96_1 e_1_2_9_12_1 e_1_2_9_54_1 e_1_2_9_92_1 e_1_2_9_101_1 e_1_2_9_39_1 Van Den Doel K (e_1_2_9_83_1) 2013; 13 e_1_2_9_16_1 e_1_2_9_58_1 e_1_2_9_20_1 e_1_2_9_62_1 e_1_2_9_89_1 e_1_2_9_24_1 e_1_2_9_43_1 e_1_2_9_66_1 e_1_2_9_85_1 e_1_2_9_8_1 e_1_2_9_81_1 e_1_2_9_4_1 Tikhonov A (e_1_2_9_45_1) 1977 e_1_2_9_47_1 e_1_2_9_74_1 e_1_2_9_51_1 e_1_2_9_78_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_97_1 e_1_2_9_93_1 e_1_2_9_100_1 e_1_2_9_104_1 Calvetti D (e_1_2_9_99_1) 2007 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_59_1 e_1_2_9_63_1 e_1_2_9_40_1 e_1_2_9_21_1 e_1_2_9_67_1 e_1_2_9_44_1 e_1_2_9_86_1 e_1_2_9_7_1 e_1_2_9_82_1 e_1_2_9_3_1 e_1_2_9_48_1 e_1_2_9_29_1 |
| References_xml | – year: 2011 – volume: 7 start-page: 1669 issue: 3 year: 2014 end-page: 1689 article-title: Inverse problem in quantitative susceptibility mapping publication-title: SIAM J. Imaging Sci. – year: 2005 – volume: 25 start-page: 025 issue: 2 year: 2009 end-page: 002 article-title: A Newton root‐finding algorithm for estimating the regularization parameter for solving ill‐conditioned least‐squares problems publication-title: Inverse Probl. – volume: 72 start-page: 1444 issue: 5 year: 2014 end-page: 1459 article-title: Fast quantitative susceptibility mapping with L1‐regularization and automatic parameter selection publication-title: Magn. Reson. Med. – year: 1923 – volume: 2 start-page: 323 issue: 2 year: 2009 end-page: 343 article-title: The split Bregman method for L1‐regularized problems publication-title: SIAM J.ImagingSci. – volume: 54 start-page: 3430 issue: 12 year: 2010 end-page: 3445 article-title: Regularization parameter estimation for large‐scale Tikhonov regularization using a priori information publication-title: Comput. Stat. Data Anal. – volume: 14 start-page: 651 issue: 4 year: 1977 end-page: 667 article-title: Practical approximate solutions to linear operator equations when the data are noisy publication-title: SIAM J. Numer. Anal. – volume: 10 start-page: 1217 issue: 6 year: 1994 end-page: 1229 article-title: Analysis of bounded variation penalty methods for ill‐posed problems publication-title: Inverse Problems – year: 1998 – volume: 26 start-page: 302 issue: 2 year: 2008 end-page: 314 article-title: Total variation semi‐blind deconvolution using shock filters publication-title: Image Vis. Comput. – volume: 34 start-page: 561 issue: 4 year: 1992 end-page: 580 article-title: Analysis of discrete ill‐posed problems by means of the L‐curve publication-title: SIAM Rev. – volume: 13 start-page: 181 issue: 25 year: 2013 end-page: 203 article-title: The lost honor of l2‐based regularization publication-title: Radon Ser. Comput. Appl. Math. – volume: 19B start-page: 26 issue: 1 year: 2003 end-page: 34 article-title: A fast calculation method for magnetic field inhomogeneity due to an arbitrary distribution of bulk susceptibility publication-title: Concepts Magn. Reson. Part B: Magn. Reson. Eng. – volume: 63 start-page: 1292 issue: 5 year: 2010 end-page: 1304 article-title: Susceptibility mapping in the human brain using threshold‐based k‐space division publication-title: Magn. Reson. Med. – volume: 51 start-page: 1077 issue: 5 year: 2010 end-page: 1082 article-title: Quantitative susceptibility map reconstruction from MR phase data using Bayesian regularization: Validation and application to brain imaging publication-title: Magn. Reson. Med. – volume: 40 start-page: 452 year: 2013 end-page: 475 article-title: Multi‐parameter Arnoldi‐Tikhonov methods publication-title: Electron. Trans. Numer. Anal. – year: 2008 – volume: 50 start-page: 481 issue: 3 year: 2010 end-page: 507 article-title: GKB‐FP: an algorithm for large‐scale discrete ill‐posed problems publication-title: BIT Numer. Math. – volume: 28 start-page: 659 issue: 3 year: 1988 end-page: 670 article-title: A bidiagonalization algorithm for solving large and sparse ill‐posed systems of linear equations publication-title: BIT Numer.Math. – start-page: 171 year: 2000 end-page: 186 – volume: 31 start-page: 4654 issue: 6 year: 2010 end-page: 4674 article-title: An efficient iterative approach for large‐scale separable nonlinear inverse problems publication-title: SIAM J. Sci. Comput. – volume: 464 year: 2013 article-title: Iterative choice of the optimal regularization parameter in TV image deconvolution publication-title: J. Phys. Conf. Ser. – volume: 40 start-page: 120 issue: 1 year: 2011 end-page: 145 article-title: A First‐order primal‐dual algorithm for convex problems withapplications to imaging publication-title: J. Math. Imaging Vision – volume: 73 start-page: 615 issue: 3 year: 1951 end-page: 624 article-title: An iteration formula for Fredholm integral equations of the first kind publication-title: Am. J. Math. – year: 2007 – volume: 20 start-page: 1964 issue: 6 year: 1999 end-page: 1977 article-title: A nonlinear primal‐dual method for total variation‐based image restoration publication-title: SIAM J. Sci. Comput. – volume: 14 start-page: 1487 issue: 6 year: 1993 end-page: 1503 article-title: The use of the L‐curve in the regularization of discrete ill‐posed problems publication-title: SIAM J. Sci. Comput. – volume: 29 start-page: 273 issue: 2 year: 2010 end-page: 281 article-title: Nonlinear regularization for per voxel estimation of magnetic susceptibility distributions from MRI field maps. IEEE Trans. Med publication-title: Imaging – volume: 51 start-page: 1077 issue: 5 year: 2004 end-page: 1082 article-title: Quantifying arbitrary magnetic susceptibility distributions with MR publication-title: Magn. Reson. Med. – volume: 79 start-page: 575 issue: 387 year: 1984 end-page: 583 article-title: Cross‐validation of regression models publication-title: J. Am. Stat. Assoc. – year: 2010 – volume: 59 start-page: 2560 issue: 3 year: 2012 end-page: 2568 article-title: Morphology enabled dipole inversion for quantitative susceptibility mapping using structural consistency between the magnitude image and the susceptibility map publication-title: NeuroImage – volume: 16 start-page: 175 issue: 2 year: 2008 end-page: 193 article-title: A priori weighting for parameter estimation publication-title: J. Inverse Ill‐posed Probl. – volume: 36 start-page: B225 issue: 2 year: 2014 end-page: B247 article-title: Generalized Arnoldi–Tikhonov method for sparse reconstruction publication-title: SIAM J. Sci. Comput. – volume: 5 start-page: 861 issue: 3 year: 2006 end-page: 899 article-title: Fast discrete curvelet transforms publication-title: Multiscale Model. Simul. – volume: 69 start-page: 1396 issue: 5 year: 2013 end-page: 1407 article-title: Improving susceptibility mapping using a threshold‐based K‐space/image domain iterative reconstruction approach publication-title: Magn. Reson. Med. – volume: 32 start-page: 333 year: 2000 end-page: 347 article-title: Parameter selection for constrained solutions to ill‐posed problems publication-title: Comput. Sci. Stat. – volume: 21 start-page: 215 issue: 2 year: 1979 end-page: 223 article-title: Generalized cross‐validation as a method for choosing a good ridge parameter publication-title: Technometrics – volume: 21 start-page: 1770 issue: 4 year: 2012 end-page: 1781 article-title: Parameter selection for total‐variation‐based image restoration using discrepancy principle publication-title: IEEE Trans. Image Process. – year: 2002 – volume: 24 start-page: 034 issue: 3 year: 2008 end-page: 005 article-title: Residual periodograms for choosing regularization parameters for ill‐posed problems publication-title: Inverse Probl. – volume: 30 start-page: 407 issue: 3 year: 2011 end-page: 422 article-title: The projected GSURE for automatic parameter tuning in iterative shrinkage methods publication-title: Appl. Comput. Harmonic Anal. – volume: 37 start-page: 544 issue: 5 year: 2015 end-page: 561 article-title: A hybrid LSMR algorithm for large‐scale Tikhonov regularization publication-title: SIAM J. Sci. Comput. – volume: 33 start-page: 3132 issue: 6 year: 2011 end-page: 3152 article-title: Designing optimal filters for ill‐posed inverse problems publication-title: SIAM J. Sci. Comput. – volume: 17 start-page: 227 issue: 1 year: 1996 end-page: 238 article-title: Iterative methods for total variation denoising publication-title: SIAM J. Sci. Comput. – volume: 21 start-page: 796 issue: 6 year: 2014 end-page: 812 article-title: Embedded techniques for choosing the parameter in Tikhonov regularization publication-title: Numer. Linear Algebra Appl. – volume: 8 start-page: 195 issue: 2 year: 1982 end-page: 209 article-title: Algorithm 583, LSQR: Sparse linear equations and least‐squares problems publication-title: ACM Trans.Math.Soft. – volume: 92 start-page: 548 issue: 438 year: 1997 end-page: 560 article-title: Improvements on cross‐validation: the 632+ bootstrap method publication-title: J. Am. Stat. Assoc. – volume: 12 year: 2013 – year: 2013 – volume: 3 start-page: 253 year: 1993 end-page: 315 article-title: Regularization methods for large‐scale problems publication-title: Surv. Math. Ind. – volume: 62 start-page: 1215 issue: 9 year: 2010 end-page: 1228 article-title: Tikhonov regularization based on generalized Krylov subspace methods publication-title: Appl. Numer. Math. – volume: 256 start-page: 180 year: 2014 end-page: 195 article-title: Automatic parameter setting for Arnoldi–Tikhonov methods publication-title: J. Comput. Appl. Math. – volume: 24 start-page: 035 issue: 3 year: 2008 end-page: 001 article-title: Fixed‐point iterations in determining the Tikhonov regularization parameter publication-title: Inverse Problems – volume: 29 start-page: 315 year: 2007 end-page: 330 article-title: A projection‐based approach to general‐form Tikhonov regularization publication-title: SIAM J. Sci. Comput. – volume: 49 start-page: 409 issue: 6 year: 1952 end-page: 436 article-title: Methods of conjugate gradients for solving linear systems publication-title: J. Res. Natl. Bur. Stand. – volume: 40 start-page: 82 issue: 1 year: 2011 end-page: 104 article-title: Automated regularization parameter selection in multi‐scale total variation models for image restoration publication-title: J. Math. Imaging Vision – volume: 15 start-page: 74 year: 2005 end-page: 83 article-title: Blind deconvolution using TV regularization and Bregman iteration publication-title: Int. J. Imaging Syst. Technol. – volume: 33 start-page: 3175 issue: 6 year: 2011 end-page: 3200 article-title: Windowed spectral regularization of inverse problems publication-title: SIAM J. Sci. Comput. – volume: 123 start-page: 423 issue: 1–2 year: 2000 end-page: 446 article-title: Tikhonov regularization and the L‐curve for large discrete ill‐posed problems publication-title: J. Comput. Appl. Math. – volume: 60 start-page: 259 issue: 1–4 year: 1992 end-page: 268 article-title: Nonlinear total variation based noise removal algorithms publication-title: Phys.D – year: 1997 – volume: 20 start-page: 89 issue: 1–2 year: 2004 end-page: 97 article-title: An algorithm for total variation minimization and applications publication-title: J. Math. Imaging Vision – volume: 23 start-page: 601 issue: 5 year: 2013 end-page: 614 article-title: A tutorial on rank‐based coefficient estimation for censored data in small‐and large‐scale problems publication-title: Stat. Comput. – volume: 8 start-page: 43 issue: 1 year: 1982 end-page: 71 article-title: LSQR: An algorithm for sparse linear equations and sparse least squares publication-title: ACM Trans.Math.Soft. – volume: 2 start-page: 253 issue: 1 year: 2009 end-page: 283 article-title: Image deconvolution using a general ridgelet and curvelet domain publication-title: SIAM J. Imaging Sci. – volume: 22 start-page: 1204 year: 2001 end-page: 1221 article-title: Choosing regularization parameters in iterative methods for ill‐posed problems publication-title: SIAM J. Matrix Anal. Appl. – volume: 3 start-page: 1 issue: 1 year: 2011 end-page: 122 article-title: Distributed optimization and statistical learning via the alternating direction method of multipliers publication-title: Foundations and Trends® in Machine Learning – volume: 2 start-page: 474 issue: 4 year: 1981 end-page: 489 article-title: A bidiagonalization‐regularization procedure for large scale discretizations of ill‐posed problems publication-title: SIAM J.Sci.Comput. – volume: 52 start-page: 1119 issue: 2 year: 2007 end-page: 1131 article-title: O'Leary DP. Fast robust regression algorithms for problems with Toeplitz structure. Comput. Stat publication-title: Data Anal. – volume: 115 start-page: 1610 issue: 12 year: 2011 end-page: 1622 article-title: Composite splitting algorithms for convex optimization publication-title: Comput. Vision Image Underst. – volume: 73 start-page: 82 issue: 1 year: 2014 end-page: 101 article-title: Quantitative susceptibility mapping (QSM): Decoding MRI data for a tissue magnetic biomarker publication-title: Magn. Reson. Med. – volume: 23 start-page: 1161 issue: 4 year: 2001 end-page: 1171 article-title: Near‐optimal parameters for Tikhonov and other regularization methods publication-title: SIAM J. Sci. Comput. – volume: 25B start-page: 65 issue: 1 year: 2005 end-page: 78 article-title: Application of a Fourier‐based method for rapid calculation of field inhomogeneity due to spatial variation of magnetic susceptibility publication-title: Concepts Magn. Reson. Part B: Magn. Reson. Eng. – volume: 9 start-page: 84 issue: 1 year: 1962 end-page: 97 article-title: A technique for the numerical solution of certain integral equations of the first kind publication-title: J. ACM (JACM) – year: 1996 – year: 2000 – volume: 26 start-page: 2311 issue: 11 year: 2009 end-page: 2320 article-title: Selection of regularization parameter in total variation image restoration publication-title: JOSA A – volume: 90 start-page: 2546 issue: 8 year: 2010 end-page: 2551 article-title: UPRE method for total variation parameter selection publication-title: Signal Process. – volume: 28 start-page: 149 year: 2008 end-page: 167 article-title: A weighted GCV method for Lanczos hybrid regularization publication-title: Elec.Trans.Numer.Anal. – year: 1977 – volume: 49 start-page: 669 issue: 4 year: 2009 end-page: 696 article-title: The regularizing effect of the Golub–Kahan iterative bidiagonalization and revealing the noise level in the data publication-title: BIT Numer. Math. – volume: 61 start-page: 196 issue: 1 year: 2009 end-page: 204 article-title: Calculation of susceptibility through multiple orientation sampling (COSMOS): A method for conditioning the inverse problem from measured magnetic field map to susceptibility source image in MRI publication-title: Magn. Reson. Med. – volume: 4 start-page: 460 issue: 2 year: 2005 end-page: 489 article-title: An iterative regularization method for total variation‐based image restoration publication-title: Multiscale Modeling & Simulation – year: 2012 – volume: 25 start-page: 25 issue: 1 year: 2008 end-page: 46 article-title: Sparse directional image representations using the discrete shearlet transform publication-title: Appl. Comput. Harmonic Anal. – volume: 62 start-page: 1311 issue: 2 year: 2012 end-page: 1315 article-title: The future of susceptibility contrast for assessment of anatomy and function publication-title: NeuroImage – year: 2006 – volume: 72 start-page: 21 issue: 1 year: 1995 end-page: 37 article-title: A convergence analysis of the Landweber iteration for nonlinear ill‐posed problems publication-title: Numer. Math. – volume: 36 start-page: 287 issue: 2 year: 1996 end-page: 301 article-title: Limitations of the L‐curve method in ill‐posed problems publication-title: BIT Numer. Math. – volume: 35 start-page: 73 issue: 1 year: 1964 end-page: 101 article-title: Robust estimation of a location parameter publication-title: Ann. Math. Stat. – volume: 43 start-page: 347 issue: 2 year: 2001 end-page: 366 article-title: Statistical regularization of inverse problems publication-title: SIAM Rev. – volume: 67 start-page: 137 issue: 1 year: 2011 end-page: 147 article-title: Whole brain susceptibility mapping using compressed sensing publication-title: Magn. Reson. Med. – volume: 39 start-page: 603 issue: 4 year: 1999 end-page: 619 article-title: Estimation of the L‐curve via Lanczos bidiagonalization publication-title: BIT Numer. Math. – volume: 2 start-page: 205 issue: 2 year: 1965 end-page: 224 article-title: Calculating the singular values and pseudo‐inverse of a matrix publication-title: J. Soc. Ind. Appl. Math., Ser. B: Numer. Anal. – year: 1999 – volume: 3 start-page: 253 year: 1993 ident: e_1_2_9_25_1 article-title: Regularization methods for large‐scale problems publication-title: Surv. Math. Ind. – ident: e_1_2_9_22_1 doi: 10.1002/cmr.b.10083 – ident: e_1_2_9_78_1 doi: 10.1016/S0377-0427(00)00414-3 – ident: e_1_2_9_92_1 doi: 10.1088/0266-5611/10/6/003 – ident: e_1_2_9_7_1 doi: 10.1137/1.9781611972344 – ident: e_1_2_9_66_1 doi: 10.1137/S1064827599354147 – ident: e_1_2_9_57_1 doi: 10.1515/JIIP.2008.011 – ident: e_1_2_9_10_1 doi: 10.1137/140957433 – ident: e_1_2_9_48_1 doi: 10.1109/TIP.2011.2181401 – ident: e_1_2_9_103_1 doi: 10.1137/080732213 – volume-title: An Introduction to Bayesian Scientific Computing: Ten Lectures on Subjective Computing, Volume2 year: 2007 ident: e_1_2_9_99_1 – ident: e_1_2_9_85_1 doi: 10.1137/S1064827596299767 – ident: e_1_2_9_102_1 doi: 10.1007/978-0-387-92920-0 – ident: e_1_2_9_12_1 doi: 10.1002/mrm.22187/full – ident: e_1_2_9_41_1 doi: 10.6028/jres.049.044 – ident: e_1_2_9_69_1 doi: 10.1007/BF01941141 – ident: e_1_2_9_31_1 doi: 10.1137/100812938 – ident: e_1_2_9_104_1 doi: 10.1002/ima.20040 – ident: e_1_2_9_2_1 doi: 10.1887/0750304359 – ident: e_1_2_9_46_1 doi: 10.1016/0167-2789(92)90242-F – ident: e_1_2_9_88_1 doi: 10.1137/040605412 – volume: 32 start-page: 333 year: 2000 ident: e_1_2_9_55_1 article-title: Parameter selection for constrained solutions to ill‐posed problems publication-title: Comput. Sci. Stat. – ident: e_1_2_9_16_1 doi: 10.1002/mrm.22334 – ident: e_1_2_9_23_1 doi: 10.1002/cmr.b.20034 – ident: e_1_2_9_87_1 doi: 10.1023/B:JMIV.0000011320.81911.38 – ident: e_1_2_9_26_1 doi: 10.1137/1.9780898717570 – volume-title: Matrix Computations, Volume3 year: 1996 ident: e_1_2_9_28_1 – ident: e_1_2_9_18_1 doi: 10.1016/j.neuroimage.2011.08.082 – ident: e_1_2_9_79_1 doi: 10.1016/j.cam.2013.07.023 – ident: e_1_2_9_30_1 doi: 10.1137/100809787 – ident: e_1_2_9_76_1 doi: 10.1007/s10543-010-0275-3 – ident: e_1_2_9_33_1 doi: 10.6028/NIST.IR.6131 – ident: e_1_2_9_47_1 doi: 10.1016/j.imavis.2007.06.005 – ident: e_1_2_9_14_1 doi: 10.1002/mrm.21828 – ident: e_1_2_9_4_1 doi: 10.1137/1.9780898718874 – volume-title: Quantitative Susceptibility Mapping: Magnetic Resonance Imaging of Tissue Magnetism year: 2013 ident: e_1_2_9_9_1 – ident: e_1_2_9_34_1 doi: 10.1007/b138659 – ident: e_1_2_9_72_1 doi: 10.1007/s10543-009-0239-7 – ident: e_1_2_9_89_1 doi: 10.1137/080725891 – ident: e_1_2_9_73_1 doi: 10.1016/j.apnum.2010.10.002 – ident: e_1_2_9_52_1 doi: 10.1016/j.cviu.2011.06.011 – ident: e_1_2_9_32_1 doi: 10.1007/BFb0010291 – volume-title: Regularization of Inverse Problems year: 2000 ident: e_1_2_9_35_1 – ident: e_1_2_9_37_1 doi: 10.1137/1.9780898717877 – ident: e_1_2_9_93_1 doi: 10.1561/2200000016 – ident: e_1_2_9_94_1 doi: 10.1007/b98874 – ident: e_1_2_9_100_1 doi: 10.1137/1.9781611973228 – ident: e_1_2_9_71_1 doi: 10.1137/S0895479899345960 – ident: e_1_2_9_80_1 doi: 10.1002/nla.1934 – ident: e_1_2_9_36_1 doi: 10.1007/s11222-012-9333-9 – ident: e_1_2_9_21_1 doi: 10.1002/mrm.25358 – ident: e_1_2_9_65_1 doi: 10.1088/0266-5611/24/3/035001 – volume: 28 start-page: 149 year: 2008 ident: e_1_2_9_70_1 article-title: A weighted GCV method for Lanczos hybrid regularization publication-title: Elec.Trans.Numer.Anal. – ident: e_1_2_9_67_1 doi: 10.1137/0702016 – ident: e_1_2_9_42_1 doi: 10.1137/1.9781611971484 – ident: e_1_2_9_43_1 doi: 10.1007/s002110050158 – ident: e_1_2_9_62_1 doi: 10.1016/j.sigpro.2010.02.025 – ident: e_1_2_9_63_1 doi: 10.1137/0714044 – ident: e_1_2_9_40_1 doi: 10.1145/355993.356000 – ident: e_1_2_9_60_1 doi: 10.1137/1034115 – ident: e_1_2_9_8_1 doi: 10.1016/j.neuroimage.2012.01.004 – ident: e_1_2_9_56_1 doi: 10.1088/0266-5611/24/3/034005 – volume: 13 start-page: 181 issue: 25 year: 2013 ident: e_1_2_9_83_1 article-title: The lost honor of l2‐based regularization publication-title: Radon Ser. Comput. Appl. Math. – ident: e_1_2_9_39_1 doi: 10.1145/355984.355989 – ident: e_1_2_9_54_1 doi: 10.1080/00401706.1979.10489751 – ident: e_1_2_9_77_1 doi: 10.1016/j.csda.2009.05.026 – ident: e_1_2_9_15_1 doi: 10.1109/TMI.2009.2023787 – ident: e_1_2_9_97_1 doi: 10.1364/JOSAA.26.002311 – ident: e_1_2_9_6_1 doi: 10.1137/1.9780898718874 – ident: e_1_2_9_38_1 doi: 10.2307/2372313 – ident: e_1_2_9_84_1 doi: 10.1137/0917016 – ident: e_1_2_9_19_1 doi: 10.1002/mrm.24384 – ident: e_1_2_9_59_1 doi: 10.1137/0914086 – ident: e_1_2_9_86_1 doi: 10.1023/B:JMIV.0000011320.81911.38 – ident: e_1_2_9_64_1 doi: 10.2307/2965703 – ident: e_1_2_9_51_1 doi: 10.1016/j.acha.2007.09.003 – ident: e_1_2_9_50_1 doi: 10.1137/080720796 – ident: e_1_2_9_98_1 doi: 10.1016/j.acha.2010.11.005 – ident: e_1_2_9_91_1 doi: 10.1016/j.csda.2007.05.008 – ident: e_1_2_9_3_1 doi: 10.1137/9780898717792 – ident: e_1_2_9_29_1 doi: 10.1080/01621459.1984.10478083 – ident: e_1_2_9_20_1 doi: 10.1002/mrm.25029 – ident: e_1_2_9_95_1 doi: 10.1088/1742-6596/464/1/012005 – ident: e_1_2_9_75_1 doi: 10.1023/A:1022383005969 – ident: e_1_2_9_96_1 doi: 10.1007/s10851-010-0248-9 – ident: e_1_2_9_68_1 doi: 10.1137/0902037 – ident: e_1_2_9_24_1 doi: 10.1137/1.9780898718836 – ident: e_1_2_9_81_1 doi: 10.1137/130917673 – ident: e_1_2_9_11_1 doi: 10.1002/mrm.20054 – ident: e_1_2_9_13_1 doi: 10.1002/cmr.b.10083/abstract – ident: e_1_2_9_17_1 doi: 10.1002/mrm.23000 – ident: e_1_2_9_61_1 doi: 10.1007/BF01731984 – ident: e_1_2_9_101_1 doi: 10.1137/S0036144500358232 – ident: e_1_2_9_74_1 doi: 10.1137/140975024 – ident: e_1_2_9_82_1 doi: 10.1137/050645592 – ident: e_1_2_9_44_1 doi: 10.1145/321105.321114 – volume-title: Solution of Ill‐Posed Problems year: 1977 ident: e_1_2_9_45_1 – volume-title: Lectures on Cauchy's Problem in Linear Differential Equations year: 1923 ident: e_1_2_9_27_1 – ident: e_1_2_9_90_1 doi: 10.1214/aoms/1177703732 – volume-title: Rank‐Deficient and Discrete Ill‐Posed Problems year: 1997 ident: e_1_2_9_5_1 – volume: 40 start-page: 452 year: 2013 ident: e_1_2_9_53_1 article-title: Multi‐parameter Arnoldi‐Tikhonov methods publication-title: Electron. Trans. Numer. Anal. – ident: e_1_2_9_58_1 doi: 10.1088/0266-5611/25/2/025002 – ident: e_1_2_9_49_1 doi: 10.1137/05064182X |
| SSID | ssj0008432 |
| Score | 2.209744 |
| SecondaryResourceType | review_article |
| Snippet | Reconstructing images from indirect measurements is a central problem in many applications, including the subject of this special issue, quantitative... |
| SourceID | proquest pubmed crossref wiley |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | np |
| SubjectTerms | Algorithms Animals Brain - anatomy & histology Brain - physiology Brain Mapping - methods deconvolution Diffusion Magnetic Resonance Imaging - methods Humans ill‐posed Image Enhancement - methods Image Interpretation, Computer-Assisted - methods iterative methods linear inverse problems Models, Biological quantitative susceptibility mapping (QSM) regularization Reproducibility of Results Sensitivity and Specificity Tikhonov total variation |
| Title | Computational methods for image reconstruction |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fnbm.3545 https://www.ncbi.nlm.nih.gov/pubmed/27226213 https://www.proquest.com/docview/1878224661 https://www.proquest.com/docview/1826687178 https://www.proquest.com/docview/1881750540 |
| Volume | 30 |
| WOSCitedRecordID | wos000398100400014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1099-1492 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0008432 issn: 0952-3480 databaseCode: DRFUL dateStart: 19960101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1LS8NAEIAHbX1dfNRXtJYIoqe0yW7SbI5aLR7aIlKlt7Cb7ELBpmLU3-9sXlh8IHjKIZOwzOzOfrOPGYCzWDlUBBipckmU5UYOs4RymSVjFTEZMI9kt_gfB_5oxCaT4K44VanvwuT5IaoFNz0yMn-tBzgXaedT0lAxa1Oc_5ehTrDbejWoX9_3HwaVH2ZuVp4MGYJY1GV2mXrWJp3y28XJ6AthLgJrNuP0t_7T1m3YLDjTvMw7xg4syaQB672yvFsD1obFrnoDVrNjoFG6C-28yEOxQGjm5aVTE8HWnM7Q85hZ_FzlnN2Dcf9m3Lu1iooKVkQxFLTQvSkqbUqlR2MkA048yYIo5oFU0rMpjzmThCNzKMdWPpeSCJsKJn2BcRWl-1BL5ok8BJOKrstVIOzYjl2Xdnng8S4jgYgQKVVMDLgoNRtGRbZxXfTiKczzJJMQdRJqnRhwWkk-5xk2vpFplsYJizGWhg7TdOMiYOAvqteoRb3lwRM5f9MyCCAYE_rsNxmGDKXR1YCD3PBVQ4iPeEocasB5Zt8fWxiOrob6efRXwWPYIJoQskNATaih5eQJrETvr9P0pQXL_oS1ih79Afwa9vU |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1ZS8QwEICH9fbFY73Ws4LoU9c2SbcpPunqotgtIqvsW0naBAR3V1z19zvpheKB4FMfOi0hM5l8k2MG4CDVLpUBRqpCEW2zxOW21IzbKtUJVwH3SHaL_z70o4j3-8FNDU7KuzB5fohqwc2MjMxfmwFuFqSPP2QNlYMmRQCYgCmGVoTmPXV-27kLK0fMWVafDCGC2JRxp8w965Dj8tvPs9EXxPxMrNmU01n8V2OXYKEgTes0N41lqKlhHebaZYG3Osx2i331OsxkB0GT8Qo08zIPxRKhlReYHluIttbDAH2PlUXQVdbZVeh1LnrtS7uoqWAnFINBGx2cpsqhVHk0RTYQxFM8SFIRKK08h4pUcEUEUod2He0LpYh0qOTKlxhZUboGk8PRUG2ARWWLCR1IJ3VSxmhLBJ5ocRLIBKFSp6QBR2XXxkmRb9yUvXiM80zJJMY-iU2fNGC_knzKc2x8I7NdaicuRtk4drnhG4aIgb-oXmMvmk0PMVSjVyODCIJRoc9_k-FIUQZeG7Cea75qCPERUIlLG3CYKfjHFsbRWdc8N_8quAdzl71uGIdX0fUWzBPDC9mRoG2YRC2qHZhO3l4exs-7hWG_A_XO-f0 |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3ZS_QwEMAHXc8Xj_Vazwry-VRtk3Sb4pPXorguIvqxbyVpJiDoKq769zvphaJ-fOBTHzotYSaZ_CbHDMCOsSHXCUWqCpn1RRZKX1shfTQ2k5jIiOW3-P92415P9vvJ1QgcVHdhivwQ9YKbGxm5v3YDHJ-M3f-QNVQ_7HECgFEYE66GTAPGTq47t93aEUuR1ycjiGA-FzKocs8GbL_69vNs9AUxPxNrPuV0Zn_V2DmYKUnTOyy6xjyM4KAJU8dVgbcmTF6W--pNmMgPgmbDBdgryjyUS4ReUWB66BHaencP5Hu8PIKus84uwk3n9Ob4zC9rKvgZp2DQJwdnOQacY8QNsYFiEcokMypBi1HAlVESmSLqsGFgY4XIdMC1xFhTZMX5EjQGjwNcAY_rtlA20YEJjBC8rZJItSVLdEZQaQ1rwW6l2jQr8427shf3aZEpmaWkk9TppAXbteRTkWPjG5n1yjppOcqGaSgd3whCDPpF_Zq06DY91AAfX50MIQhFhbH8l4wkinLw2oLlwvJ1Q1hMgMpC3oI_uYF_bGHaO7p0z9X_FdyCyauTTto9712swTRzuJCfCFqHBhkRN2A8e3u5Gz5vlv36HYmQ-Xg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Computational+methods+for+image+reconstruction&rft.jtitle=NMR+in+biomedicine&rft.au=Chung%2C+Julianne&rft.au=Ruthotto%2C+Lars&rft.date=2017-04-01&rft.eissn=1099-1492&rft.volume=30&rft.issue=4&rft_id=info:doi/10.1002%2Fnbm.3545&rft_id=info%3Apmid%2F27226213&rft.externalDocID=27226213 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0952-3480&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0952-3480&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0952-3480&client=summon |