Computational methods for image reconstruction

Reconstructing images from indirect measurements is a central problem in many applications, including the subject of this special issue, quantitative susceptibility mapping (QSM). The process of image reconstruction typically requires solving an inverse problem that is ill‐posed and large‐scale and...

Full description

Saved in:
Bibliographic Details
Published in:NMR in biomedicine Vol. 30; no. 4; pp. np - n/a
Main Authors: Chung, Julianne, Ruthotto, Lars
Format: Journal Article
Language:English
Published: England Wiley Subscription Services, Inc 01.04.2017
Subjects:
ISSN:0952-3480, 1099-1492, 1099-1492
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Reconstructing images from indirect measurements is a central problem in many applications, including the subject of this special issue, quantitative susceptibility mapping (QSM). The process of image reconstruction typically requires solving an inverse problem that is ill‐posed and large‐scale and thus challenging to solve. Although the research field of inverse problems is thriving and very active with diverse applications, in this part of the special issue we will focus on recent advances in inverse problems that are specific to deconvolution problems, the class of problems to which QSM belongs. We will describe analytic tools that can be used to investigate underlying ill‐posedness and apply them to the QSM reconstruction problem and the related extensively studied image deblurring problem. We will discuss state‐of‐the‐art computational tools and methods for image reconstruction, including regularization approaches and regularization parameter selection methods. We finish by outlining some of the current trends and future challenges. Copyright © 2016 John Wiley & Sons, Ltd. We review analytical tools and state‐of‐the‐art computational tools for solving image reconstruction problems. By comparing quantitative susceptibility mapping (QSM) with the classic image‐deblurring problem, we show that a severe challenge for QSM reconstruction is to distinguish between noise and signal contributions in the data; therefore regularization methods are crucial. We survey some regularization approaches and regularization parameter selection methods and discuss efficient numerical implementations for large‐scale QSM problems.
AbstractList Reconstructing images from indirect measurements is a central problem in many applications, including the subject of this special issue, quantitative susceptibility mapping (QSM). The process of image reconstruction typically requires solving an inverse problem that is ill-posed and large-scale and thus challenging to solve. Although the research field of inverse problems is thriving and very active with diverse applications, in this part of the special issue we will focus on recent advances in inverse problems that are specific to deconvolution problems, the class of problems to which QSM belongs. We will describe analytic tools that can be used to investigate underlying ill-posedness and apply them to the QSM reconstruction problem and the related extensively studied image deblurring problem. We will discuss state-of-the-art computational tools and methods for image reconstruction, including regularization approaches and regularization parameter selection methods. We finish by outlining some of the current trends and future challenges. We review analytical tools and state-of-the-art computational tools for solving image reconstruction problems. By comparing quantitative susceptibility mapping (QSM) with the classic image-deblurring problem, we show that a severe challenge for QSM reconstruction is to distinguish between noise and signal contributions in the data; therefore regularization methods are crucial. We survey some regularization approaches and regularization parameter selection methods and discuss efficient numerical implementations for large-scale QSM problems.
Reconstructing images from indirect measurements is a central problem in many applications, including the subject of this special issue, quantitative susceptibility mapping (QSM). The process of image reconstruction typically requires solving an inverse problem that is ill-posed and large-scale and thus challenging to solve. Although the research field of inverse problems is thriving and very active with diverse applications, in this part of the special issue we will focus on recent advances in inverse problems that are specific to deconvolution problems, the class of problems to which QSM belongs. We will describe analytic tools that can be used to investigate underlying ill-posedness and apply them to the QSM reconstruction problem and the related extensively studied image deblurring problem. We will discuss state-of-the-art computational tools and methods for image reconstruction, including regularization approaches and regularization parameter selection methods. We finish by outlining some of the current trends and future challenges. Copyright © 2016 John Wiley & Sons, Ltd.
Reconstructing images from indirect measurements is a central problem in many applications, including the subject of this special issue, quantitative susceptibility mapping (QSM). The process of image reconstruction typically requires solving an inverse problem that is ill‐posed and large‐scale and thus challenging to solve. Although the research field of inverse problems is thriving and very active with diverse applications, in this part of the special issue we will focus on recent advances in inverse problems that are specific to deconvolution problems, the class of problems to which QSM belongs. We will describe analytic tools that can be used to investigate underlying ill‐posedness and apply them to the QSM reconstruction problem and the related extensively studied image deblurring problem. We will discuss state‐of‐the‐art computational tools and methods for image reconstruction, including regularization approaches and regularization parameter selection methods. We finish by outlining some of the current trends and future challenges. Copyright © 2016 John Wiley & Sons, Ltd. We review analytical tools and state‐of‐the‐art computational tools for solving image reconstruction problems. By comparing quantitative susceptibility mapping (QSM) with the classic image‐deblurring problem, we show that a severe challenge for QSM reconstruction is to distinguish between noise and signal contributions in the data; therefore regularization methods are crucial. We survey some regularization approaches and regularization parameter selection methods and discuss efficient numerical implementations for large‐scale QSM problems.
Reconstructing images from indirect measurements is a central problem in many applications, including the subject of this special issue, quantitative susceptibility mapping (QSM). The process of image reconstruction typically requires solving an inverse problem that is ill-posed and large-scale and thus challenging to solve. Although the research field of inverse problems is thriving and very active with diverse applications, in this part of the special issue we will focus on recent advances in inverse problems that are specific to deconvolution problems, the class of problems to which QSM belongs. We will describe analytic tools that can be used to investigate underlying ill-posedness and apply them to the QSM reconstruction problem and the related extensively studied image deblurring problem. We will discuss state-of-the-art computational tools and methods for image reconstruction, including regularization approaches and regularization parameter selection methods. We finish by outlining some of the current trends and future challenges. Copyright © 2016 John Wiley & Sons, Ltd.Reconstructing images from indirect measurements is a central problem in many applications, including the subject of this special issue, quantitative susceptibility mapping (QSM). The process of image reconstruction typically requires solving an inverse problem that is ill-posed and large-scale and thus challenging to solve. Although the research field of inverse problems is thriving and very active with diverse applications, in this part of the special issue we will focus on recent advances in inverse problems that are specific to deconvolution problems, the class of problems to which QSM belongs. We will describe analytic tools that can be used to investigate underlying ill-posedness and apply them to the QSM reconstruction problem and the related extensively studied image deblurring problem. We will discuss state-of-the-art computational tools and methods for image reconstruction, including regularization approaches and regularization parameter selection methods. We finish by outlining some of the current trends and future challenges. Copyright © 2016 John Wiley & Sons, Ltd.
Author Chung, Julianne
Ruthotto, Lars
Author_xml – sequence: 1
  givenname: Julianne
  surname: Chung
  fullname: Chung, Julianne
  email: jmchung@vt.edu
  organization: Virginia Tech
– sequence: 2
  givenname: Lars
  surname: Ruthotto
  fullname: Ruthotto, Lars
  organization: Emory University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27226213$$D View this record in MEDLINE/PubMed
BookMark eNqN0U1LxDAQBuAgK-66Cv4CWfDipetk0rTpURe_wI-L95C2U-3SNmvSIvvvbd1VQRQ85fJkmHnffTZqbEOMHXGYcwA8a9J6LmQod9iEQ5IEPExwxCaQSAxEqGDM9r1fAoAKBe6xMcaIEXIxYfOFrVdda9rSNqaa1dS-2NzPCutmZW2eaeYos41vXZcN5IDtFqbydLh9p-zp6vJpcRPcPV7fLs7vgkwolAGXohAEQpAUOSIalKSSLDcJFSRBmNwoQgOoCg5FbIgwBZEqitOYR0JM2elm7MrZ1458q-vSZ1RVpiHbec2V4rEEGcI_KEaRinmsenrygy5t5_qzBxUrxDCKeK-Ot6pLa8r1yvVBuLX-zKwH8w3InPXeUaGzchNg60xZaQ56KEX3peihlO8Vvz58zvyFBhv6Vla0_tPph4v7D_8ONqSYNQ
CitedBy_id crossref_primary_10_1049_ipr2_12270
crossref_primary_10_1002_mrm_30006
crossref_primary_10_1002_mrm_26627
crossref_primary_10_1109_TBME_2017_2749298
Cites_doi 10.1002/cmr.b.10083
10.1016/S0377-0427(00)00414-3
10.1088/0266-5611/10/6/003
10.1137/1.9781611972344
10.1137/S1064827599354147
10.1515/JIIP.2008.011
10.1137/140957433
10.1109/TIP.2011.2181401
10.1137/080732213
10.1137/S1064827596299767
10.1007/978-0-387-92920-0
10.1002/mrm.22187/full
10.6028/jres.049.044
10.1007/BF01941141
10.1137/100812938
10.1002/ima.20040
10.1887/0750304359
10.1016/0167-2789(92)90242-F
10.1137/040605412
10.1002/mrm.22334
10.1002/cmr.b.20034
10.1023/B:JMIV.0000011320.81911.38
10.1137/1.9780898717570
10.1016/j.neuroimage.2011.08.082
10.1016/j.cam.2013.07.023
10.1137/100809787
10.1007/s10543-010-0275-3
10.6028/NIST.IR.6131
10.1016/j.imavis.2007.06.005
10.1002/mrm.21828
10.1137/1.9780898718874
10.1007/b138659
10.1007/s10543-009-0239-7
10.1137/080725891
10.1016/j.apnum.2010.10.002
10.1016/j.cviu.2011.06.011
10.1007/BFb0010291
10.1137/1.9780898717877
10.1561/2200000016
10.1007/b98874
10.1137/1.9781611973228
10.1137/S0895479899345960
10.1002/nla.1934
10.1007/s11222-012-9333-9
10.1002/mrm.25358
10.1088/0266-5611/24/3/035001
10.1137/0702016
10.1137/1.9781611971484
10.1007/s002110050158
10.1016/j.sigpro.2010.02.025
10.1137/0714044
10.1145/355993.356000
10.1137/1034115
10.1016/j.neuroimage.2012.01.004
10.1088/0266-5611/24/3/034005
10.1145/355984.355989
10.1080/00401706.1979.10489751
10.1016/j.csda.2009.05.026
10.1109/TMI.2009.2023787
10.1364/JOSAA.26.002311
10.2307/2372313
10.1137/0917016
10.1002/mrm.24384
10.1137/0914086
10.2307/2965703
10.1016/j.acha.2007.09.003
10.1137/080720796
10.1016/j.acha.2010.11.005
10.1016/j.csda.2007.05.008
10.1137/9780898717792
10.1080/01621459.1984.10478083
10.1002/mrm.25029
10.1088/1742-6596/464/1/012005
10.1023/A:1022383005969
10.1007/s10851-010-0248-9
10.1137/0902037
10.1137/1.9780898718836
10.1137/130917673
10.1002/mrm.20054
10.1002/cmr.b.10083/abstract
10.1002/mrm.23000
10.1007/BF01731984
10.1137/S0036144500358232
10.1137/140975024
10.1137/050645592
10.1145/321105.321114
10.1214/aoms/1177703732
10.1088/0266-5611/25/2/025002
10.1137/05064182X
ContentType Journal Article
Copyright Copyright © 2016 John Wiley & Sons, Ltd.
Copyright © 2017 John Wiley & Sons, Ltd.
Copyright_xml – notice: Copyright © 2016 John Wiley & Sons, Ltd.
– notice: Copyright © 2017 John Wiley & Sons, Ltd.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
8FD
FR3
K9.
P64
7X8
DOI 10.1002/nbm.3545
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Technology Research Database
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList Engineering Research Database
MEDLINE

ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Chemistry
Physics
EISSN 1099-1492
EndPage n/a
ExternalDocumentID 4320930129
27226213
10_1002_nbm_3545
NBM3545
Genre reviewArticle
Journal Article
Comparative Study
Review
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
123
1L6
1OB
1OC
1ZS
31~
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52V
52W
52X
53G
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHQN
AAIPD
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCZN
ACFBH
ACGFS
ACGOF
ACIWK
ACMXC
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFRAH
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AIACR
AIDQK
AIDYY
AIQQE
AITYG
AIURR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BY8
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
DUUFO
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
FEDTE
FUBAC
G-S
G.N
GNP
GODZA
H.X
HBH
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KBYEO
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M65
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P2Z
P4D
PALCI
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
SV3
UB1
V2E
W8V
W99
WBKPD
WHWMO
WIB
WIH
WIJ
WIK
WJL
WOHZO
WQJ
WVDHM
WXSBR
XG1
XPP
XV2
ZZTAW
~IA
~WT
AAYXX
CITATION
O8X
AAHHS
ACCFJ
AEEZP
AEQDE
AEUQT
AFPWT
AIWBW
AJBDE
CGR
CUY
CVF
ECM
EIF
NPM
RGB
RWI
WRC
WUP
7QO
8FD
FR3
K9.
P64
7X8
ID FETCH-LOGICAL-c3825-153f3e033e53d222a25e89cda9efe503ada8e2a028f10f7aee2b03b8e7b71633
IEDL.DBID DRFUL
ISICitedReferencesCount 5
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000398100400014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0952-3480
1099-1492
IngestDate Tue Oct 07 09:42:37 EDT 2025
Thu Oct 02 10:03:46 EDT 2025
Sat Nov 29 14:56:13 EST 2025
Wed Feb 19 02:41:41 EST 2025
Tue Nov 18 22:08:45 EST 2025
Sat Nov 29 07:09:07 EST 2025
Tue Nov 11 03:11:08 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords deconvolution
iterative methods
linear inverse problems
quantitative susceptibility mapping (QSM)
ill-posed
regularization
total variation
Tikhonov
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
Copyright © 2016 John Wiley & Sons, Ltd.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3825-153f3e033e53d222a25e89cda9efe503ada8e2a028f10f7aee2b03b8e7b71633
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
ObjectType-Review-3
content type line 23
PMID 27226213
PQID 1878224661
PQPubID 2029982
PageCount 13
ParticipantIDs proquest_miscellaneous_1881750540
proquest_miscellaneous_1826687178
proquest_journals_1878224661
pubmed_primary_27226213
crossref_citationtrail_10_1002_nbm_3545
crossref_primary_10_1002_nbm_3545
wiley_primary_10_1002_nbm_3545_NBM3545
PublicationCentury 2000
PublicationDate April 2017
2017-04-00
2017-Apr
20170401
PublicationDateYYYYMMDD 2017-04-01
PublicationDate_xml – month: 04
  year: 2017
  text: April 2017
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: Oxford
PublicationTitle NMR in biomedicine
PublicationTitleAlternate NMR Biomed
PublicationYear 2017
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2011; 115
2015; 37
2010; 54
2003; 19B
1995; 72
2004; 20
2013; 69
2013; 23
2012; 59
2005; 25B
1996; 36
2010; 63
1993; 3
2009; 49
2010; 62
2014; 21
1977
2014; 256
2001; 43
1965; 2
2007; 29
1997; 92
2000
2010; 29
2013; 13
2013; 12
2008; 28
2008; 25
2008; 26
1982; 8
2008; 24
2011; 67
2000; 123
1964; 35
2014; 7
1979; 21
2012; 21
1951; 73
2012; 62
2009; 25
2010; 31
1996; 17
2012
2011
2009; 61
2010
2013; 40
1981; 2
2008; 16
2011; 40
1998
2013; 464
2008
1997
2011; 30
1996
2011; 33
2006; 5
2007
2006
2005
1999; 20
1962; 9
2002
2007; 52
2001; 22
2001; 23
2011; 3
1992; 34
2009; 26
1999
1993; 14
2004; 51
1952; 49
1977; 14
2000; 32
1999; 39
1984; 79
1988; 28
2005; 4
2014; 36
2013
2005; 15
2014; 73
2009; 2
2014; 72
2010; 90
1992; 60
2010; 51
1923
2010; 50
1994; 10
e_1_2_9_75_1
e_1_2_9_98_1
e_1_2_9_52_1
e_1_2_9_79_1
e_1_2_9_94_1
e_1_2_9_10_1
e_1_2_9_56_1
e_1_2_9_33_1
e_1_2_9_90_1
e_1_2_9_71_1
e_1_2_9_103_1
e_1_2_9_14_1
e_1_2_9_37_1
e_1_2_9_18_1
e_1_2_9_41_1
e_1_2_9_64_1
e_1_2_9_87_1
Engl H (e_1_2_9_35_1) 2000
e_1_2_9_22_1
e_1_2_9_68_1
Wang Y (e_1_2_9_9_1) 2013
e_1_2_9_6_1
e_1_2_9_60_1
e_1_2_9_2_1
Chung J (e_1_2_9_70_1) 2008; 28
e_1_2_9_26_1
e_1_2_9_49_1
Rust BW (e_1_2_9_55_1) 2000; 32
e_1_2_9_30_1
e_1_2_9_72_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_57_1
e_1_2_9_95_1
e_1_2_9_76_1
e_1_2_9_91_1
Gazzola S (e_1_2_9_53_1) 2013; 40
Hadamard J (e_1_2_9_27_1) 1923
e_1_2_9_102_1
Golub GH (e_1_2_9_28_1) 1996
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_19_1
e_1_2_9_42_1
e_1_2_9_88_1
e_1_2_9_61_1
e_1_2_9_46_1
e_1_2_9_84_1
e_1_2_9_23_1
e_1_2_9_65_1
e_1_2_9_80_1
Hansen PC (e_1_2_9_5_1) 1997
Hanke M (e_1_2_9_25_1) 1993; 3
e_1_2_9_69_1
e_1_2_9_31_1
e_1_2_9_50_1
e_1_2_9_73_1
e_1_2_9_77_1
e_1_2_9_96_1
e_1_2_9_12_1
e_1_2_9_54_1
e_1_2_9_92_1
e_1_2_9_101_1
e_1_2_9_39_1
Van Den Doel K (e_1_2_9_83_1) 2013; 13
e_1_2_9_16_1
e_1_2_9_58_1
e_1_2_9_20_1
e_1_2_9_62_1
e_1_2_9_89_1
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_66_1
e_1_2_9_85_1
e_1_2_9_8_1
e_1_2_9_81_1
e_1_2_9_4_1
Tikhonov A (e_1_2_9_45_1) 1977
e_1_2_9_47_1
e_1_2_9_74_1
e_1_2_9_51_1
e_1_2_9_78_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_97_1
e_1_2_9_93_1
e_1_2_9_100_1
e_1_2_9_104_1
Calvetti D (e_1_2_9_99_1) 2007
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_59_1
e_1_2_9_63_1
e_1_2_9_40_1
e_1_2_9_21_1
e_1_2_9_67_1
e_1_2_9_44_1
e_1_2_9_86_1
e_1_2_9_7_1
e_1_2_9_82_1
e_1_2_9_3_1
e_1_2_9_48_1
e_1_2_9_29_1
References_xml – year: 2011
– volume: 7
  start-page: 1669
  issue: 3
  year: 2014
  end-page: 1689
  article-title: Inverse problem in quantitative susceptibility mapping
  publication-title: SIAM J. Imaging Sci.
– year: 2005
– volume: 25
  start-page: 025
  issue: 2
  year: 2009
  end-page: 002
  article-title: A Newton root‐finding algorithm for estimating the regularization parameter for solving ill‐conditioned least‐squares problems
  publication-title: Inverse Probl.
– volume: 72
  start-page: 1444
  issue: 5
  year: 2014
  end-page: 1459
  article-title: Fast quantitative susceptibility mapping with L1‐regularization and automatic parameter selection
  publication-title: Magn. Reson. Med.
– year: 1923
– volume: 2
  start-page: 323
  issue: 2
  year: 2009
  end-page: 343
  article-title: The split Bregman method for L1‐regularized problems
  publication-title: SIAM J.ImagingSci.
– volume: 54
  start-page: 3430
  issue: 12
  year: 2010
  end-page: 3445
  article-title: Regularization parameter estimation for large‐scale Tikhonov regularization using a priori information
  publication-title: Comput. Stat. Data Anal.
– volume: 14
  start-page: 651
  issue: 4
  year: 1977
  end-page: 667
  article-title: Practical approximate solutions to linear operator equations when the data are noisy
  publication-title: SIAM J. Numer. Anal.
– volume: 10
  start-page: 1217
  issue: 6
  year: 1994
  end-page: 1229
  article-title: Analysis of bounded variation penalty methods for ill‐posed problems
  publication-title: Inverse Problems
– year: 1998
– volume: 26
  start-page: 302
  issue: 2
  year: 2008
  end-page: 314
  article-title: Total variation semi‐blind deconvolution using shock filters
  publication-title: Image Vis. Comput.
– volume: 34
  start-page: 561
  issue: 4
  year: 1992
  end-page: 580
  article-title: Analysis of discrete ill‐posed problems by means of the L‐curve
  publication-title: SIAM Rev.
– volume: 13
  start-page: 181
  issue: 25
  year: 2013
  end-page: 203
  article-title: The lost honor of l2‐based regularization
  publication-title: Radon Ser. Comput. Appl. Math.
– volume: 19B
  start-page: 26
  issue: 1
  year: 2003
  end-page: 34
  article-title: A fast calculation method for magnetic field inhomogeneity due to an arbitrary distribution of bulk susceptibility
  publication-title: Concepts Magn. Reson. Part B: Magn. Reson. Eng.
– volume: 63
  start-page: 1292
  issue: 5
  year: 2010
  end-page: 1304
  article-title: Susceptibility mapping in the human brain using threshold‐based k‐space division
  publication-title: Magn. Reson. Med.
– volume: 51
  start-page: 1077
  issue: 5
  year: 2010
  end-page: 1082
  article-title: Quantitative susceptibility map reconstruction from MR phase data using Bayesian regularization: Validation and application to brain imaging
  publication-title: Magn. Reson. Med.
– volume: 40
  start-page: 452
  year: 2013
  end-page: 475
  article-title: Multi‐parameter Arnoldi‐Tikhonov methods
  publication-title: Electron. Trans. Numer. Anal.
– year: 2008
– volume: 50
  start-page: 481
  issue: 3
  year: 2010
  end-page: 507
  article-title: GKB‐FP: an algorithm for large‐scale discrete ill‐posed problems
  publication-title: BIT Numer. Math.
– volume: 28
  start-page: 659
  issue: 3
  year: 1988
  end-page: 670
  article-title: A bidiagonalization algorithm for solving large and sparse ill‐posed systems of linear equations
  publication-title: BIT Numer.Math.
– start-page: 171
  year: 2000
  end-page: 186
– volume: 31
  start-page: 4654
  issue: 6
  year: 2010
  end-page: 4674
  article-title: An efficient iterative approach for large‐scale separable nonlinear inverse problems
  publication-title: SIAM J. Sci. Comput.
– volume: 464
  year: 2013
  article-title: Iterative choice of the optimal regularization parameter in TV image deconvolution
  publication-title: J. Phys. Conf. Ser.
– volume: 40
  start-page: 120
  issue: 1
  year: 2011
  end-page: 145
  article-title: A First‐order primal‐dual algorithm for convex problems withapplications to imaging
  publication-title: J. Math. Imaging Vision
– volume: 73
  start-page: 615
  issue: 3
  year: 1951
  end-page: 624
  article-title: An iteration formula for Fredholm integral equations of the first kind
  publication-title: Am. J. Math.
– year: 2007
– volume: 20
  start-page: 1964
  issue: 6
  year: 1999
  end-page: 1977
  article-title: A nonlinear primal‐dual method for total variation‐based image restoration
  publication-title: SIAM J. Sci. Comput.
– volume: 14
  start-page: 1487
  issue: 6
  year: 1993
  end-page: 1503
  article-title: The use of the L‐curve in the regularization of discrete ill‐posed problems
  publication-title: SIAM J. Sci. Comput.
– volume: 29
  start-page: 273
  issue: 2
  year: 2010
  end-page: 281
  article-title: Nonlinear regularization for per voxel estimation of magnetic susceptibility distributions from MRI field maps. IEEE Trans. Med
  publication-title: Imaging
– volume: 51
  start-page: 1077
  issue: 5
  year: 2004
  end-page: 1082
  article-title: Quantifying arbitrary magnetic susceptibility distributions with MR
  publication-title: Magn. Reson. Med.
– volume: 79
  start-page: 575
  issue: 387
  year: 1984
  end-page: 583
  article-title: Cross‐validation of regression models
  publication-title: J. Am. Stat. Assoc.
– year: 2010
– volume: 59
  start-page: 2560
  issue: 3
  year: 2012
  end-page: 2568
  article-title: Morphology enabled dipole inversion for quantitative susceptibility mapping using structural consistency between the magnitude image and the susceptibility map
  publication-title: NeuroImage
– volume: 16
  start-page: 175
  issue: 2
  year: 2008
  end-page: 193
  article-title: A priori weighting for parameter estimation
  publication-title: J. Inverse Ill‐posed Probl.
– volume: 36
  start-page: B225
  issue: 2
  year: 2014
  end-page: B247
  article-title: Generalized Arnoldi–Tikhonov method for sparse reconstruction
  publication-title: SIAM J. Sci. Comput.
– volume: 5
  start-page: 861
  issue: 3
  year: 2006
  end-page: 899
  article-title: Fast discrete curvelet transforms
  publication-title: Multiscale Model. Simul.
– volume: 69
  start-page: 1396
  issue: 5
  year: 2013
  end-page: 1407
  article-title: Improving susceptibility mapping using a threshold‐based K‐space/image domain iterative reconstruction approach
  publication-title: Magn. Reson. Med.
– volume: 32
  start-page: 333
  year: 2000
  end-page: 347
  article-title: Parameter selection for constrained solutions to ill‐posed problems
  publication-title: Comput. Sci. Stat.
– volume: 21
  start-page: 215
  issue: 2
  year: 1979
  end-page: 223
  article-title: Generalized cross‐validation as a method for choosing a good ridge parameter
  publication-title: Technometrics
– volume: 21
  start-page: 1770
  issue: 4
  year: 2012
  end-page: 1781
  article-title: Parameter selection for total‐variation‐based image restoration using discrepancy principle
  publication-title: IEEE Trans. Image Process.
– year: 2002
– volume: 24
  start-page: 034
  issue: 3
  year: 2008
  end-page: 005
  article-title: Residual periodograms for choosing regularization parameters for ill‐posed problems
  publication-title: Inverse Probl.
– volume: 30
  start-page: 407
  issue: 3
  year: 2011
  end-page: 422
  article-title: The projected GSURE for automatic parameter tuning in iterative shrinkage methods
  publication-title: Appl. Comput. Harmonic Anal.
– volume: 37
  start-page: 544
  issue: 5
  year: 2015
  end-page: 561
  article-title: A hybrid LSMR algorithm for large‐scale Tikhonov regularization
  publication-title: SIAM J. Sci. Comput.
– volume: 33
  start-page: 3132
  issue: 6
  year: 2011
  end-page: 3152
  article-title: Designing optimal filters for ill‐posed inverse problems
  publication-title: SIAM J. Sci. Comput.
– volume: 17
  start-page: 227
  issue: 1
  year: 1996
  end-page: 238
  article-title: Iterative methods for total variation denoising
  publication-title: SIAM J. Sci. Comput.
– volume: 21
  start-page: 796
  issue: 6
  year: 2014
  end-page: 812
  article-title: Embedded techniques for choosing the parameter in Tikhonov regularization
  publication-title: Numer. Linear Algebra Appl.
– volume: 8
  start-page: 195
  issue: 2
  year: 1982
  end-page: 209
  article-title: Algorithm 583, LSQR: Sparse linear equations and least‐squares problems
  publication-title: ACM Trans.Math.Soft.
– volume: 92
  start-page: 548
  issue: 438
  year: 1997
  end-page: 560
  article-title: Improvements on cross‐validation: the 632+ bootstrap method
  publication-title: J. Am. Stat. Assoc.
– volume: 12
  year: 2013
– year: 2013
– volume: 3
  start-page: 253
  year: 1993
  end-page: 315
  article-title: Regularization methods for large‐scale problems
  publication-title: Surv. Math. Ind.
– volume: 62
  start-page: 1215
  issue: 9
  year: 2010
  end-page: 1228
  article-title: Tikhonov regularization based on generalized Krylov subspace methods
  publication-title: Appl. Numer. Math.
– volume: 256
  start-page: 180
  year: 2014
  end-page: 195
  article-title: Automatic parameter setting for Arnoldi–Tikhonov methods
  publication-title: J. Comput. Appl. Math.
– volume: 24
  start-page: 035
  issue: 3
  year: 2008
  end-page: 001
  article-title: Fixed‐point iterations in determining the Tikhonov regularization parameter
  publication-title: Inverse Problems
– volume: 29
  start-page: 315
  year: 2007
  end-page: 330
  article-title: A projection‐based approach to general‐form Tikhonov regularization
  publication-title: SIAM J. Sci. Comput.
– volume: 49
  start-page: 409
  issue: 6
  year: 1952
  end-page: 436
  article-title: Methods of conjugate gradients for solving linear systems
  publication-title: J. Res. Natl. Bur. Stand.
– volume: 40
  start-page: 82
  issue: 1
  year: 2011
  end-page: 104
  article-title: Automated regularization parameter selection in multi‐scale total variation models for image restoration
  publication-title: J. Math. Imaging Vision
– volume: 15
  start-page: 74
  year: 2005
  end-page: 83
  article-title: Blind deconvolution using TV regularization and Bregman iteration
  publication-title: Int. J. Imaging Syst. Technol.
– volume: 33
  start-page: 3175
  issue: 6
  year: 2011
  end-page: 3200
  article-title: Windowed spectral regularization of inverse problems
  publication-title: SIAM J. Sci. Comput.
– volume: 123
  start-page: 423
  issue: 1–2
  year: 2000
  end-page: 446
  article-title: Tikhonov regularization and the L‐curve for large discrete ill‐posed problems
  publication-title: J. Comput. Appl. Math.
– volume: 60
  start-page: 259
  issue: 1–4
  year: 1992
  end-page: 268
  article-title: Nonlinear total variation based noise removal algorithms
  publication-title: Phys.D
– year: 1997
– volume: 20
  start-page: 89
  issue: 1–2
  year: 2004
  end-page: 97
  article-title: An algorithm for total variation minimization and applications
  publication-title: J. Math. Imaging Vision
– volume: 23
  start-page: 601
  issue: 5
  year: 2013
  end-page: 614
  article-title: A tutorial on rank‐based coefficient estimation for censored data in small‐and large‐scale problems
  publication-title: Stat. Comput.
– volume: 8
  start-page: 43
  issue: 1
  year: 1982
  end-page: 71
  article-title: LSQR: An algorithm for sparse linear equations and sparse least squares
  publication-title: ACM Trans.Math.Soft.
– volume: 2
  start-page: 253
  issue: 1
  year: 2009
  end-page: 283
  article-title: Image deconvolution using a general ridgelet and curvelet domain
  publication-title: SIAM J. Imaging Sci.
– volume: 22
  start-page: 1204
  year: 2001
  end-page: 1221
  article-title: Choosing regularization parameters in iterative methods for ill‐posed problems
  publication-title: SIAM J. Matrix Anal. Appl.
– volume: 3
  start-page: 1
  issue: 1
  year: 2011
  end-page: 122
  article-title: Distributed optimization and statistical learning via the alternating direction method of multipliers
  publication-title: Foundations and Trends® in Machine Learning
– volume: 2
  start-page: 474
  issue: 4
  year: 1981
  end-page: 489
  article-title: A bidiagonalization‐regularization procedure for large scale discretizations of ill‐posed problems
  publication-title: SIAM J.Sci.Comput.
– volume: 52
  start-page: 1119
  issue: 2
  year: 2007
  end-page: 1131
  article-title: O'Leary DP. Fast robust regression algorithms for problems with Toeplitz structure. Comput. Stat
  publication-title: Data Anal.
– volume: 115
  start-page: 1610
  issue: 12
  year: 2011
  end-page: 1622
  article-title: Composite splitting algorithms for convex optimization
  publication-title: Comput. Vision Image Underst.
– volume: 73
  start-page: 82
  issue: 1
  year: 2014
  end-page: 101
  article-title: Quantitative susceptibility mapping (QSM): Decoding MRI data for a tissue magnetic biomarker
  publication-title: Magn. Reson. Med.
– volume: 23
  start-page: 1161
  issue: 4
  year: 2001
  end-page: 1171
  article-title: Near‐optimal parameters for Tikhonov and other regularization methods
  publication-title: SIAM J. Sci. Comput.
– volume: 25B
  start-page: 65
  issue: 1
  year: 2005
  end-page: 78
  article-title: Application of a Fourier‐based method for rapid calculation of field inhomogeneity due to spatial variation of magnetic susceptibility
  publication-title: Concepts Magn. Reson. Part B: Magn. Reson. Eng.
– volume: 9
  start-page: 84
  issue: 1
  year: 1962
  end-page: 97
  article-title: A technique for the numerical solution of certain integral equations of the first kind
  publication-title: J. ACM (JACM)
– year: 1996
– year: 2000
– volume: 26
  start-page: 2311
  issue: 11
  year: 2009
  end-page: 2320
  article-title: Selection of regularization parameter in total variation image restoration
  publication-title: JOSA A
– volume: 90
  start-page: 2546
  issue: 8
  year: 2010
  end-page: 2551
  article-title: UPRE method for total variation parameter selection
  publication-title: Signal Process.
– volume: 28
  start-page: 149
  year: 2008
  end-page: 167
  article-title: A weighted GCV method for Lanczos hybrid regularization
  publication-title: Elec.Trans.Numer.Anal.
– year: 1977
– volume: 49
  start-page: 669
  issue: 4
  year: 2009
  end-page: 696
  article-title: The regularizing effect of the Golub–Kahan iterative bidiagonalization and revealing the noise level in the data
  publication-title: BIT Numer. Math.
– volume: 61
  start-page: 196
  issue: 1
  year: 2009
  end-page: 204
  article-title: Calculation of susceptibility through multiple orientation sampling (COSMOS): A method for conditioning the inverse problem from measured magnetic field map to susceptibility source image in MRI
  publication-title: Magn. Reson. Med.
– volume: 4
  start-page: 460
  issue: 2
  year: 2005
  end-page: 489
  article-title: An iterative regularization method for total variation‐based image restoration
  publication-title: Multiscale Modeling & Simulation
– year: 2012
– volume: 25
  start-page: 25
  issue: 1
  year: 2008
  end-page: 46
  article-title: Sparse directional image representations using the discrete shearlet transform
  publication-title: Appl. Comput. Harmonic Anal.
– volume: 62
  start-page: 1311
  issue: 2
  year: 2012
  end-page: 1315
  article-title: The future of susceptibility contrast for assessment of anatomy and function
  publication-title: NeuroImage
– year: 2006
– volume: 72
  start-page: 21
  issue: 1
  year: 1995
  end-page: 37
  article-title: A convergence analysis of the Landweber iteration for nonlinear ill‐posed problems
  publication-title: Numer. Math.
– volume: 36
  start-page: 287
  issue: 2
  year: 1996
  end-page: 301
  article-title: Limitations of the L‐curve method in ill‐posed problems
  publication-title: BIT Numer. Math.
– volume: 35
  start-page: 73
  issue: 1
  year: 1964
  end-page: 101
  article-title: Robust estimation of a location parameter
  publication-title: Ann. Math. Stat.
– volume: 43
  start-page: 347
  issue: 2
  year: 2001
  end-page: 366
  article-title: Statistical regularization of inverse problems
  publication-title: SIAM Rev.
– volume: 67
  start-page: 137
  issue: 1
  year: 2011
  end-page: 147
  article-title: Whole brain susceptibility mapping using compressed sensing
  publication-title: Magn. Reson. Med.
– volume: 39
  start-page: 603
  issue: 4
  year: 1999
  end-page: 619
  article-title: Estimation of the L‐curve via Lanczos bidiagonalization
  publication-title: BIT Numer. Math.
– volume: 2
  start-page: 205
  issue: 2
  year: 1965
  end-page: 224
  article-title: Calculating the singular values and pseudo‐inverse of a matrix
  publication-title: J. Soc. Ind. Appl. Math., Ser. B: Numer. Anal.
– year: 1999
– volume: 3
  start-page: 253
  year: 1993
  ident: e_1_2_9_25_1
  article-title: Regularization methods for large‐scale problems
  publication-title: Surv. Math. Ind.
– ident: e_1_2_9_22_1
  doi: 10.1002/cmr.b.10083
– ident: e_1_2_9_78_1
  doi: 10.1016/S0377-0427(00)00414-3
– ident: e_1_2_9_92_1
  doi: 10.1088/0266-5611/10/6/003
– ident: e_1_2_9_7_1
  doi: 10.1137/1.9781611972344
– ident: e_1_2_9_66_1
  doi: 10.1137/S1064827599354147
– ident: e_1_2_9_57_1
  doi: 10.1515/JIIP.2008.011
– ident: e_1_2_9_10_1
  doi: 10.1137/140957433
– ident: e_1_2_9_48_1
  doi: 10.1109/TIP.2011.2181401
– ident: e_1_2_9_103_1
  doi: 10.1137/080732213
– volume-title: An Introduction to Bayesian Scientific Computing: Ten Lectures on Subjective Computing, Volume2
  year: 2007
  ident: e_1_2_9_99_1
– ident: e_1_2_9_85_1
  doi: 10.1137/S1064827596299767
– ident: e_1_2_9_102_1
  doi: 10.1007/978-0-387-92920-0
– ident: e_1_2_9_12_1
  doi: 10.1002/mrm.22187/full
– ident: e_1_2_9_41_1
  doi: 10.6028/jres.049.044
– ident: e_1_2_9_69_1
  doi: 10.1007/BF01941141
– ident: e_1_2_9_31_1
  doi: 10.1137/100812938
– ident: e_1_2_9_104_1
  doi: 10.1002/ima.20040
– ident: e_1_2_9_2_1
  doi: 10.1887/0750304359
– ident: e_1_2_9_46_1
  doi: 10.1016/0167-2789(92)90242-F
– ident: e_1_2_9_88_1
  doi: 10.1137/040605412
– volume: 32
  start-page: 333
  year: 2000
  ident: e_1_2_9_55_1
  article-title: Parameter selection for constrained solutions to ill‐posed problems
  publication-title: Comput. Sci. Stat.
– ident: e_1_2_9_16_1
  doi: 10.1002/mrm.22334
– ident: e_1_2_9_23_1
  doi: 10.1002/cmr.b.20034
– ident: e_1_2_9_87_1
  doi: 10.1023/B:JMIV.0000011320.81911.38
– ident: e_1_2_9_26_1
  doi: 10.1137/1.9780898717570
– volume-title: Matrix Computations, Volume3
  year: 1996
  ident: e_1_2_9_28_1
– ident: e_1_2_9_18_1
  doi: 10.1016/j.neuroimage.2011.08.082
– ident: e_1_2_9_79_1
  doi: 10.1016/j.cam.2013.07.023
– ident: e_1_2_9_30_1
  doi: 10.1137/100809787
– ident: e_1_2_9_76_1
  doi: 10.1007/s10543-010-0275-3
– ident: e_1_2_9_33_1
  doi: 10.6028/NIST.IR.6131
– ident: e_1_2_9_47_1
  doi: 10.1016/j.imavis.2007.06.005
– ident: e_1_2_9_14_1
  doi: 10.1002/mrm.21828
– ident: e_1_2_9_4_1
  doi: 10.1137/1.9780898718874
– volume-title: Quantitative Susceptibility Mapping: Magnetic Resonance Imaging of Tissue Magnetism
  year: 2013
  ident: e_1_2_9_9_1
– ident: e_1_2_9_34_1
  doi: 10.1007/b138659
– ident: e_1_2_9_72_1
  doi: 10.1007/s10543-009-0239-7
– ident: e_1_2_9_89_1
  doi: 10.1137/080725891
– ident: e_1_2_9_73_1
  doi: 10.1016/j.apnum.2010.10.002
– ident: e_1_2_9_52_1
  doi: 10.1016/j.cviu.2011.06.011
– ident: e_1_2_9_32_1
  doi: 10.1007/BFb0010291
– volume-title: Regularization of Inverse Problems
  year: 2000
  ident: e_1_2_9_35_1
– ident: e_1_2_9_37_1
  doi: 10.1137/1.9780898717877
– ident: e_1_2_9_93_1
  doi: 10.1561/2200000016
– ident: e_1_2_9_94_1
  doi: 10.1007/b98874
– ident: e_1_2_9_100_1
  doi: 10.1137/1.9781611973228
– ident: e_1_2_9_71_1
  doi: 10.1137/S0895479899345960
– ident: e_1_2_9_80_1
  doi: 10.1002/nla.1934
– ident: e_1_2_9_36_1
  doi: 10.1007/s11222-012-9333-9
– ident: e_1_2_9_21_1
  doi: 10.1002/mrm.25358
– ident: e_1_2_9_65_1
  doi: 10.1088/0266-5611/24/3/035001
– volume: 28
  start-page: 149
  year: 2008
  ident: e_1_2_9_70_1
  article-title: A weighted GCV method for Lanczos hybrid regularization
  publication-title: Elec.Trans.Numer.Anal.
– ident: e_1_2_9_67_1
  doi: 10.1137/0702016
– ident: e_1_2_9_42_1
  doi: 10.1137/1.9781611971484
– ident: e_1_2_9_43_1
  doi: 10.1007/s002110050158
– ident: e_1_2_9_62_1
  doi: 10.1016/j.sigpro.2010.02.025
– ident: e_1_2_9_63_1
  doi: 10.1137/0714044
– ident: e_1_2_9_40_1
  doi: 10.1145/355993.356000
– ident: e_1_2_9_60_1
  doi: 10.1137/1034115
– ident: e_1_2_9_8_1
  doi: 10.1016/j.neuroimage.2012.01.004
– ident: e_1_2_9_56_1
  doi: 10.1088/0266-5611/24/3/034005
– volume: 13
  start-page: 181
  issue: 25
  year: 2013
  ident: e_1_2_9_83_1
  article-title: The lost honor of l2‐based regularization
  publication-title: Radon Ser. Comput. Appl. Math.
– ident: e_1_2_9_39_1
  doi: 10.1145/355984.355989
– ident: e_1_2_9_54_1
  doi: 10.1080/00401706.1979.10489751
– ident: e_1_2_9_77_1
  doi: 10.1016/j.csda.2009.05.026
– ident: e_1_2_9_15_1
  doi: 10.1109/TMI.2009.2023787
– ident: e_1_2_9_97_1
  doi: 10.1364/JOSAA.26.002311
– ident: e_1_2_9_6_1
  doi: 10.1137/1.9780898718874
– ident: e_1_2_9_38_1
  doi: 10.2307/2372313
– ident: e_1_2_9_84_1
  doi: 10.1137/0917016
– ident: e_1_2_9_19_1
  doi: 10.1002/mrm.24384
– ident: e_1_2_9_59_1
  doi: 10.1137/0914086
– ident: e_1_2_9_86_1
  doi: 10.1023/B:JMIV.0000011320.81911.38
– ident: e_1_2_9_64_1
  doi: 10.2307/2965703
– ident: e_1_2_9_51_1
  doi: 10.1016/j.acha.2007.09.003
– ident: e_1_2_9_50_1
  doi: 10.1137/080720796
– ident: e_1_2_9_98_1
  doi: 10.1016/j.acha.2010.11.005
– ident: e_1_2_9_91_1
  doi: 10.1016/j.csda.2007.05.008
– ident: e_1_2_9_3_1
  doi: 10.1137/9780898717792
– ident: e_1_2_9_29_1
  doi: 10.1080/01621459.1984.10478083
– ident: e_1_2_9_20_1
  doi: 10.1002/mrm.25029
– ident: e_1_2_9_95_1
  doi: 10.1088/1742-6596/464/1/012005
– ident: e_1_2_9_75_1
  doi: 10.1023/A:1022383005969
– ident: e_1_2_9_96_1
  doi: 10.1007/s10851-010-0248-9
– ident: e_1_2_9_68_1
  doi: 10.1137/0902037
– ident: e_1_2_9_24_1
  doi: 10.1137/1.9780898718836
– ident: e_1_2_9_81_1
  doi: 10.1137/130917673
– ident: e_1_2_9_11_1
  doi: 10.1002/mrm.20054
– ident: e_1_2_9_13_1
  doi: 10.1002/cmr.b.10083/abstract
– ident: e_1_2_9_17_1
  doi: 10.1002/mrm.23000
– ident: e_1_2_9_61_1
  doi: 10.1007/BF01731984
– ident: e_1_2_9_101_1
  doi: 10.1137/S0036144500358232
– ident: e_1_2_9_74_1
  doi: 10.1137/140975024
– ident: e_1_2_9_82_1
  doi: 10.1137/050645592
– ident: e_1_2_9_44_1
  doi: 10.1145/321105.321114
– volume-title: Solution of Ill‐Posed Problems
  year: 1977
  ident: e_1_2_9_45_1
– volume-title: Lectures on Cauchy's Problem in Linear Differential Equations
  year: 1923
  ident: e_1_2_9_27_1
– ident: e_1_2_9_90_1
  doi: 10.1214/aoms/1177703732
– volume-title: Rank‐Deficient and Discrete Ill‐Posed Problems
  year: 1997
  ident: e_1_2_9_5_1
– volume: 40
  start-page: 452
  year: 2013
  ident: e_1_2_9_53_1
  article-title: Multi‐parameter Arnoldi‐Tikhonov methods
  publication-title: Electron. Trans. Numer. Anal.
– ident: e_1_2_9_58_1
  doi: 10.1088/0266-5611/25/2/025002
– ident: e_1_2_9_49_1
  doi: 10.1137/05064182X
SSID ssj0008432
Score 2.209744
SecondaryResourceType review_article
Snippet Reconstructing images from indirect measurements is a central problem in many applications, including the subject of this special issue, quantitative...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage np
SubjectTerms Algorithms
Animals
Brain - anatomy & histology
Brain - physiology
Brain Mapping - methods
deconvolution
Diffusion Magnetic Resonance Imaging - methods
Humans
ill‐posed
Image Enhancement - methods
Image Interpretation, Computer-Assisted - methods
iterative methods
linear inverse problems
Models, Biological
quantitative susceptibility mapping (QSM)
regularization
Reproducibility of Results
Sensitivity and Specificity
Tikhonov
total variation
Title Computational methods for image reconstruction
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fnbm.3545
https://www.ncbi.nlm.nih.gov/pubmed/27226213
https://www.proquest.com/docview/1878224661
https://www.proquest.com/docview/1826687178
https://www.proquest.com/docview/1881750540
Volume 30
WOSCitedRecordID wos000398100400014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1099-1492
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0008432
  issn: 0952-3480
  databaseCode: DRFUL
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1LS8NAEIAHbX1dfNRXtJYIoqe0yW7SbI5aLR7aIlKlt7Cb7ELBpmLU3-9sXlh8IHjKIZOwzOzOfrOPGYCzWDlUBBipckmU5UYOs4RymSVjFTEZMI9kt_gfB_5oxCaT4K44VanvwuT5IaoFNz0yMn-tBzgXaedT0lAxa1Oc_5ehTrDbejWoX9_3HwaVH2ZuVp4MGYJY1GV2mXrWJp3y28XJ6AthLgJrNuP0t_7T1m3YLDjTvMw7xg4syaQB672yvFsD1obFrnoDVrNjoFG6C-28yEOxQGjm5aVTE8HWnM7Q85hZ_FzlnN2Dcf9m3Lu1iooKVkQxFLTQvSkqbUqlR2MkA048yYIo5oFU0rMpjzmThCNzKMdWPpeSCJsKJn2BcRWl-1BL5ok8BJOKrstVIOzYjl2Xdnng8S4jgYgQKVVMDLgoNRtGRbZxXfTiKczzJJMQdRJqnRhwWkk-5xk2vpFplsYJizGWhg7TdOMiYOAvqteoRb3lwRM5f9MyCCAYE_rsNxmGDKXR1YCD3PBVQ4iPeEocasB5Zt8fWxiOrob6efRXwWPYIJoQskNATaih5eQJrETvr9P0pQXL_oS1ih79Afwa9vU
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1ZS8QwEICH9fbFY73Ws4LoU9c2SbcpPunqotgtIqvsW0naBAR3V1z19zvpheKB4FMfOi0hM5l8k2MG4CDVLpUBRqpCEW2zxOW21IzbKtUJVwH3SHaL_z70o4j3-8FNDU7KuzB5fohqwc2MjMxfmwFuFqSPP2QNlYMmRQCYgCmGVoTmPXV-27kLK0fMWVafDCGC2JRxp8w965Dj8tvPs9EXxPxMrNmU01n8V2OXYKEgTes0N41lqKlhHebaZYG3Osx2i331OsxkB0GT8Qo08zIPxRKhlReYHluIttbDAH2PlUXQVdbZVeh1LnrtS7uoqWAnFINBGx2cpsqhVHk0RTYQxFM8SFIRKK08h4pUcEUEUod2He0LpYh0qOTKlxhZUboGk8PRUG2ARWWLCR1IJ3VSxmhLBJ5ocRLIBKFSp6QBR2XXxkmRb9yUvXiM80zJJMY-iU2fNGC_knzKc2x8I7NdaicuRtk4drnhG4aIgb-oXmMvmk0PMVSjVyODCIJRoc9_k-FIUQZeG7Cea75qCPERUIlLG3CYKfjHFsbRWdc8N_8quAdzl71uGIdX0fUWzBPDC9mRoG2YRC2qHZhO3l4exs-7hWG_A_XO-f0
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3ZS_QwEMAHXc8Xj_Vazwry-VRtk3Sb4pPXorguIvqxbyVpJiDoKq769zvphaJ-fOBTHzotYSaZ_CbHDMCOsSHXCUWqCpn1RRZKX1shfTQ2k5jIiOW3-P92415P9vvJ1QgcVHdhivwQ9YKbGxm5v3YDHJ-M3f-QNVQ_7HECgFEYE66GTAPGTq47t93aEUuR1ycjiGA-FzKocs8GbL_69vNs9AUxPxNrPuV0Zn_V2DmYKUnTOyy6xjyM4KAJU8dVgbcmTF6W--pNmMgPgmbDBdgryjyUS4ReUWB66BHaencP5Hu8PIKus84uwk3n9Ob4zC9rKvgZp2DQJwdnOQacY8QNsYFiEcokMypBi1HAlVESmSLqsGFgY4XIdMC1xFhTZMX5EjQGjwNcAY_rtlA20YEJjBC8rZJItSVLdEZQaQ1rwW6l2jQr8427shf3aZEpmaWkk9TppAXbteRTkWPjG5n1yjppOcqGaSgd3whCDPpF_Zq06DY91AAfX50MIQhFhbH8l4wkinLw2oLlwvJ1Q1hMgMpC3oI_uYF_bGHaO7p0z9X_FdyCyauTTto9712swTRzuJCfCFqHBhkRN2A8e3u5Gz5vlv36HYmQ-Xg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Computational+methods+for+image+reconstruction&rft.jtitle=NMR+in+biomedicine&rft.au=Chung%2C+Julianne&rft.au=Ruthotto%2C+Lars&rft.date=2017-04-01&rft.eissn=1099-1492&rft.volume=30&rft.issue=4&rft_id=info:doi/10.1002%2Fnbm.3545&rft_id=info%3Apmid%2F27226213&rft.externalDocID=27226213
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0952-3480&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0952-3480&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0952-3480&client=summon