Quantitative analysis of polycyclic aromatic hydrocarbons using high‐performance liquid chromatography‐photodiode array‐high‐resolution mass spectrometric detection platform coupled to electrospray and atmospheric pressure photoionization sources
Polycyclic aromatic hydrocarbons (PAHs) are common pollutants present in atmospheric aerosols and other environmental mixtures. They are of particular air quality and human health concerns as many of them are carcinogenic toxins. They also affect absorption of solar radiation by aerosols, therefore...
Uloženo v:
| Vydáno v: | Journal of mass spectrometry. Ročník 57; číslo 2; s. e4804 - n/a |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
England
Wiley Subscription Services, Inc
01.02.2022
|
| Témata: | |
| ISSN: | 1076-5174, 1096-9888, 1096-9888 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Polycyclic aromatic hydrocarbons (PAHs) are common pollutants present in atmospheric aerosols and other environmental mixtures. They are of particular air quality and human health concerns as many of them are carcinogenic toxins. They also affect absorption of solar radiation by aerosols, therefore contributing to the radiative forcing of climate. For environmental chemistry studies, it is advantageous to quantify PAH components using the same analytical technics that are commonly applied to characterize a broad range of polar analytes present in the same environmental mixtures. Liquid chromatography coupled with photodiode array and high‐resolution mass spectrometric detection (LC‐PDA‐HRMS) is a method of choice for comprehensive characterization of chemical composition and quantification of light absorption properties of individual organic compounds present in the environmental samples. However, quantification of non‐polar PAHs by this method is poorly established because of their imperfect ionization in electrospray ionization (ESI) technique. This tutorial article provides a comprehensive evaluation of the quantitative analysis of 16 priority pollutant PAHs in a standard reference material using the LC–MS platform coupled with the ESI source. Results are further corroborated by the quantitation experiments using an atmospheric pressure photoionization (APPI) method, which is more sensitive for the PAH detection. The basic concepts and step‐by‐step practical guidance for the PAHs quantitative characterization are offered based on the systematic experiments, which include (1) Evaluation effects of different acidification levels by formic acid on the (+)ESI‐MS detection of PAHs. (2) Comparison of detection limits in ESI+ versus APPI+ experiments. (3) Investigation of the PAH fragmentation patterns in MS2 experiments at different collision energies. (4) Calculation of wavelength dependent mass absorption coefficient (MACλ) of the standard mixture and its individual PAHs using LC‐PDA data. (5) Assessment of the minimal injected mass required for accurate quantification of MACλ of the standard mixture and of a multi‐component environmental sample. |
|---|---|
| AbstractList | Polycyclic aromatic hydrocarbons (PAHs) are common pollutants present in atmospheric aerosols and other environmental mixtures. They are of particular air quality and human health concerns as many of them are carcinogenic toxins. They also affect absorption of solar radiation by aerosols, therefore contributing to the radiative forcing of climate. For environmental chemistry studies, it is advantageous to quantify PAH components using the same analytical technics that are commonly applied to characterize a broad range of polar analytes present in the same environmental mixtures. Liquid chromatography coupled with photodiode array and high‐resolution mass spectrometric detection (LC‐PDA‐HRMS) is a method of choice for comprehensive characterization of chemical composition and quantification of light absorption properties of individual organic compounds present in the environmental samples. However, quantification of non‐polar PAHs by this method is poorly established because of their imperfect ionization in electrospray ionization (ESI) technique. This tutorial article provides a comprehensive evaluation of the quantitative analysis of 16 priority pollutant PAHs in a standard reference material using the LC–MS platform coupled with the ESI source. Results are further corroborated by the quantitation experiments using an atmospheric pressure photoionization (APPI) method, which is more sensitive for the PAH detection. The basic concepts and step‐by‐step practical guidance for the PAHs quantitative characterization are offered based on the systematic experiments, which include (1) Evaluation effects of different acidification levels by formic acid on the (+)ESI‐MS detection of PAHs. (2) Comparison of detection limits in ESI+ versus APPI+ experiments. (3) Investigation of the PAH fragmentation patterns in MS2 experiments at different collision energies. (4) Calculation of wavelength dependent mass absorption coefficient (MACλ) of the standard mixture and its individual PAHs using LC‐PDA data. (5) Assessment of the minimal injected mass required for accurate quantification of MACλ of the standard mixture and of a multi‐component environmental sample. Polycyclic aromatic hydrocarbons (PAHs) are common pollutants present in atmospheric aerosols and other environmental mixtures. They are of particular air quality and human health concerns as many of them are carcinogenic toxins. They also affect absorption of solar radiation by aerosols, therefore contributing to the radiative forcing of climate. For environmental chemistry studies, it is advantageous to quantify PAH components using the same analytical technics that are commonly applied to characterize a broad range of polar analytes present in the same environmental mixtures. Liquid chromatography coupled with photodiode array and high-resolution mass spectrometric detection (LC-PDA-HRMS) is a method of choice for comprehensive characterization of chemical composition and quantification of light absorption properties of individual organic compounds present in the environmental samples. However, quantification of non-polar PAHs by this method is poorly established because of their imperfect ionization in electrospray ionization (ESI) technique. This tutorial article provides a comprehensive evaluation of the quantitative analysis of 16 priority pollutant PAHs in a standard reference material using the LC-MS platform coupled with the ESI source. Results are further corroborated by the quantitation experiments using an atmospheric pressure photoionization (APPI) method, which is more sensitive for the PAH detection. The basic concepts and step-by-step practical guidance for the PAHs quantitative characterization are offered based on the systematic experiments, which include (1) Evaluation effects of different acidification levels by formic acid on the (+)ESI-MS detection of PAHs. (2) Comparison of detection limits in ESI+ versus APPI+ experiments. (3) Investigation of the PAH fragmentation patterns in MS2 experiments at different collision energies. (4) Calculation of wavelength dependent mass absorption coefficient (MACλ) of the standard mixture and its individual PAHs using LC-PDA data. (5) Assessment of the minimal injected mass required for accurate quantification of MACλ of the standard mixture and of a multi-component environmental sample.Polycyclic aromatic hydrocarbons (PAHs) are common pollutants present in atmospheric aerosols and other environmental mixtures. They are of particular air quality and human health concerns as many of them are carcinogenic toxins. They also affect absorption of solar radiation by aerosols, therefore contributing to the radiative forcing of climate. For environmental chemistry studies, it is advantageous to quantify PAH components using the same analytical technics that are commonly applied to characterize a broad range of polar analytes present in the same environmental mixtures. Liquid chromatography coupled with photodiode array and high-resolution mass spectrometric detection (LC-PDA-HRMS) is a method of choice for comprehensive characterization of chemical composition and quantification of light absorption properties of individual organic compounds present in the environmental samples. However, quantification of non-polar PAHs by this method is poorly established because of their imperfect ionization in electrospray ionization (ESI) technique. This tutorial article provides a comprehensive evaluation of the quantitative analysis of 16 priority pollutant PAHs in a standard reference material using the LC-MS platform coupled with the ESI source. Results are further corroborated by the quantitation experiments using an atmospheric pressure photoionization (APPI) method, which is more sensitive for the PAH detection. The basic concepts and step-by-step practical guidance for the PAHs quantitative characterization are offered based on the systematic experiments, which include (1) Evaluation effects of different acidification levels by formic acid on the (+)ESI-MS detection of PAHs. (2) Comparison of detection limits in ESI+ versus APPI+ experiments. (3) Investigation of the PAH fragmentation patterns in MS2 experiments at different collision energies. (4) Calculation of wavelength dependent mass absorption coefficient (MACλ) of the standard mixture and its individual PAHs using LC-PDA data. (5) Assessment of the minimal injected mass required for accurate quantification of MACλ of the standard mixture and of a multi-component environmental sample. Polycyclic aromatic hydrocarbons (PAHs) are common pollutants present in atmospheric aerosols and other environmental mixtures. They are of particular air quality and human health concerns as many of them are carcinogenic toxins. They also affect absorption of solar radiation by aerosols, therefore contributing to the radiative forcing of climate. For environmental chemistry studies, it is advantageous to quantify PAH components using the same analytical technics that are commonly applied to characterize a broad range of polar analytes present in the same environmental mixtures. Liquid chromatography coupled with photodiode array and high‐resolution mass spectrometric detection (LC‐PDA‐HRMS) is a method of choice for comprehensive characterization of chemical composition and quantification of light absorption properties of individual organic compounds present in the environmental samples. However, quantification of non‐polar PAHs by this method is poorly established because of their imperfect ionization in electrospray ionization (ESI) technique. This tutorial article provides a comprehensive evaluation of the quantitative analysis of 16 priority pollutant PAHs in a standard reference material using the LC–MS platform coupled with the ESI source. Results are further corroborated by the quantitation experiments using an atmospheric pressure photoionization (APPI) method, which is more sensitive for the PAH detection. The basic concepts and step‐by‐step practical guidance for the PAHs quantitative characterization are offered based on the systematic experiments, which include (1) Evaluation effects of different acidification levels by formic acid on the (+)ESI‐MS detection of PAHs. (2) Comparison of detection limits in ESI+ versus APPI+ experiments. (3) Investigation of the PAH fragmentation patterns in MS² experiments at different collision energies. (4) Calculation of wavelength dependent mass absorption coefficient (MACλ) of the standard mixture and its individual PAHs using LC‐PDA data. (5) Assessment of the minimal injected mass required for accurate quantification of MACλ of the standard mixture and of a multi‐component environmental sample. Polycyclic aromatic hydrocarbons (PAHs) are common pollutants present in atmospheric aerosols and other environmental mixtures. They are of particular air quality and human health concerns as many of them are carcinogenic toxins. They also affect absorption of solar radiation by aerosols, therefore contributing to the radiative forcing of climate. For environmental chemistry studies, it is advantageous to quantify PAH components using the same analytical technics that are commonly applied to characterize a broad range of polar analytes present in the same environmental mixtures. Liquid chromatography coupled with photodiode array and high‐resolution mass spectrometric detection (LC‐PDA‐HRMS) is a method of choice for comprehensive characterization of chemical composition and quantification of light absorption properties of individual organic compounds present in the environmental samples. However, quantification of non‐polar PAHs by this method is poorly established because of their imperfect ionization in electrospray ionization (ESI) technique. This tutorial article provides a comprehensive evaluation of the quantitative analysis of 16 priority pollutant PAHs in a standard reference material using the LC–MS platform coupled with the ESI source. Results are further corroborated by the quantitation experiments using an atmospheric pressure photoionization (APPI) method, which is more sensitive for the PAH detection. The basic concepts and step‐by‐step practical guidance for the PAHs quantitative characterization are offered based on the systematic experiments, which include (1) Evaluation effects of different acidification levels by formic acid on the (+)ESI‐MS detection of PAHs. (2) Comparison of detection limits in ESI+ versus APPI+ experiments. (3) Investigation of the PAH fragmentation patterns in MS 2 experiments at different collision energies. (4) Calculation of wavelength dependent mass absorption coefficient ( MAC λ ) of the standard mixture and its individual PAHs using LC‐PDA data. (5) Assessment of the minimal injected mass required for accurate quantification of MAC λ of the standard mixture and of a multi‐component environmental sample. Polycyclic aromatic hydrocarbons (PAHs) are common pollutants present in atmospheric aerosols and other environmental mixtures. They are of particular air quality and human health concerns as many of them are carcinogenic toxins. They also affect absorption of solar radiation by aerosols, therefore contributing to the radiative forcing of climate. For environmental chemistry studies, it is advantageous to quantify PAH components using the same analytical technics that are commonly applied to characterize a broad range of polar analytes present in the same environmental mixtures. Liquid chromatography coupled with photodiode array and high-resolution mass spectrometric detection (LC-PDA-HRMS) is a method of choice for comprehensive characterization of chemical composition and quantification of light absorption properties of individual organic compounds present in the environmental samples. However, quantification of non-polar PAHs by this method is poorly established because of their imperfect ionization in electrospray ionization (ESI) technique. This tutorial article provides a comprehensive evaluation of the quantitative analysis of 16 priority pollutant PAHs in a standard reference material using the LC-MS platform coupled with the ESI source. Results are further corroborated by the quantitation experiments using an atmospheric pressure photoionization (APPI) method, which is more sensitive for the PAH detection. The basic concepts and step-by-step practical guidance for the PAHs quantitative characterization are offered based on the systematic experiments, which include (1) Evaluation effects of different acidification levels by formic acid on the (+)ESI-MS detection of PAHs. (2) Comparison of detection limits in ESI+ versus APPI+ experiments. (3) Investigation of the PAH fragmentation patterns in MS experiments at different collision energies. (4) Calculation of wavelength dependent mass absorption coefficient (MAC ) of the standard mixture and its individual PAHs using LC-PDA data. (5) Assessment of the minimal injected mass required for accurate quantification of MAC of the standard mixture and of a multi-component environmental sample. |
| Author | Hettiyadura, Anusha Priyadarshani Silva Laskin, Alexander |
| Author_xml | – sequence: 1 givenname: Anusha Priyadarshani Silva orcidid: 0000-0002-5757-9784 surname: Hettiyadura fullname: Hettiyadura, Anusha Priyadarshani Silva organization: Purdue University – sequence: 2 givenname: Alexander orcidid: 0000-0002-7836-8417 surname: Laskin fullname: Laskin, Alexander email: alaskin@purdue.edu organization: Purdue University |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35019202$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkstu1DAYhS3UirYDEk-ALLHpJoPjXBwvUdVyUVGFgHXkOH8mHjmxazugsOIReEYeBOGkA0gVSKziy3fOseNzho5GMwJCT1KyTQmhz_eD3-YVyR-g05TwMuFVVR0tY1YmRcryE3Tm_Z4QwnlePkQnWUFSTgk9RT_eTWIMKoigPgEWo9CzVx6bDlujZzlLrSQWzgwRkLifW2ekcI0ZPZ68Gne4V7v--9dvFlxn3CBGCVir20m1WParzOycsP28ML0JplWmjUHOiWXpoHbgjZ6CMiMehPfYW5AhqiG4mNpCiNNl02oRlhgszWQ1tDgYDHplvY2O8QItFmGIsx4WqY3OfnKA1-xoob6I1cmbyUnwj9BxJ7SHx4fvBn28uvxw8Sq5vnn5-uLFdSKziuYJK5usFZRLQSpWZbwjlJeyKQQjvMho0-SEAKMs67hMG0o6llIOkc4LzjpaZRt0fudrnbmdwId6UF6C1mIEM_malqwoSpoz8h9ofLq05Pni-uweuo_Xim-4ULRI40njmTbo6YGamgHa2jo1CDfXv0rwJ1HG3-gddL-RlNRLv-rYr3rpV0S391C5dseMwQml_yZI7gSflYb5n8b1m7fvV_4nng7tyA |
| CitedBy_id | crossref_primary_10_1021_acs_analchem_5c03362 crossref_primary_10_5194_acp_24_2639_2024 crossref_primary_10_1021_jasms_2c00163 crossref_primary_10_1016_j_trac_2024_117986 crossref_primary_10_1080_00032719_2025_2505685 crossref_primary_10_1002_adma_202211575 crossref_primary_10_1021_acs_est_3c10184 crossref_primary_10_1029_2024JD040755 crossref_primary_10_3390_w16172520 |
| Cites_doi | 10.1007/BF00282628 10.1021/es991201 10.1021/j100149a031 10.1002/rcm.6373 10.1016/j.chroma.2004.10.110 10.1016/S0021-9673(97)00265-3 10.1016/j.jasms.2008.09.012 10.5772/intechopen.71163 10.1289/ehp.9810617 10.1007/978-3-7643-8340-4_5 10.1016/j.jfda.2019.01.003 10.1016/j.atmosres.2011.03.012 10.1021/acs.analchem.8b00401 10.1021/acs.est.6b03024 10.1002/(SICI)1097-0231(19980615)12:11<712::AID-RCM215>3.0.CO;2-2 10.1007/s11356-013-1588-y 10.1007/s00216-003-2412-1 10.2478/s11532-012-0028-z 10.1289/ehp.98106s4975 10.1016/S0021-9673(03)01206-8 10.1007/s13361-011-0304-8 10.1016/j.chroma.2010.10.015 10.1021/acsearthspacechem.1c00103 10.1016/j.atmosenv.2015.12.036 10.2166/wst.2006.055 10.1021/es500846p 10.1016/j.scitotenv.2016.06.026 10.1021/acs.est.7b02276 10.1016/j.ejpe.2015.03.011 10.1039/C5CP02563J 10.1021/acs.est.0c07581 10.1021/cr5006167 10.1080/10807030701226277 10.1016/0004-6981(71)90146-6 10.1080/10406638.2014.970291 10.1002/2015MS000473 10.1021/acsearthspacechem.0c00095 10.1007/s11707-016-0613-0 10.1155/2021/6641326 10.1002/jms.3561 10.3389/fmicb.2020.562813 10.1016/j.atmosenv.2008.10.050 10.1016/0269-7491(95)91052-M 10.5194/acp-21-8531-2021 10.1002/rcm.3267 10.1016/0021-9673(93)80097-R 10.1002/rcm.6250 10.1016/j.chroma.2006.08.091 10.1021/acs.analchem.8b02177 10.1016/S0021-9673(01)01127-X 10.1021/ac802275e 10.1021/cr5003485 10.1016/S1352-2310(01)00456-3 10.1038/srep12992 10.1016/j.chemosphere.2018.12.111 10.1021/acs.est.0c05883 10.1016/j.talanta.2019.120128 10.1016/j.chemosphere.2006.09.054 10.1016/j.atmosenv.2007.12.010 10.1080/10406638.2014.892886 10.1007/s00216-006-0586-z |
| ContentType | Journal Article |
| Copyright | 2021 John Wiley & Sons, Ltd. 2022 John Wiley & Sons, Ltd. |
| Copyright_xml | – notice: 2021 John Wiley & Sons, Ltd. – notice: 2022 John Wiley & Sons, Ltd. |
| DBID | AAYXX CITATION NPM 7QF 7QO 7QP 7QQ 7QR 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 7U7 8BQ 8FD C1K F1W F28 FR3 H8D H8G H97 JG9 JQ2 K9. KR7 L.G L7M L~C L~D P64 7X8 7S9 L.6 |
| DOI | 10.1002/jms.4804 |
| DatabaseName | CrossRef PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Calcium & Calcified Tissue Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Neurosciences Abstracts Solid State and Superconductivity Abstracts Toxicology Abstracts METADEX Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality Materials Research Database ProQuest Computer Science Collection ProQuest Health & Medical Complete (Alumni) Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef PubMed Materials Research Database Aquatic Science & Fisheries Abstracts (ASFA) Professional Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Health & Medical Complete (Alumni) Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality Materials Business File Environmental Sciences and Pollution Management Aerospace Database Copper Technical Reference Library Engineered Materials Abstracts Biotechnology Research Abstracts Chemoreception Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Toxicology Abstracts Electronics & Communications Abstracts Ceramic Abstracts Neurosciences Abstracts METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional ASFA: Aquatic Sciences and Fisheries Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Corrosion Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | MEDLINE - Academic AGRICOLA CrossRef PubMed Materials Research Database |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Chemistry |
| EISSN | 1096-9888 |
| EndPage | n/a |
| ExternalDocumentID | 35019202 10_1002_jms_4804 JMS4804 |
| Genre | article Journal Article |
| GrantInformation_xml | – fundername: US National Science Foundation funderid: AGS‐2039985 – fundername: US National Science Foundation grantid: AGS-2039985 |
| GroupedDBID | --- -~X .3N .GA .GJ .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHBH AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDBF ABEML ABIJN ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACIWK ACNCT ACPOU ACPRK ACRPL ACSCC ACUHS ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AI. AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB AQPKS ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM DU5 EBD EBS EJD F00 F01 F04 F5P FEDTE G-S G.N GNP GODZA H.T H.X HBH HF~ HGLYW HHY HHZ HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K RIWAO RNS ROL RWI RX1 RYL SAMSI SUPJJ TN5 TUS UB1 UQL V2E VH1 W8V W99 WBFHL WBKPD WIB WIH WIK WJL WOHZO WQJ WRC WRJ WXSBR WYISQ XG1 XPP XV2 ZCG ZZTAW ~02 ~IA ~KM ~WT AAMMB AAYXX AEFGJ AEYWJ AGHNM AGQPQ AGXDD AGYGG AIDQK AIDYY CITATION O8X NPM 7QF 7QO 7QP 7QQ 7QR 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 7U7 8BQ 8FD C1K F1W F28 FR3 H8D H8G H97 JG9 JQ2 K9. KR7 L.G L7M L~C L~D P64 7X8 7S9 L.6 |
| ID | FETCH-LOGICAL-c3824-76b3da29ca087839f0296cb5a709532bb400e7273f9c1b20f7129eca04597f283 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 17 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000750803300005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1076-5174 1096-9888 |
| IngestDate | Fri Jul 11 18:26:54 EDT 2025 Fri Jul 11 16:12:52 EDT 2025 Sat Nov 29 14:53:08 EST 2025 Mon Jul 21 05:40:45 EDT 2025 Tue Nov 18 22:38:37 EST 2025 Sat Nov 29 07:07:01 EST 2025 Wed Jan 22 16:27:46 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Keywords | photodiode array detector atmospheric pressure photoionization high performance liquid chromatography quantitation analysis of complex mixtures mass spectrometry electrospray ionization polycyclic aromatic hydrocarbons |
| Language | English |
| License | 2021 John Wiley & Sons, Ltd. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c3824-76b3da29ca087839f0296cb5a709532bb400e7273f9c1b20f7129eca04597f283 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-7836-8417 0000-0002-5757-9784 |
| PMID | 35019202 |
| PQID | 2625183927 |
| PQPubID | 1006399 |
| PageCount | 14 |
| ParticipantIDs | proquest_miscellaneous_2675562470 proquest_miscellaneous_2619216948 proquest_journals_2625183927 pubmed_primary_35019202 crossref_primary_10_1002_jms_4804 crossref_citationtrail_10_1002_jms_4804 wiley_primary_10_1002_jms_4804_JMS4804 |
| PublicationCentury | 2000 |
| PublicationDate | February 2022 2022-02-00 2022-Feb 20220201 |
| PublicationDateYYYYMMDD | 2022-02-01 |
| PublicationDate_xml | – month: 02 year: 2022 text: February 2022 |
| PublicationDecade | 2020 |
| PublicationPlace | England |
| PublicationPlace_xml | – name: England – name: Bognor Regis |
| PublicationTitle | Journal of mass spectrometry. |
| PublicationTitleAlternate | J Mass Spectrom |
| PublicationYear | 2022 |
| Publisher | Wiley Subscription Services, Inc |
| Publisher_xml | – name: Wiley Subscription Services, Inc |
| References | 2015; 35 2021; 21 2009; 43 2009; 81 2013; 20 1991; 60 1975 2020; 11 2019; 205 2004; 1023 1993; 642 2012; 10 2020; 4 2004; 378 2010; 28 2019; 27 2012; 26 2007; 21 2012; 23 2007; 67 1998; 12 2021; 2021 1997; 774 2015; 17 2021; 5 2006; 53 2015; 5 2009; 20 2012 2015; 50 2014; 48 2016; 568 2016; 128 2016; 50 2001; 928 2015; 7 2007; 13 2019; 220 2017; 51 2021; 55 2015; 115 2000; 34 1995; 88 1993; 97 1967; 5 2018; 90 2017 2011; 1218 1998; 106 2008; 42 2018; 12 2001; 35 2006; 1131 2012; 116 2016; 25 2011; 101 2006; 386 2005; 1067 e_1_2_6_51_1 e_1_2_6_53_1 e_1_2_6_32_1 e_1_2_6_30_1 West B (e_1_2_6_64_1) 2012; 116 e_1_2_6_19_1 e_1_2_6_13_1 e_1_2_6_36_1 e_1_2_6_59_1 e_1_2_6_11_1 e_1_2_6_34_1 e_1_2_6_17_1 e_1_2_6_55_1 e_1_2_6_15_1 e_1_2_6_38_1 e_1_2_6_57_1 e_1_2_6_62_1 e_1_2_6_43_1 e_1_2_6_20_1 e_1_2_6_41_1 e_1_2_6_60_1 e_1_2_6_9_1 e_1_2_6_5_1 e_1_2_6_7_1 e_1_2_6_24_1 e_1_2_6_49_1 e_1_2_6_3_1 e_1_2_6_22_1 e_1_2_6_66_1 e_1_2_6_45_1 e_1_2_6_26_1 e_1_2_6_47_1 e_1_2_6_52_1 e_1_2_6_54_1 e_1_2_6_10_1 e_1_2_6_31_1 e_1_2_6_50_1 e_1_2_6_14_1 e_1_2_6_35_1 e_1_2_6_12_1 e_1_2_6_33_1 e_1_2_6_18_1 e_1_2_6_39_1 e_1_2_6_56_1 e_1_2_6_16_1 e_1_2_6_37_1 e_1_2_6_58_1 e_1_2_6_63_1 e_1_2_6_42_1 e_1_2_6_65_1 e_1_2_6_21_1 e_1_2_6_40_1 e_1_2_6_61_1 e_1_2_6_8_1 Moldoveanu SC (e_1_2_6_28_1) 2010 e_1_2_6_4_1 e_1_2_6_6_1 e_1_2_6_25_1 e_1_2_6_48_1 e_1_2_6_23_1 e_1_2_6_2_1 e_1_2_6_29_1 e_1_2_6_44_1 e_1_2_6_67_1 e_1_2_6_27_1 e_1_2_6_46_1 |
| References_xml | – volume: 5 start-page: 1983 issue: 8 year: 2021 end-page: 1996 article-title: Molecular‐level study of the photo‐oxidation of aqueous‐phase guaiacyl acetone in the presence of 3c*: formation of brown carbon products publication-title: ACS Earth Space Chem – volume: 378 start-page: 862 issue: 4 year: 2004 end-page: 874 article-title: LC‐MS analysis in the aquatic environment and in water treatment technology – a critical review publication-title: Anal Bioanal Chem – volume: 13 start-page: 322 issue: 2 year: 2007 end-page: 338 article-title: Evaluating Human Risk from Exposure to Alkylated PAHs in an Aquatic System publication-title: Hum Ecol Risk Assess Int J – volume: 115 start-page: 3919 issue: 10 year: 2015 end-page: 3983 article-title: The molecular identification of organic compounds in the atmosphere: state of the art and challenges publication-title: Chem Rev – volume: 25 start-page: 107 issue: 1 year: 2016 end-page: 123 article-title: A review on polycyclic aromatic hydrocarbons: source, environmental impact, effect on human health and remediation publication-title: Egypt J Petroleum – volume: 50 start-page: 11815 issue: 21 year: 2016 end-page: 11824 article-title: Molecular characterization of brown carbon in biomass burning aerosol particles publication-title: Environ Sci Technol – volume: 48 start-page: 5583 issue: 10 year: 2014 end-page: 5592 article-title: Field Measurements of the Atmospheric Dry Deposition Fluxes and Velocities of Polycyclic Aromatic Hydrocarbons to the Global Oceans publication-title: Environ Sci Technol – volume: 774 start-page: 349 issue: 1 year: 1997 end-page: 361 article-title: Occurrence and determination of organic pollutants in aerosol, precipitation, and sediment samples collected at Lake Balaton publication-title: J Chromatogr A – year: 1975 – volume: 90 start-page: 12493 issue: 21 year: 2018 end-page: 12502 article-title: Comprehensive Molecular Characterization of Atmospheric Brown Carbon by High Resolution Mass Spectrometry with Electrospray and Atmospheric Pressure Photoionization publication-title: Anal Chem – volume: 106 start-page: 975 issue: suppl 4 year: 1998 end-page: 981 article-title: Modulated gap junctional intercellular communication as a biomarker of PAH epigenetic toxicity: structure‐function relationship publication-title: Environ Health Perspect – volume: 5 start-page: 429 issue: 6 year: 1967 end-page: 431 article-title: On the size distribution of benzo(a)pyrene containing particles in urban air publication-title: Atmos Environ – volume: 35 start-page: 147 issue: 2‐4 year: 2015 end-page: 160 article-title: The source of U.S. EPA's sixteen PAH priority pollutants publication-title: Polycyclic Aromat Compd – volume: 43 start-page: 812 issue: 4 year: 2009 end-page: 819 article-title: Global atmospheric emission inventory of polycyclic aromatic hydrocarbons (PAHs) for 2004 publication-title: Atmos Environ – volume: 97 start-page: 12282 issue: 47 year: 1993 end-page: 12290 article-title: Time‐dependent mass spectra and breakdown graphs. 17. Naphthalene and phenanthrene publication-title: J Phys Chem – volume: 88 start-page: 91 issue: 1 year: 1995 end-page: 108 article-title: Polynuclear aromatic hydrocarbons in the United Kingdom environment: a preliminary source inventory and budget publication-title: Environ Pollut – volume: 35 start-page: 6245 issue: 36 year: 2001 end-page: 6258 article-title: Atmospheric deposition of polycyclic aromatic hydrocarbons near New England coastal waters publication-title: Atmos Environ – volume: 10 start-page: 876 issue: 3 year: 2012 end-page: 899 article-title: Multi‐residue analytical methods for the determination of pesticides and PPCPs in water by LC‐MS/MS: a review publication-title: Open Chemistry – volume: 205 year: 2019 article-title: Method development for simultaneous analyses of polycyclic aromatic hydrocarbons and their nitro‐, oxy‐, hydroxy‐ derivatives in sediments publication-title: Talanta – volume: 17 start-page: 23312 issue: 36 year: 2015 end-page: 23325 article-title: Molecular characterization of brown carbon (BrC) chromophores in secondary organic aerosol generated from photo‐oxidation of toluene publication-title: PCCP – volume: 101 start-page: 341 issue: 1 year: 2011 end-page: 353 article-title: Atmospheric wet and dry deposition of polycyclic aromatic hydrocarbons (PAHs) determined using a modified sampler publication-title: Atmos Res – volume: 11 year: 2020 article-title: Polycyclic aromatic hydrocarbons: sources, toxicity, and remediation approaches publication-title: Front Microbiol – volume: 642 start-page: 329 issue: 1 year: 1993 end-page: 349 article-title: Determination of polycyclic aromatic hydrocarbons by liquid chromatography publication-title: J Chromatogr A – volume: 35 start-page: 187 issue: 2‐4 year: 2015 end-page: 247 article-title: Analytical methods for determination of polycyclic aromatic hydrocarbons (PAHs)—a historical perspective on the 16 U.S. EPA Priority Pollutant PAHs publication-title: Polycyclic Aromat Compd – volume: 2021 year: 2021 article-title: Analysis of polycyclic aromatic hydrocarbon in airborne particulate matter samples by gas chromatography in combination with tandem mass spectrometry (GC‐MS/MS) publication-title: J Anal Methods Chem – volume: 928 start-page: 53 issue: 1 year: 2001 end-page: 61 article-title: Determination of polycyclic aromatic hydrocarbons by liquid chromatography–electrospray ionization mass spectrometry using silver nitrate as a post‐column reagent publication-title: J Chromatogr A – volume: 26 start-page: 2517 issue: 21 year: 2012 end-page: 2525 article-title: Investigation of the ionization mechanism of polycyclic aromatic hydrocarbons using an ethanol/bromobenzene/chlorobenzene/anisole mixture as a dopant in liquid chromatography/atmospheric pressure photoionization mass spectrometry publication-title: Rapid Commun Mass Spectrom – volume: 42 start-page: 2895 issue: 13 year: 2008 end-page: 2921 article-title: Atmospheric polycyclic aromatic hydrocarbons: source attribution, emission factors and regulation publication-title: Atmos Environ – volume: 106 start-page: 17 issue: 1 year: 1998 end-page: 22 article-title: Bay or baylike regions of polycyclic aromatic hydrocarbons were potent inhibitors of Gap junctional intercellular communication publication-title: Environ Health Perspect – volume: 568 start-page: 391 year: 2016 end-page: 401 article-title: Polycyclic aromatic hydrocarbons in biomass‐burning emissions and their contribution to light absorption and aerosol toxicity publication-title: Sci Total Environ – volume: 51 start-page: 11561 issue: 20 year: 2017 end-page: 11570 article-title: Molecular chemistry of atmospheric brown carbon inferred from a nationwide biomass burning event publication-title: Environ Sci Technol – volume: 12 start-page: 712 issue: 11 year: 1998 end-page: 728 article-title: Isomeric identification and quantification of polycyclic aromatic hydrocarbons in environmental samples by liquid chromatography tandem mass spectrometry using a high pressure quadrupole collision cell publication-title: Rapid Commun Mass Spectrom – volume: 1067 start-page: 1 issue: 1 year: 2005 end-page: 14 article-title: Liquid chromatography–tandem mass spectrometry for the analysis of pharmaceutical residues in environmental samples: a review publication-title: J Chromatogr A – volume: 55 start-page: 5199 issue: 8 year: 2021 end-page: 5211 article-title: Photosensitized Reactions of a Phenolic Carbonyl from Wood Combustion in the Aqueous Phase—Chemical Evolution and Light Absorption Properties of AqSOA publication-title: Environ Sci Technol – volume: 28 start-page: 693 year: 2010 end-page: 699 – volume: 90 start-page: 4203 issue: 6 year: 2018 end-page: 4211 article-title: Ionization of Gas‐Phase Polycyclic Aromatic Hydrocarbons in Electrospray Ionization Coupled with Gas Chromatography publication-title: Anal Chem – volume: 27 start-page: 815 issue: 3 year: 2019 end-page: 824 article-title: Determination of polycyclic aromatic hydrocarbons (PAHs) in cosmetic products by gas chromatography‐tandem mass spectrometry publication-title: J Food Drug Anal – volume: 60 start-page: 279 issue: 3 year: 1991 end-page: 300 article-title: A review of atmospheric polycyclic aromatic hydrocarbons: sources, fate and behavior publication-title: Water Air Soil Pollut – volume: 21 start-page: 8531 issue: 11 year: 2021 end-page: 8555 article-title: Measurement report: molecular composition, optical properties, and radiative effects of water‐soluble organic carbon in snowpack samples from northern Xinjiang, China publication-title: Atmos Chem Phys – volume: 386 start-page: 941 issue: 4 year: 2006 end-page: 952 article-title: Multi‐residue analytical methods using LC‐tandem MS for the determination of pharmaceuticals in environmental and wastewater samples: a review publication-title: Anal Bioanal Chem – volume: 53 start-page: 215 issue: 2 year: 2006 end-page: 224 article-title: Dispersion and dry and wet deposition of PAHs in an atmospheric environment publication-title: Water Sci Technol – volume: 50 start-page: 549 issue: 3 year: 2015 end-page: 557 article-title: Electrospray ionization for determination of non‐polar polyaromatic hydrocarbons and polyaromatic heterocycles in heavy crude oil asphaltenes publication-title: J Mass Spectrom – volume: 115 start-page: 4335 issue: 10 year: 2015 end-page: 4382 article-title: Chemistry of atmospheric brown carbon publication-title: Chem Rev – volume: 12 start-page: 63 issue: 1 year: 2018 end-page: 71 article-title: Atmospheric deposition of polycyclic aromatic hydrocarbons (PAHs) in Shanghai: the spatio‐temporal variation and source identification publication-title: Front Earth Sci – volume: 220 start-page: 1163 year: 2019 end-page: 1178 article-title: Polycyclic aromatic hydrocarbons in consumer goods made from recycled rubber material: a review publication-title: Chemosphere – volume: 1023 start-page: 225 issue: 2 year: 2004 end-page: 229 article-title: Calculation of the molar absorptivity of polyphenols by using liquid chromatography with diode array detection: the case of carnosic acid publication-title: J Chromatogr A – volume: 55 start-page: 2511 issue: 4 year: 2021 end-page: 2521 article-title: Chemical Composition and Molecular‐Specific Optical Properties of Atmospheric Brown Carbon Associated with Biomass Burning publication-title: Environ Sci Technol – volume: 128 start-page: 92 year: 2016 end-page: 103 article-title: Identification of products formed during the heterogeneous nitration and ozonation of polycyclic aromatic hydrocarbons publication-title: Atmos Environ – volume: 34 start-page: 3690 issue: 17 year: 2000 end-page: 3697 article-title: Adsorption onto Aerosol Soot Carbon Dominates Gas‐Particle Partitioning of Polycyclic Aromatic Hydrocarbons publication-title: Environ Sci Technol – volume: 26 start-page: 1488 issue: 12 year: 2012 end-page: 1496 article-title: Multicomponent mixed dopant optimization for rapid screening of polycyclic aromatic hydrocarbons using ultra high performance liquid chromatography coupled to atmospheric pressure photoionization high‐resolution mass spectrometry publication-title: Rapid Commun Mass Spectrom – volume: 81 start-page: 2123 issue: 6 year: 2009 end-page: 2128 article-title: Ultra Performance Liquid Chromatography−Atmospheric Pressure Photoionization‐Tandem Mass Spectrometry for High‐Sensitivity and High‐Throughput Analysis of U.S. Environmental Protection Agency 16 Priority Pollutants Polynuclear Aromatic Hydrocarbons publication-title: Anal Chem – volume: 5 issue: 1 year: 2015 article-title: Fast analysis of 29 polycyclic aromatic hydrocarbons (PAHs) and nitro‐PAHs with ultra‐high performance liquid chromatography‐atmospheric pressure photoionization‐tandem mass spectrometry publication-title: Sci Rep – volume: 116 start-page: 10999 issue: 45 year: 2012 end-page: 11007 article-title: On the dissociation of the naphthalene radical cation: new iPEPICO and tandem mass spectrometry results publication-title: Chem A Eur J – start-page: 107 year: 2012 end-page: 131 – volume: 7 start-page: 1339 issue: 3 year: 2015 end-page: 1350 article-title: Dry deposition of polycyclic aromatic compounds to various land covers in the Athabasca oil sands region publication-title: J Adv Model Earth Syst – volume: 1218 start-page: 23 issue: 1 year: 2011 end-page: 31 article-title: Development and optimisation of a dopant assisted liquid chromatographic‐atmospheric pressure photo ionisation‐tandem mass spectrometric method for the determination of 15+1 EU priority PAHs in edible oils publication-title: J Chromatogr A – volume: 20 start-page: 5753 issue: 8 year: 2013 end-page: 5763 article-title: Gas/particle partitioning of polycyclic aromatic hydrocarbons in coastal atmosphere of the north Yellow Sea, China publication-title: Environ Sci Pollut Res – volume: 20 start-page: 73 issue: 1 year: 2009 end-page: 79 article-title: Comparison of dopants for charge exchange ionization of nonpolar polycyclic aromatic hydrocarbons with reversed‐phase LC‐APPI‐MS publication-title: J Am Soc Mass Spectrom – volume: 1131 start-page: 285 issue: 1 year: 2006 end-page: 288 article-title: Optimization of the dopant for the trace determination of polycyclic aromatic hydrocarbons by liquid chromatography/dopant‐assisted atmospheric‐pressure photoionization/mass spectrometry publication-title: J Chromatogr A – volume: 67 start-page: 537 issue: 3 year: 2007 end-page: 547 article-title: Atmospheric deposition of polycyclic aromatic hydrocarbons to Izmit Bay, Turkey publication-title: Chemosphere – volume: 4 start-page: 1090 issue: 7 year: 2020 end-page: 1103 article-title: Molecular composition and optical properties of brown carbon generated by the ethane flame publication-title: ACS Earth Space Chem – year: 2017 – volume: 21 start-page: 3694 issue: 22 year: 2007 end-page: 3700 article-title: Analysis of polycyclic aromatic hydrocarbons by liquid chromatography/tandem mass spectrometry using atmospheric pressure chemical ionization or electrospray ionization with tropylium post‐column derivatization publication-title: Rapid Commun Mass Spectrom – volume: 23 start-page: 530 issue: 3 year: 2012 end-page: 536 article-title: Detection and monitoring of PAH and oxy‐PAHs by high resolution mass spectrometry: comparison of ESI, APCI and APPI source detection publication-title: J Am Soc Mass Spectrom – ident: e_1_2_6_5_1 doi: 10.1007/BF00282628 – ident: e_1_2_6_23_1 – volume: 116 start-page: 10999 issue: 45 year: 2012 ident: e_1_2_6_64_1 article-title: On the dissociation of the naphthalene radical cation: new iPEPICO and tandem mass spectrometry results publication-title: Chem A Eur J – ident: e_1_2_6_16_1 doi: 10.1021/es991201 – ident: e_1_2_6_65_1 doi: 10.1021/j100149a031 – ident: e_1_2_6_40_1 doi: 10.1002/rcm.6373 – ident: e_1_2_6_59_1 doi: 10.1016/j.chroma.2004.10.110 – ident: e_1_2_6_18_1 doi: 10.1016/S0021-9673(97)00265-3 – ident: e_1_2_6_43_1 doi: 10.1016/j.jasms.2008.09.012 – ident: e_1_2_6_22_1 – ident: e_1_2_6_31_1 doi: 10.5772/intechopen.71163 – ident: e_1_2_6_26_1 doi: 10.1289/ehp.9810617 – ident: e_1_2_6_25_1 doi: 10.1007/978-3-7643-8340-4_5 – ident: e_1_2_6_32_1 doi: 10.1016/j.jfda.2019.01.003 – ident: e_1_2_6_10_1 doi: 10.1016/j.atmosres.2011.03.012 – ident: e_1_2_6_37_1 doi: 10.1021/acs.analchem.8b00401 – ident: e_1_2_6_48_1 doi: 10.1021/acs.est.6b03024 – ident: e_1_2_6_63_1 doi: 10.1002/(SICI)1097-0231(19980615)12:11<712::AID-RCM215>3.0.CO;2-2 – ident: e_1_2_6_8_1 doi: 10.1007/s11356-013-1588-y – ident: e_1_2_6_57_1 doi: 10.1007/s00216-003-2412-1 – ident: e_1_2_6_60_1 doi: 10.2478/s11532-012-0028-z – ident: e_1_2_6_24_1 doi: 10.1289/ehp.98106s4975 – ident: e_1_2_6_67_1 doi: 10.1016/S0021-9673(03)01206-8 – ident: e_1_2_6_36_1 doi: 10.1007/s13361-011-0304-8 – ident: e_1_2_6_41_1 doi: 10.1016/j.chroma.2010.10.015 – ident: e_1_2_6_55_1 doi: 10.1021/acsearthspacechem.1c00103 – ident: e_1_2_6_46_1 doi: 10.1016/j.atmosenv.2015.12.036 – ident: e_1_2_6_11_1 doi: 10.2166/wst.2006.055 – ident: e_1_2_6_15_1 doi: 10.1021/es500846p – ident: e_1_2_6_34_1 doi: 10.1016/j.scitotenv.2016.06.026 – ident: e_1_2_6_49_1 doi: 10.1021/acs.est.7b02276 – ident: e_1_2_6_3_1 doi: 10.1016/j.ejpe.2015.03.011 – ident: e_1_2_6_52_1 doi: 10.1039/C5CP02563J – ident: e_1_2_6_54_1 doi: 10.1021/acs.est.0c07581 – ident: e_1_2_6_66_1 doi: 10.1021/cr5006167 – ident: e_1_2_6_27_1 doi: 10.1080/10807030701226277 – ident: e_1_2_6_17_1 doi: 10.1016/0004-6981(71)90146-6 – ident: e_1_2_6_19_1 doi: 10.1080/10406638.2014.970291 – ident: e_1_2_6_12_1 doi: 10.1002/2015MS000473 – ident: e_1_2_6_50_1 doi: 10.1021/acsearthspacechem.0c00095 – ident: e_1_2_6_9_1 doi: 10.1007/s11707-016-0613-0 – ident: e_1_2_6_33_1 doi: 10.1155/2021/6641326 – ident: e_1_2_6_62_1 doi: 10.1002/jms.3561 – ident: e_1_2_6_2_1 doi: 10.3389/fmicb.2020.562813 – ident: e_1_2_6_7_1 doi: 10.1016/j.atmosenv.2008.10.050 – ident: e_1_2_6_6_1 doi: 10.1016/0269-7491(95)91052-M – ident: e_1_2_6_56_1 doi: 10.5194/acp-21-8531-2021 – ident: e_1_2_6_39_1 doi: 10.1002/rcm.3267 – ident: e_1_2_6_30_1 doi: 10.1016/0021-9673(93)80097-R – ident: e_1_2_6_44_1 doi: 10.1002/rcm.6250 – ident: e_1_2_6_42_1 doi: 10.1016/j.chroma.2006.08.091 – ident: e_1_2_6_51_1 doi: 10.1021/acs.analchem.8b02177 – ident: e_1_2_6_38_1 doi: 10.1016/S0021-9673(01)01127-X – ident: e_1_2_6_35_1 doi: 10.1021/ac802275e – ident: e_1_2_6_61_1 doi: 10.1021/cr5003485 – ident: e_1_2_6_13_1 doi: 10.1016/S1352-2310(01)00456-3 – ident: e_1_2_6_21_1 – ident: e_1_2_6_45_1 doi: 10.1038/srep12992 – ident: e_1_2_6_29_1 doi: 10.1016/j.chemosphere.2018.12.111 – ident: e_1_2_6_53_1 doi: 10.1021/acs.est.0c05883 – ident: e_1_2_6_47_1 doi: 10.1016/j.talanta.2019.120128 – ident: e_1_2_6_14_1 doi: 10.1016/j.chemosphere.2006.09.054 – ident: e_1_2_6_4_1 doi: 10.1016/j.atmosenv.2007.12.010 – ident: e_1_2_6_20_1 doi: 10.1080/10406638.2014.892886 – start-page: 693 volume-title: Techniques and Instrumentation in Analytical Chemistry year: 2010 ident: e_1_2_6_28_1 – ident: e_1_2_6_58_1 doi: 10.1007/s00216-006-0586-z |
| SSID | ssj0009946 |
| Score | 2.4409862 |
| Snippet | Polycyclic aromatic hydrocarbons (PAHs) are common pollutants present in atmospheric aerosols and other environmental mixtures. They are of particular air... |
| SourceID | proquest pubmed crossref wiley |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | e4804 |
| SubjectTerms | absorbance Absorption Absorption coefficient Absorptivity Acidification Aerosols Air quality analysis of complex mixtures Aromatic compounds Aromatic hydrocarbons Arrays Atmospheric aerosols Atmospheric pressure atmospheric pressure photoionization carcinogenicity Carcinogens Chemical composition chemical species Chromatography climate Collision dynamics Detection Detection limits Electromagnetic absorption electrospray ionization electrospray ionization mass spectrometry Electrospraying Environmental chemistry Experiments Formic acid Geochemistry high performance liquid chromatography human health Ionization Ions Light absorption Liquid chromatography Mass mass spectrometry Organic compounds Photochemical reactions photodiode array detector Photodiodes Photoionization Pollutants Polycyclic aromatic hydrocarbons Quantitation Quantitative analysis Radiative forcing Resolution Solar radiation Spectrometry Toxins Wavelength wavelengths |
| Title | Quantitative analysis of polycyclic aromatic hydrocarbons using high‐performance liquid chromatography‐photodiode array‐high‐resolution mass spectrometric detection platform coupled to electrospray and atmospheric pressure photoionization sources |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjms.4804 https://www.ncbi.nlm.nih.gov/pubmed/35019202 https://www.proquest.com/docview/2625183927 https://www.proquest.com/docview/2619216948 https://www.proquest.com/docview/2675562470 |
| Volume | 57 |
| WOSCitedRecordID | wos000750803300005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1096-9888 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009946 issn: 1076-5174 databaseCode: DRFUL dateStart: 19960101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3bjtMwELWgiwQv3C-FZTVICJ7Cpm5ax49ooUJoWXFbqW-RYzvbojQJuSD1jU_gG_kQxIzjtlpxERJPVZpx7MjH9nE8c4axx1Npo0xFOpBjpYJIZCZQyGMDZRSXccZHNnM9fSxOTuL5XL71XpUUC9PrQ2w_uNHIcPM1DXCVNoc70dBPq-ZZFJMU6B5H2EYDtvfi_ez0eCe5K_vYItypB6THvJGeDfnhpuz5xegXhnmesLoVZ3btf9p6nV31PBOe98C4wS7Y4ia7fLRJ73aL_XjXqcJFmOF8B8prk0CZQVXma73W-VKDqksn6QqLtcGVTtUpghTIV_4MSOj4-9dv1S7yAPLl525pQC9cMS-GTTaLsi3NsjRYUV0r-suXxs2-xz6skMaDC_wkBQVKHADGts5TrIAqVy1VA7rsqtwaaEvwGXyaCp-IL2BAtSu8ooBGDc6_t6stuLrpo3Mfbwr9aUVzm53OXn48ehX4ZBCBHsc8CsQ0HRN-tApjgawuC7mc6nSiBCnm8TTFycgSGcukHqU8zAQyGYvWEW6ZMiRRd9igKAt7j4GaRAjdbGTEGNmi1FJMdBiaVJBQzkSMh-zpBhWJ9krplLAjT3qNZ55gfybUn0P2aGtZ9eogv7HZ3wAr8fNDk3DcdjpuKvAR29uIADquUYUtO7IhrbqpjOK_2YgJMthIhEN2twfttiF0ZCx5yIfsicPmH1uYvH7zgX7v_6vhA3aFUxSIc17fZ4O27uxDdkl_aZdNfcAuinl84EfjT8j8Rks |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3ZjtMwFLVGHaThhX0pDHCREDyFSd2kTsQTGqgG6FQsM9K8RY7t0KI0CVmQ-sYn8I18COJeJ2k1YhEST1GS69iRj-3j5Z7L2KNJaLxEesoJx1I6nki0I5HHOlJLHgYJH5nE1vRMzOfB2Vn4doc9631hWn2IzYIbtQzbX1MDpwXpg61q6KdV9dQLSAt010MU-QO2--L99HS21dwNW-cinKo7JMjca8-6_KBPe340-oVinmesdsiZXv6vwl5hlzqmCc9baFxlOya7xvYO-wBv19mPd43MrI8Z9nggO3USyBMo8nSt1ipdKpBlbkVdYbHWONbJMkaYAp2W_wgkdfz967di63sA6fJzs9SgFjZZJ4dNNou8zvUy15hRWUp61KXG6X6HflghkQfr-kkaChQ6ALSp7VmxDIpU1pQNqLwpUqOhzqGL4VMV-EX8AQ2yXuEduTQqsCd8m9KAzZuWnVuPU2j3K6ob7HT68uTwyOnCQThqHHDPEZN4TAhS0g0E8rrE5eFExb4UpJnH4xi7I0N0LAnVKOZuIpDLGLT2cNKUII26yQZZnpnbDKTvIXiTkRZj5IuhCoWvXFfHgqRyfDEesic9LCLVaaVTyI40alWeeYT1GVF9DtnDjWXR6oP8xma_R1bU9RBVxHHiadmpwE9sXiMCaMNGZiZvyIbU6iahF_zNRvjIYT3hDtmtFrWbgtCmcchdPmSPLTj_WMLo9fEHut75V8MHbO_o5HgWzV7N39xlFzn5hNij7PtsUJeNuccuqC_1sirvd43yJ1-hSVM |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bb9MwFLamDQEv3C-FAQcJwVO21E3qWDyhjYpLmcZl0t4ix3ZoUZqENEHqGz-B38gPQZzjJK0mLkLiKUpyHDvyZ_vz5XyHsUdjaYNUBdqTI6W8QKTGU8hjPWUUl1HKhzZ1NT0VR0fR6ak83mJPe1-YVh9iveBGLcP119TAbWnS_Y1q6KfFci-ISAt0JwjlGFvlzuG7ycl0o7krW-cinKp7JMjca8_6fL9Pe3Y0-oVinmWsbsiZXP6vwl5hlzqmCc9aaFxlWza_xi4c9AHerrMfbxuVOx8z7PFAdeokUKRQFtlKr3Q216Cqwom6wmxlcKxTVYIwBTot_xFI6vj712_lxvcAsvnnZm5Az1yyTg6bbGZFXZh5YTCjqlL0qEuN0_0O_bBAIg_O9ZM0FCh0ABhbu7NiOZSZqikb0EVTZtZAXUAXw2dZ4hfxBwyoeoF35NKowZ3wbSoLLm9adm49TqHdr1jeYCeT5x8OXnhdOAhPjyIeeGKcjAhBWvmRQF6X-lyOdRIqQZp5PEmwO7JEx1Kphwn3U4FcxqI1okOkSKNusu28yO1tBioMELzp0IgR8kWppQi175tEkFROKEYD9qSHRaw7rXQK2ZHFrcozj7E-Y6rPAXu4tixbfZDf2Oz2yIq7HmIZc5x4OnYq8BPr14gA2rBRuS0asiG1urEMor_ZiBA5bCD8AbvVonZdENo0ltznA_bYgfOPJYxfvXlP1zv_aviAnT8-nMTTl0ev77KLnFxC3En2XbZdV429x87pL_V8Wd3v2uRPhetIzg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quantitative+analysis+of+polycyclic+aromatic+hydrocarbons+using+high%E2%80%90performance+liquid+chromatography%E2%80%90photodiode+array%E2%80%90high%E2%80%90resolution+mass+spectrometric+detection+platform+coupled+to+electrospray+and+atmospheric+pressure+photoionization+sources&rft.jtitle=Journal+of+mass+spectrometry.&rft.au=Hettiyadura%2C+Anusha+Priyadarshani+Silva&rft.au=Laskin%2C+Alexander&rft.date=2022-02-01&rft.issn=1076-5174&rft.eissn=1096-9888&rft.volume=57&rft.issue=2&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fjms.4804&rft.externalDBID=10.1002%252Fjms.4804&rft.externalDocID=JMS4804 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1076-5174&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1076-5174&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1076-5174&client=summon |