Quantitative analysis of polycyclic aromatic hydrocarbons using high‐performance liquid chromatography‐photodiode array‐high‐resolution mass spectrometric detection platform coupled to electrospray and atmospheric pressure photoionization sources

Polycyclic aromatic hydrocarbons (PAHs) are common pollutants present in atmospheric aerosols and other environmental mixtures. They are of particular air quality and human health concerns as many of them are carcinogenic toxins. They also affect absorption of solar radiation by aerosols, therefore...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of mass spectrometry. Ročník 57; číslo 2; s. e4804 - n/a
Hlavní autoři: Hettiyadura, Anusha Priyadarshani Silva, Laskin, Alexander
Médium: Journal Article
Jazyk:angličtina
Vydáno: England Wiley Subscription Services, Inc 01.02.2022
Témata:
ISSN:1076-5174, 1096-9888, 1096-9888
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Polycyclic aromatic hydrocarbons (PAHs) are common pollutants present in atmospheric aerosols and other environmental mixtures. They are of particular air quality and human health concerns as many of them are carcinogenic toxins. They also affect absorption of solar radiation by aerosols, therefore contributing to the radiative forcing of climate. For environmental chemistry studies, it is advantageous to quantify PAH components using the same analytical technics that are commonly applied to characterize a broad range of polar analytes present in the same environmental mixtures. Liquid chromatography coupled with photodiode array and high‐resolution mass spectrometric detection (LC‐PDA‐HRMS) is a method of choice for comprehensive characterization of chemical composition and quantification of light absorption properties of individual organic compounds present in the environmental samples. However, quantification of non‐polar PAHs by this method is poorly established because of their imperfect ionization in electrospray ionization (ESI) technique. This tutorial article provides a comprehensive evaluation of the quantitative analysis of 16 priority pollutant PAHs in a standard reference material using the LC–MS platform coupled with the ESI source. Results are further corroborated by the quantitation experiments using an atmospheric pressure photoionization (APPI) method, which is more sensitive for the PAH detection. The basic concepts and step‐by‐step practical guidance for the PAHs quantitative characterization are offered based on the systematic experiments, which include (1) Evaluation effects of different acidification levels by formic acid on the (+)ESI‐MS detection of PAHs. (2) Comparison of detection limits in ESI+ versus APPI+ experiments. (3) Investigation of the PAH fragmentation patterns in MS2 experiments at different collision energies. (4) Calculation of wavelength dependent mass absorption coefficient (MACλ) of the standard mixture and its individual PAHs using LC‐PDA data. (5) Assessment of the minimal injected mass required for accurate quantification of MACλ of the standard mixture and of a multi‐component environmental sample.
AbstractList Polycyclic aromatic hydrocarbons (PAHs) are common pollutants present in atmospheric aerosols and other environmental mixtures. They are of particular air quality and human health concerns as many of them are carcinogenic toxins. They also affect absorption of solar radiation by aerosols, therefore contributing to the radiative forcing of climate. For environmental chemistry studies, it is advantageous to quantify PAH components using the same analytical technics that are commonly applied to characterize a broad range of polar analytes present in the same environmental mixtures. Liquid chromatography coupled with photodiode array and high‐resolution mass spectrometric detection (LC‐PDA‐HRMS) is a method of choice for comprehensive characterization of chemical composition and quantification of light absorption properties of individual organic compounds present in the environmental samples. However, quantification of non‐polar PAHs by this method is poorly established because of their imperfect ionization in electrospray ionization (ESI) technique. This tutorial article provides a comprehensive evaluation of the quantitative analysis of 16 priority pollutant PAHs in a standard reference material using the LC–MS platform coupled with the ESI source. Results are further corroborated by the quantitation experiments using an atmospheric pressure photoionization (APPI) method, which is more sensitive for the PAH detection. The basic concepts and step‐by‐step practical guidance for the PAHs quantitative characterization are offered based on the systematic experiments, which include (1) Evaluation effects of different acidification levels by formic acid on the (+)ESI‐MS detection of PAHs. (2) Comparison of detection limits in ESI+ versus APPI+ experiments. (3) Investigation of the PAH fragmentation patterns in MS2 experiments at different collision energies. (4) Calculation of wavelength dependent mass absorption coefficient (MACλ) of the standard mixture and its individual PAHs using LC‐PDA data. (5) Assessment of the minimal injected mass required for accurate quantification of MACλ of the standard mixture and of a multi‐component environmental sample.
Polycyclic aromatic hydrocarbons (PAHs) are common pollutants present in atmospheric aerosols and other environmental mixtures. They are of particular air quality and human health concerns as many of them are carcinogenic toxins. They also affect absorption of solar radiation by aerosols, therefore contributing to the radiative forcing of climate. For environmental chemistry studies, it is advantageous to quantify PAH components using the same analytical technics that are commonly applied to characterize a broad range of polar analytes present in the same environmental mixtures. Liquid chromatography coupled with photodiode array and high-resolution mass spectrometric detection (LC-PDA-HRMS) is a method of choice for comprehensive characterization of chemical composition and quantification of light absorption properties of individual organic compounds present in the environmental samples. However, quantification of non-polar PAHs by this method is poorly established because of their imperfect ionization in electrospray ionization (ESI) technique. This tutorial article provides a comprehensive evaluation of the quantitative analysis of 16 priority pollutant PAHs in a standard reference material using the LC-MS platform coupled with the ESI source. Results are further corroborated by the quantitation experiments using an atmospheric pressure photoionization (APPI) method, which is more sensitive for the PAH detection. The basic concepts and step-by-step practical guidance for the PAHs quantitative characterization are offered based on the systematic experiments, which include (1) Evaluation effects of different acidification levels by formic acid on the (+)ESI-MS detection of PAHs. (2) Comparison of detection limits in ESI+ versus APPI+ experiments. (3) Investigation of the PAH fragmentation patterns in MS2 experiments at different collision energies. (4) Calculation of wavelength dependent mass absorption coefficient (MACλ) of the standard mixture and its individual PAHs using LC-PDA data. (5) Assessment of the minimal injected mass required for accurate quantification of MACλ of the standard mixture and of a multi-component environmental sample.Polycyclic aromatic hydrocarbons (PAHs) are common pollutants present in atmospheric aerosols and other environmental mixtures. They are of particular air quality and human health concerns as many of them are carcinogenic toxins. They also affect absorption of solar radiation by aerosols, therefore contributing to the radiative forcing of climate. For environmental chemistry studies, it is advantageous to quantify PAH components using the same analytical technics that are commonly applied to characterize a broad range of polar analytes present in the same environmental mixtures. Liquid chromatography coupled with photodiode array and high-resolution mass spectrometric detection (LC-PDA-HRMS) is a method of choice for comprehensive characterization of chemical composition and quantification of light absorption properties of individual organic compounds present in the environmental samples. However, quantification of non-polar PAHs by this method is poorly established because of their imperfect ionization in electrospray ionization (ESI) technique. This tutorial article provides a comprehensive evaluation of the quantitative analysis of 16 priority pollutant PAHs in a standard reference material using the LC-MS platform coupled with the ESI source. Results are further corroborated by the quantitation experiments using an atmospheric pressure photoionization (APPI) method, which is more sensitive for the PAH detection. The basic concepts and step-by-step practical guidance for the PAHs quantitative characterization are offered based on the systematic experiments, which include (1) Evaluation effects of different acidification levels by formic acid on the (+)ESI-MS detection of PAHs. (2) Comparison of detection limits in ESI+ versus APPI+ experiments. (3) Investigation of the PAH fragmentation patterns in MS2 experiments at different collision energies. (4) Calculation of wavelength dependent mass absorption coefficient (MACλ) of the standard mixture and its individual PAHs using LC-PDA data. (5) Assessment of the minimal injected mass required for accurate quantification of MACλ of the standard mixture and of a multi-component environmental sample.
Polycyclic aromatic hydrocarbons (PAHs) are common pollutants present in atmospheric aerosols and other environmental mixtures. They are of particular air quality and human health concerns as many of them are carcinogenic toxins. They also affect absorption of solar radiation by aerosols, therefore contributing to the radiative forcing of climate. For environmental chemistry studies, it is advantageous to quantify PAH components using the same analytical technics that are commonly applied to characterize a broad range of polar analytes present in the same environmental mixtures. Liquid chromatography coupled with photodiode array and high‐resolution mass spectrometric detection (LC‐PDA‐HRMS) is a method of choice for comprehensive characterization of chemical composition and quantification of light absorption properties of individual organic compounds present in the environmental samples. However, quantification of non‐polar PAHs by this method is poorly established because of their imperfect ionization in electrospray ionization (ESI) technique. This tutorial article provides a comprehensive evaluation of the quantitative analysis of 16 priority pollutant PAHs in a standard reference material using the LC–MS platform coupled with the ESI source. Results are further corroborated by the quantitation experiments using an atmospheric pressure photoionization (APPI) method, which is more sensitive for the PAH detection. The basic concepts and step‐by‐step practical guidance for the PAHs quantitative characterization are offered based on the systematic experiments, which include (1) Evaluation effects of different acidification levels by formic acid on the (+)ESI‐MS detection of PAHs. (2) Comparison of detection limits in ESI+ versus APPI+ experiments. (3) Investigation of the PAH fragmentation patterns in MS² experiments at different collision energies. (4) Calculation of wavelength dependent mass absorption coefficient (MACλ) of the standard mixture and its individual PAHs using LC‐PDA data. (5) Assessment of the minimal injected mass required for accurate quantification of MACλ of the standard mixture and of a multi‐component environmental sample.
Polycyclic aromatic hydrocarbons (PAHs) are common pollutants present in atmospheric aerosols and other environmental mixtures. They are of particular air quality and human health concerns as many of them are carcinogenic toxins. They also affect absorption of solar radiation by aerosols, therefore contributing to the radiative forcing of climate. For environmental chemistry studies, it is advantageous to quantify PAH components using the same analytical technics that are commonly applied to characterize a broad range of polar analytes present in the same environmental mixtures. Liquid chromatography coupled with photodiode array and high‐resolution mass spectrometric detection (LC‐PDA‐HRMS) is a method of choice for comprehensive characterization of chemical composition and quantification of light absorption properties of individual organic compounds present in the environmental samples. However, quantification of non‐polar PAHs by this method is poorly established because of their imperfect ionization in electrospray ionization (ESI) technique. This tutorial article provides a comprehensive evaluation of the quantitative analysis of 16 priority pollutant PAHs in a standard reference material using the LC–MS platform coupled with the ESI source. Results are further corroborated by the quantitation experiments using an atmospheric pressure photoionization (APPI) method, which is more sensitive for the PAH detection. The basic concepts and step‐by‐step practical guidance for the PAHs quantitative characterization are offered based on the systematic experiments, which include (1) Evaluation effects of different acidification levels by formic acid on the (+)ESI‐MS detection of PAHs. (2) Comparison of detection limits in ESI+ versus APPI+ experiments. (3) Investigation of the PAH fragmentation patterns in MS 2 experiments at different collision energies. (4) Calculation of wavelength dependent mass absorption coefficient ( MAC λ ) of the standard mixture and its individual PAHs using LC‐PDA data. (5) Assessment of the minimal injected mass required for accurate quantification of MAC λ of the standard mixture and of a multi‐component environmental sample.
Polycyclic aromatic hydrocarbons (PAHs) are common pollutants present in atmospheric aerosols and other environmental mixtures. They are of particular air quality and human health concerns as many of them are carcinogenic toxins. They also affect absorption of solar radiation by aerosols, therefore contributing to the radiative forcing of climate. For environmental chemistry studies, it is advantageous to quantify PAH components using the same analytical technics that are commonly applied to characterize a broad range of polar analytes present in the same environmental mixtures. Liquid chromatography coupled with photodiode array and high-resolution mass spectrometric detection (LC-PDA-HRMS) is a method of choice for comprehensive characterization of chemical composition and quantification of light absorption properties of individual organic compounds present in the environmental samples. However, quantification of non-polar PAHs by this method is poorly established because of their imperfect ionization in electrospray ionization (ESI) technique. This tutorial article provides a comprehensive evaluation of the quantitative analysis of 16 priority pollutant PAHs in a standard reference material using the LC-MS platform coupled with the ESI source. Results are further corroborated by the quantitation experiments using an atmospheric pressure photoionization (APPI) method, which is more sensitive for the PAH detection. The basic concepts and step-by-step practical guidance for the PAHs quantitative characterization are offered based on the systematic experiments, which include (1) Evaluation effects of different acidification levels by formic acid on the (+)ESI-MS detection of PAHs. (2) Comparison of detection limits in ESI+ versus APPI+ experiments. (3) Investigation of the PAH fragmentation patterns in MS experiments at different collision energies. (4) Calculation of wavelength dependent mass absorption coefficient (MAC ) of the standard mixture and its individual PAHs using LC-PDA data. (5) Assessment of the minimal injected mass required for accurate quantification of MAC of the standard mixture and of a multi-component environmental sample.
Author Hettiyadura, Anusha Priyadarshani Silva
Laskin, Alexander
Author_xml – sequence: 1
  givenname: Anusha Priyadarshani Silva
  orcidid: 0000-0002-5757-9784
  surname: Hettiyadura
  fullname: Hettiyadura, Anusha Priyadarshani Silva
  organization: Purdue University
– sequence: 2
  givenname: Alexander
  orcidid: 0000-0002-7836-8417
  surname: Laskin
  fullname: Laskin, Alexander
  email: alaskin@purdue.edu
  organization: Purdue University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35019202$$D View this record in MEDLINE/PubMed
BookMark eNqNkstu1DAYhS3UirYDEk-ALLHpJoPjXBwvUdVyUVGFgHXkOH8mHjmxazugsOIReEYeBOGkA0gVSKziy3fOseNzho5GMwJCT1KyTQmhz_eD3-YVyR-g05TwMuFVVR0tY1YmRcryE3Tm_Z4QwnlePkQnWUFSTgk9RT_eTWIMKoigPgEWo9CzVx6bDlujZzlLrSQWzgwRkLifW2ekcI0ZPZ68Gne4V7v--9dvFlxn3CBGCVir20m1WParzOycsP28ML0JplWmjUHOiWXpoHbgjZ6CMiMehPfYW5AhqiG4mNpCiNNl02oRlhgszWQ1tDgYDHplvY2O8QItFmGIsx4WqY3OfnKA1-xoob6I1cmbyUnwj9BxJ7SHx4fvBn28uvxw8Sq5vnn5-uLFdSKziuYJK5usFZRLQSpWZbwjlJeyKQQjvMho0-SEAKMs67hMG0o6llIOkc4LzjpaZRt0fudrnbmdwId6UF6C1mIEM_malqwoSpoz8h9ofLq05Pni-uweuo_Xim-4ULRI40njmTbo6YGamgHa2jo1CDfXv0rwJ1HG3-gddL-RlNRLv-rYr3rpV0S391C5dseMwQml_yZI7gSflYb5n8b1m7fvV_4nng7tyA
CitedBy_id crossref_primary_10_1021_acs_analchem_5c03362
crossref_primary_10_5194_acp_24_2639_2024
crossref_primary_10_1021_jasms_2c00163
crossref_primary_10_1016_j_trac_2024_117986
crossref_primary_10_1080_00032719_2025_2505685
crossref_primary_10_1002_adma_202211575
crossref_primary_10_1021_acs_est_3c10184
crossref_primary_10_1029_2024JD040755
crossref_primary_10_3390_w16172520
Cites_doi 10.1007/BF00282628
10.1021/es991201
10.1021/j100149a031
10.1002/rcm.6373
10.1016/j.chroma.2004.10.110
10.1016/S0021-9673(97)00265-3
10.1016/j.jasms.2008.09.012
10.5772/intechopen.71163
10.1289/ehp.9810617
10.1007/978-3-7643-8340-4_5
10.1016/j.jfda.2019.01.003
10.1016/j.atmosres.2011.03.012
10.1021/acs.analchem.8b00401
10.1021/acs.est.6b03024
10.1002/(SICI)1097-0231(19980615)12:11<712::AID-RCM215>3.0.CO;2-2
10.1007/s11356-013-1588-y
10.1007/s00216-003-2412-1
10.2478/s11532-012-0028-z
10.1289/ehp.98106s4975
10.1016/S0021-9673(03)01206-8
10.1007/s13361-011-0304-8
10.1016/j.chroma.2010.10.015
10.1021/acsearthspacechem.1c00103
10.1016/j.atmosenv.2015.12.036
10.2166/wst.2006.055
10.1021/es500846p
10.1016/j.scitotenv.2016.06.026
10.1021/acs.est.7b02276
10.1016/j.ejpe.2015.03.011
10.1039/C5CP02563J
10.1021/acs.est.0c07581
10.1021/cr5006167
10.1080/10807030701226277
10.1016/0004-6981(71)90146-6
10.1080/10406638.2014.970291
10.1002/2015MS000473
10.1021/acsearthspacechem.0c00095
10.1007/s11707-016-0613-0
10.1155/2021/6641326
10.1002/jms.3561
10.3389/fmicb.2020.562813
10.1016/j.atmosenv.2008.10.050
10.1016/0269-7491(95)91052-M
10.5194/acp-21-8531-2021
10.1002/rcm.3267
10.1016/0021-9673(93)80097-R
10.1002/rcm.6250
10.1016/j.chroma.2006.08.091
10.1021/acs.analchem.8b02177
10.1016/S0021-9673(01)01127-X
10.1021/ac802275e
10.1021/cr5003485
10.1016/S1352-2310(01)00456-3
10.1038/srep12992
10.1016/j.chemosphere.2018.12.111
10.1021/acs.est.0c05883
10.1016/j.talanta.2019.120128
10.1016/j.chemosphere.2006.09.054
10.1016/j.atmosenv.2007.12.010
10.1080/10406638.2014.892886
10.1007/s00216-006-0586-z
ContentType Journal Article
Copyright 2021 John Wiley & Sons, Ltd.
2022 John Wiley & Sons, Ltd.
Copyright_xml – notice: 2021 John Wiley & Sons, Ltd.
– notice: 2022 John Wiley & Sons, Ltd.
DBID AAYXX
CITATION
NPM
7QF
7QO
7QP
7QQ
7QR
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
7U7
8BQ
8FD
C1K
F1W
F28
FR3
H8D
H8G
H97
JG9
JQ2
K9.
KR7
L.G
L7M
L~C
L~D
P64
7X8
7S9
L.6
DOI 10.1002/jms.4804
DatabaseName CrossRef
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Calcium & Calcified Tissue Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Solid State and Superconductivity Abstracts
Toxicology Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
Materials Research Database
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Health & Medical Complete (Alumni)
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
Materials Business File
Environmental Sciences and Pollution Management
Aerospace Database
Copper Technical Reference Library
Engineered Materials Abstracts
Biotechnology Research Abstracts
Chemoreception Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Toxicology Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
Neurosciences Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
ASFA: Aquatic Sciences and Fisheries Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Corrosion Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
MEDLINE - Academic
AGRICOLA
CrossRef
PubMed
Materials Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1096-9888
EndPage n/a
ExternalDocumentID 35019202
10_1002_jms_4804
JMS4804
Genre article
Journal Article
GrantInformation_xml – fundername: US National Science Foundation
  funderid: AGS‐2039985
– fundername: US National Science Foundation
  grantid: AGS-2039985
GroupedDBID ---
-~X
.3N
.GA
.GJ
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABIJN
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACRPL
ACSCC
ACUHS
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AI.
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
AQPKS
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EJD
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RIWAO
RNS
ROL
RWI
RX1
RYL
SAMSI
SUPJJ
TN5
TUS
UB1
UQL
V2E
VH1
W8V
W99
WBFHL
WBKPD
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WRJ
WXSBR
WYISQ
XG1
XPP
XV2
ZCG
ZZTAW
~02
~IA
~KM
~WT
AAMMB
AAYXX
AEFGJ
AEYWJ
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
CITATION
O8X
NPM
7QF
7QO
7QP
7QQ
7QR
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
7U7
8BQ
8FD
C1K
F1W
F28
FR3
H8D
H8G
H97
JG9
JQ2
K9.
KR7
L.G
L7M
L~C
L~D
P64
7X8
7S9
L.6
ID FETCH-LOGICAL-c3824-76b3da29ca087839f0296cb5a709532bb400e7273f9c1b20f7129eca04597f283
IEDL.DBID DRFUL
ISICitedReferencesCount 17
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000750803300005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1076-5174
1096-9888
IngestDate Fri Jul 11 18:26:54 EDT 2025
Fri Jul 11 16:12:52 EDT 2025
Sat Nov 29 14:53:08 EST 2025
Mon Jul 21 05:40:45 EDT 2025
Tue Nov 18 22:38:37 EST 2025
Sat Nov 29 07:07:01 EST 2025
Wed Jan 22 16:27:46 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords photodiode array detector
atmospheric pressure photoionization
high performance liquid chromatography
quantitation
analysis of complex mixtures
mass spectrometry
electrospray ionization
polycyclic aromatic hydrocarbons
Language English
License 2021 John Wiley & Sons, Ltd.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3824-76b3da29ca087839f0296cb5a709532bb400e7273f9c1b20f7129eca04597f283
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-7836-8417
0000-0002-5757-9784
PMID 35019202
PQID 2625183927
PQPubID 1006399
PageCount 14
ParticipantIDs proquest_miscellaneous_2675562470
proquest_miscellaneous_2619216948
proquest_journals_2625183927
pubmed_primary_35019202
crossref_primary_10_1002_jms_4804
crossref_citationtrail_10_1002_jms_4804
wiley_primary_10_1002_jms_4804_JMS4804
PublicationCentury 2000
PublicationDate February 2022
2022-02-00
2022-Feb
20220201
PublicationDateYYYYMMDD 2022-02-01
PublicationDate_xml – month: 02
  year: 2022
  text: February 2022
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Bognor Regis
PublicationTitle Journal of mass spectrometry.
PublicationTitleAlternate J Mass Spectrom
PublicationYear 2022
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2015; 35
2021; 21
2009; 43
2009; 81
2013; 20
1991; 60
1975
2020; 11
2019; 205
2004; 1023
1993; 642
2012; 10
2020; 4
2004; 378
2010; 28
2019; 27
2012; 26
2007; 21
2012; 23
2007; 67
1998; 12
2021; 2021
1997; 774
2015; 17
2021; 5
2006; 53
2015; 5
2009; 20
2012
2015; 50
2014; 48
2016; 568
2016; 128
2016; 50
2001; 928
2015; 7
2007; 13
2019; 220
2017; 51
2021; 55
2015; 115
2000; 34
1995; 88
1993; 97
1967; 5
2018; 90
2017
2011; 1218
1998; 106
2008; 42
2018; 12
2001; 35
2006; 1131
2012; 116
2016; 25
2011; 101
2006; 386
2005; 1067
e_1_2_6_51_1
e_1_2_6_53_1
e_1_2_6_32_1
e_1_2_6_30_1
West B (e_1_2_6_64_1) 2012; 116
e_1_2_6_19_1
e_1_2_6_13_1
e_1_2_6_36_1
e_1_2_6_59_1
e_1_2_6_11_1
e_1_2_6_34_1
e_1_2_6_17_1
e_1_2_6_55_1
e_1_2_6_15_1
e_1_2_6_38_1
e_1_2_6_57_1
e_1_2_6_62_1
e_1_2_6_43_1
e_1_2_6_20_1
e_1_2_6_41_1
e_1_2_6_60_1
e_1_2_6_9_1
e_1_2_6_5_1
e_1_2_6_7_1
e_1_2_6_24_1
e_1_2_6_49_1
e_1_2_6_3_1
e_1_2_6_22_1
e_1_2_6_66_1
e_1_2_6_45_1
e_1_2_6_26_1
e_1_2_6_47_1
e_1_2_6_52_1
e_1_2_6_54_1
e_1_2_6_10_1
e_1_2_6_31_1
e_1_2_6_50_1
e_1_2_6_14_1
e_1_2_6_35_1
e_1_2_6_12_1
e_1_2_6_33_1
e_1_2_6_18_1
e_1_2_6_39_1
e_1_2_6_56_1
e_1_2_6_16_1
e_1_2_6_37_1
e_1_2_6_58_1
e_1_2_6_63_1
e_1_2_6_42_1
e_1_2_6_65_1
e_1_2_6_21_1
e_1_2_6_40_1
e_1_2_6_61_1
e_1_2_6_8_1
Moldoveanu SC (e_1_2_6_28_1) 2010
e_1_2_6_4_1
e_1_2_6_6_1
e_1_2_6_25_1
e_1_2_6_48_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_29_1
e_1_2_6_44_1
e_1_2_6_67_1
e_1_2_6_27_1
e_1_2_6_46_1
References_xml – volume: 5
  start-page: 1983
  issue: 8
  year: 2021
  end-page: 1996
  article-title: Molecular‐level study of the photo‐oxidation of aqueous‐phase guaiacyl acetone in the presence of 3c*: formation of brown carbon products
  publication-title: ACS Earth Space Chem
– volume: 378
  start-page: 862
  issue: 4
  year: 2004
  end-page: 874
  article-title: LC‐MS analysis in the aquatic environment and in water treatment technology – a critical review
  publication-title: Anal Bioanal Chem
– volume: 13
  start-page: 322
  issue: 2
  year: 2007
  end-page: 338
  article-title: Evaluating Human Risk from Exposure to Alkylated PAHs in an Aquatic System
  publication-title: Hum Ecol Risk Assess Int J
– volume: 115
  start-page: 3919
  issue: 10
  year: 2015
  end-page: 3983
  article-title: The molecular identification of organic compounds in the atmosphere: state of the art and challenges
  publication-title: Chem Rev
– volume: 25
  start-page: 107
  issue: 1
  year: 2016
  end-page: 123
  article-title: A review on polycyclic aromatic hydrocarbons: source, environmental impact, effect on human health and remediation
  publication-title: Egypt J Petroleum
– volume: 50
  start-page: 11815
  issue: 21
  year: 2016
  end-page: 11824
  article-title: Molecular characterization of brown carbon in biomass burning aerosol particles
  publication-title: Environ Sci Technol
– volume: 48
  start-page: 5583
  issue: 10
  year: 2014
  end-page: 5592
  article-title: Field Measurements of the Atmospheric Dry Deposition Fluxes and Velocities of Polycyclic Aromatic Hydrocarbons to the Global Oceans
  publication-title: Environ Sci Technol
– volume: 774
  start-page: 349
  issue: 1
  year: 1997
  end-page: 361
  article-title: Occurrence and determination of organic pollutants in aerosol, precipitation, and sediment samples collected at Lake Balaton
  publication-title: J Chromatogr A
– year: 1975
– volume: 90
  start-page: 12493
  issue: 21
  year: 2018
  end-page: 12502
  article-title: Comprehensive Molecular Characterization of Atmospheric Brown Carbon by High Resolution Mass Spectrometry with Electrospray and Atmospheric Pressure Photoionization
  publication-title: Anal Chem
– volume: 106
  start-page: 975
  issue: suppl 4
  year: 1998
  end-page: 981
  article-title: Modulated gap junctional intercellular communication as a biomarker of PAH epigenetic toxicity: structure‐function relationship
  publication-title: Environ Health Perspect
– volume: 5
  start-page: 429
  issue: 6
  year: 1967
  end-page: 431
  article-title: On the size distribution of benzo(a)pyrene containing particles in urban air
  publication-title: Atmos Environ
– volume: 35
  start-page: 147
  issue: 2‐4
  year: 2015
  end-page: 160
  article-title: The source of U.S. EPA's sixteen PAH priority pollutants
  publication-title: Polycyclic Aromat Compd
– volume: 43
  start-page: 812
  issue: 4
  year: 2009
  end-page: 819
  article-title: Global atmospheric emission inventory of polycyclic aromatic hydrocarbons (PAHs) for 2004
  publication-title: Atmos Environ
– volume: 97
  start-page: 12282
  issue: 47
  year: 1993
  end-page: 12290
  article-title: Time‐dependent mass spectra and breakdown graphs. 17. Naphthalene and phenanthrene
  publication-title: J Phys Chem
– volume: 88
  start-page: 91
  issue: 1
  year: 1995
  end-page: 108
  article-title: Polynuclear aromatic hydrocarbons in the United Kingdom environment: a preliminary source inventory and budget
  publication-title: Environ Pollut
– volume: 35
  start-page: 6245
  issue: 36
  year: 2001
  end-page: 6258
  article-title: Atmospheric deposition of polycyclic aromatic hydrocarbons near New England coastal waters
  publication-title: Atmos Environ
– volume: 10
  start-page: 876
  issue: 3
  year: 2012
  end-page: 899
  article-title: Multi‐residue analytical methods for the determination of pesticides and PPCPs in water by LC‐MS/MS: a review
  publication-title: Open Chemistry
– volume: 205
  year: 2019
  article-title: Method development for simultaneous analyses of polycyclic aromatic hydrocarbons and their nitro‐, oxy‐, hydroxy‐ derivatives in sediments
  publication-title: Talanta
– volume: 17
  start-page: 23312
  issue: 36
  year: 2015
  end-page: 23325
  article-title: Molecular characterization of brown carbon (BrC) chromophores in secondary organic aerosol generated from photo‐oxidation of toluene
  publication-title: PCCP
– volume: 101
  start-page: 341
  issue: 1
  year: 2011
  end-page: 353
  article-title: Atmospheric wet and dry deposition of polycyclic aromatic hydrocarbons (PAHs) determined using a modified sampler
  publication-title: Atmos Res
– volume: 11
  year: 2020
  article-title: Polycyclic aromatic hydrocarbons: sources, toxicity, and remediation approaches
  publication-title: Front Microbiol
– volume: 642
  start-page: 329
  issue: 1
  year: 1993
  end-page: 349
  article-title: Determination of polycyclic aromatic hydrocarbons by liquid chromatography
  publication-title: J Chromatogr A
– volume: 35
  start-page: 187
  issue: 2‐4
  year: 2015
  end-page: 247
  article-title: Analytical methods for determination of polycyclic aromatic hydrocarbons (PAHs)—a historical perspective on the 16 U.S. EPA Priority Pollutant PAHs
  publication-title: Polycyclic Aromat Compd
– volume: 2021
  year: 2021
  article-title: Analysis of polycyclic aromatic hydrocarbon in airborne particulate matter samples by gas chromatography in combination with tandem mass spectrometry (GC‐MS/MS)
  publication-title: J Anal Methods Chem
– volume: 928
  start-page: 53
  issue: 1
  year: 2001
  end-page: 61
  article-title: Determination of polycyclic aromatic hydrocarbons by liquid chromatography–electrospray ionization mass spectrometry using silver nitrate as a post‐column reagent
  publication-title: J Chromatogr A
– volume: 26
  start-page: 2517
  issue: 21
  year: 2012
  end-page: 2525
  article-title: Investigation of the ionization mechanism of polycyclic aromatic hydrocarbons using an ethanol/bromobenzene/chlorobenzene/anisole mixture as a dopant in liquid chromatography/atmospheric pressure photoionization mass spectrometry
  publication-title: Rapid Commun Mass Spectrom
– volume: 42
  start-page: 2895
  issue: 13
  year: 2008
  end-page: 2921
  article-title: Atmospheric polycyclic aromatic hydrocarbons: source attribution, emission factors and regulation
  publication-title: Atmos Environ
– volume: 106
  start-page: 17
  issue: 1
  year: 1998
  end-page: 22
  article-title: Bay or baylike regions of polycyclic aromatic hydrocarbons were potent inhibitors of Gap junctional intercellular communication
  publication-title: Environ Health Perspect
– volume: 568
  start-page: 391
  year: 2016
  end-page: 401
  article-title: Polycyclic aromatic hydrocarbons in biomass‐burning emissions and their contribution to light absorption and aerosol toxicity
  publication-title: Sci Total Environ
– volume: 51
  start-page: 11561
  issue: 20
  year: 2017
  end-page: 11570
  article-title: Molecular chemistry of atmospheric brown carbon inferred from a nationwide biomass burning event
  publication-title: Environ Sci Technol
– volume: 12
  start-page: 712
  issue: 11
  year: 1998
  end-page: 728
  article-title: Isomeric identification and quantification of polycyclic aromatic hydrocarbons in environmental samples by liquid chromatography tandem mass spectrometry using a high pressure quadrupole collision cell
  publication-title: Rapid Commun Mass Spectrom
– volume: 1067
  start-page: 1
  issue: 1
  year: 2005
  end-page: 14
  article-title: Liquid chromatography–tandem mass spectrometry for the analysis of pharmaceutical residues in environmental samples: a review
  publication-title: J Chromatogr A
– volume: 55
  start-page: 5199
  issue: 8
  year: 2021
  end-page: 5211
  article-title: Photosensitized Reactions of a Phenolic Carbonyl from Wood Combustion in the Aqueous Phase—Chemical Evolution and Light Absorption Properties of AqSOA
  publication-title: Environ Sci Technol
– volume: 28
  start-page: 693
  year: 2010
  end-page: 699
– volume: 90
  start-page: 4203
  issue: 6
  year: 2018
  end-page: 4211
  article-title: Ionization of Gas‐Phase Polycyclic Aromatic Hydrocarbons in Electrospray Ionization Coupled with Gas Chromatography
  publication-title: Anal Chem
– volume: 27
  start-page: 815
  issue: 3
  year: 2019
  end-page: 824
  article-title: Determination of polycyclic aromatic hydrocarbons (PAHs) in cosmetic products by gas chromatography‐tandem mass spectrometry
  publication-title: J Food Drug Anal
– volume: 60
  start-page: 279
  issue: 3
  year: 1991
  end-page: 300
  article-title: A review of atmospheric polycyclic aromatic hydrocarbons: sources, fate and behavior
  publication-title: Water Air Soil Pollut
– volume: 21
  start-page: 8531
  issue: 11
  year: 2021
  end-page: 8555
  article-title: Measurement report: molecular composition, optical properties, and radiative effects of water‐soluble organic carbon in snowpack samples from northern Xinjiang, China
  publication-title: Atmos Chem Phys
– volume: 386
  start-page: 941
  issue: 4
  year: 2006
  end-page: 952
  article-title: Multi‐residue analytical methods using LC‐tandem MS for the determination of pharmaceuticals in environmental and wastewater samples: a review
  publication-title: Anal Bioanal Chem
– volume: 53
  start-page: 215
  issue: 2
  year: 2006
  end-page: 224
  article-title: Dispersion and dry and wet deposition of PAHs in an atmospheric environment
  publication-title: Water Sci Technol
– volume: 50
  start-page: 549
  issue: 3
  year: 2015
  end-page: 557
  article-title: Electrospray ionization for determination of non‐polar polyaromatic hydrocarbons and polyaromatic heterocycles in heavy crude oil asphaltenes
  publication-title: J Mass Spectrom
– volume: 115
  start-page: 4335
  issue: 10
  year: 2015
  end-page: 4382
  article-title: Chemistry of atmospheric brown carbon
  publication-title: Chem Rev
– volume: 12
  start-page: 63
  issue: 1
  year: 2018
  end-page: 71
  article-title: Atmospheric deposition of polycyclic aromatic hydrocarbons (PAHs) in Shanghai: the spatio‐temporal variation and source identification
  publication-title: Front Earth Sci
– volume: 220
  start-page: 1163
  year: 2019
  end-page: 1178
  article-title: Polycyclic aromatic hydrocarbons in consumer goods made from recycled rubber material: a review
  publication-title: Chemosphere
– volume: 1023
  start-page: 225
  issue: 2
  year: 2004
  end-page: 229
  article-title: Calculation of the molar absorptivity of polyphenols by using liquid chromatography with diode array detection: the case of carnosic acid
  publication-title: J Chromatogr A
– volume: 55
  start-page: 2511
  issue: 4
  year: 2021
  end-page: 2521
  article-title: Chemical Composition and Molecular‐Specific Optical Properties of Atmospheric Brown Carbon Associated with Biomass Burning
  publication-title: Environ Sci Technol
– volume: 128
  start-page: 92
  year: 2016
  end-page: 103
  article-title: Identification of products formed during the heterogeneous nitration and ozonation of polycyclic aromatic hydrocarbons
  publication-title: Atmos Environ
– volume: 34
  start-page: 3690
  issue: 17
  year: 2000
  end-page: 3697
  article-title: Adsorption onto Aerosol Soot Carbon Dominates Gas‐Particle Partitioning of Polycyclic Aromatic Hydrocarbons
  publication-title: Environ Sci Technol
– volume: 26
  start-page: 1488
  issue: 12
  year: 2012
  end-page: 1496
  article-title: Multicomponent mixed dopant optimization for rapid screening of polycyclic aromatic hydrocarbons using ultra high performance liquid chromatography coupled to atmospheric pressure photoionization high‐resolution mass spectrometry
  publication-title: Rapid Commun Mass Spectrom
– volume: 81
  start-page: 2123
  issue: 6
  year: 2009
  end-page: 2128
  article-title: Ultra Performance Liquid Chromatography−Atmospheric Pressure Photoionization‐Tandem Mass Spectrometry for High‐Sensitivity and High‐Throughput Analysis of U.S. Environmental Protection Agency 16 Priority Pollutants Polynuclear Aromatic Hydrocarbons
  publication-title: Anal Chem
– volume: 5
  issue: 1
  year: 2015
  article-title: Fast analysis of 29 polycyclic aromatic hydrocarbons (PAHs) and nitro‐PAHs with ultra‐high performance liquid chromatography‐atmospheric pressure photoionization‐tandem mass spectrometry
  publication-title: Sci Rep
– volume: 116
  start-page: 10999
  issue: 45
  year: 2012
  end-page: 11007
  article-title: On the dissociation of the naphthalene radical cation: new iPEPICO and tandem mass spectrometry results
  publication-title: Chem A Eur J
– start-page: 107
  year: 2012
  end-page: 131
– volume: 7
  start-page: 1339
  issue: 3
  year: 2015
  end-page: 1350
  article-title: Dry deposition of polycyclic aromatic compounds to various land covers in the Athabasca oil sands region
  publication-title: J Adv Model Earth Syst
– volume: 1218
  start-page: 23
  issue: 1
  year: 2011
  end-page: 31
  article-title: Development and optimisation of a dopant assisted liquid chromatographic‐atmospheric pressure photo ionisation‐tandem mass spectrometric method for the determination of 15+1 EU priority PAHs in edible oils
  publication-title: J Chromatogr A
– volume: 20
  start-page: 5753
  issue: 8
  year: 2013
  end-page: 5763
  article-title: Gas/particle partitioning of polycyclic aromatic hydrocarbons in coastal atmosphere of the north Yellow Sea, China
  publication-title: Environ Sci Pollut Res
– volume: 20
  start-page: 73
  issue: 1
  year: 2009
  end-page: 79
  article-title: Comparison of dopants for charge exchange ionization of nonpolar polycyclic aromatic hydrocarbons with reversed‐phase LC‐APPI‐MS
  publication-title: J Am Soc Mass Spectrom
– volume: 1131
  start-page: 285
  issue: 1
  year: 2006
  end-page: 288
  article-title: Optimization of the dopant for the trace determination of polycyclic aromatic hydrocarbons by liquid chromatography/dopant‐assisted atmospheric‐pressure photoionization/mass spectrometry
  publication-title: J Chromatogr A
– volume: 67
  start-page: 537
  issue: 3
  year: 2007
  end-page: 547
  article-title: Atmospheric deposition of polycyclic aromatic hydrocarbons to Izmit Bay, Turkey
  publication-title: Chemosphere
– volume: 4
  start-page: 1090
  issue: 7
  year: 2020
  end-page: 1103
  article-title: Molecular composition and optical properties of brown carbon generated by the ethane flame
  publication-title: ACS Earth Space Chem
– year: 2017
– volume: 21
  start-page: 3694
  issue: 22
  year: 2007
  end-page: 3700
  article-title: Analysis of polycyclic aromatic hydrocarbons by liquid chromatography/tandem mass spectrometry using atmospheric pressure chemical ionization or electrospray ionization with tropylium post‐column derivatization
  publication-title: Rapid Commun Mass Spectrom
– volume: 23
  start-page: 530
  issue: 3
  year: 2012
  end-page: 536
  article-title: Detection and monitoring of PAH and oxy‐PAHs by high resolution mass spectrometry: comparison of ESI, APCI and APPI source detection
  publication-title: J Am Soc Mass Spectrom
– ident: e_1_2_6_5_1
  doi: 10.1007/BF00282628
– ident: e_1_2_6_23_1
– volume: 116
  start-page: 10999
  issue: 45
  year: 2012
  ident: e_1_2_6_64_1
  article-title: On the dissociation of the naphthalene radical cation: new iPEPICO and tandem mass spectrometry results
  publication-title: Chem A Eur J
– ident: e_1_2_6_16_1
  doi: 10.1021/es991201
– ident: e_1_2_6_65_1
  doi: 10.1021/j100149a031
– ident: e_1_2_6_40_1
  doi: 10.1002/rcm.6373
– ident: e_1_2_6_59_1
  doi: 10.1016/j.chroma.2004.10.110
– ident: e_1_2_6_18_1
  doi: 10.1016/S0021-9673(97)00265-3
– ident: e_1_2_6_43_1
  doi: 10.1016/j.jasms.2008.09.012
– ident: e_1_2_6_22_1
– ident: e_1_2_6_31_1
  doi: 10.5772/intechopen.71163
– ident: e_1_2_6_26_1
  doi: 10.1289/ehp.9810617
– ident: e_1_2_6_25_1
  doi: 10.1007/978-3-7643-8340-4_5
– ident: e_1_2_6_32_1
  doi: 10.1016/j.jfda.2019.01.003
– ident: e_1_2_6_10_1
  doi: 10.1016/j.atmosres.2011.03.012
– ident: e_1_2_6_37_1
  doi: 10.1021/acs.analchem.8b00401
– ident: e_1_2_6_48_1
  doi: 10.1021/acs.est.6b03024
– ident: e_1_2_6_63_1
  doi: 10.1002/(SICI)1097-0231(19980615)12:11<712::AID-RCM215>3.0.CO;2-2
– ident: e_1_2_6_8_1
  doi: 10.1007/s11356-013-1588-y
– ident: e_1_2_6_57_1
  doi: 10.1007/s00216-003-2412-1
– ident: e_1_2_6_60_1
  doi: 10.2478/s11532-012-0028-z
– ident: e_1_2_6_24_1
  doi: 10.1289/ehp.98106s4975
– ident: e_1_2_6_67_1
  doi: 10.1016/S0021-9673(03)01206-8
– ident: e_1_2_6_36_1
  doi: 10.1007/s13361-011-0304-8
– ident: e_1_2_6_41_1
  doi: 10.1016/j.chroma.2010.10.015
– ident: e_1_2_6_55_1
  doi: 10.1021/acsearthspacechem.1c00103
– ident: e_1_2_6_46_1
  doi: 10.1016/j.atmosenv.2015.12.036
– ident: e_1_2_6_11_1
  doi: 10.2166/wst.2006.055
– ident: e_1_2_6_15_1
  doi: 10.1021/es500846p
– ident: e_1_2_6_34_1
  doi: 10.1016/j.scitotenv.2016.06.026
– ident: e_1_2_6_49_1
  doi: 10.1021/acs.est.7b02276
– ident: e_1_2_6_3_1
  doi: 10.1016/j.ejpe.2015.03.011
– ident: e_1_2_6_52_1
  doi: 10.1039/C5CP02563J
– ident: e_1_2_6_54_1
  doi: 10.1021/acs.est.0c07581
– ident: e_1_2_6_66_1
  doi: 10.1021/cr5006167
– ident: e_1_2_6_27_1
  doi: 10.1080/10807030701226277
– ident: e_1_2_6_17_1
  doi: 10.1016/0004-6981(71)90146-6
– ident: e_1_2_6_19_1
  doi: 10.1080/10406638.2014.970291
– ident: e_1_2_6_12_1
  doi: 10.1002/2015MS000473
– ident: e_1_2_6_50_1
  doi: 10.1021/acsearthspacechem.0c00095
– ident: e_1_2_6_9_1
  doi: 10.1007/s11707-016-0613-0
– ident: e_1_2_6_33_1
  doi: 10.1155/2021/6641326
– ident: e_1_2_6_62_1
  doi: 10.1002/jms.3561
– ident: e_1_2_6_2_1
  doi: 10.3389/fmicb.2020.562813
– ident: e_1_2_6_7_1
  doi: 10.1016/j.atmosenv.2008.10.050
– ident: e_1_2_6_6_1
  doi: 10.1016/0269-7491(95)91052-M
– ident: e_1_2_6_56_1
  doi: 10.5194/acp-21-8531-2021
– ident: e_1_2_6_39_1
  doi: 10.1002/rcm.3267
– ident: e_1_2_6_30_1
  doi: 10.1016/0021-9673(93)80097-R
– ident: e_1_2_6_44_1
  doi: 10.1002/rcm.6250
– ident: e_1_2_6_42_1
  doi: 10.1016/j.chroma.2006.08.091
– ident: e_1_2_6_51_1
  doi: 10.1021/acs.analchem.8b02177
– ident: e_1_2_6_38_1
  doi: 10.1016/S0021-9673(01)01127-X
– ident: e_1_2_6_35_1
  doi: 10.1021/ac802275e
– ident: e_1_2_6_61_1
  doi: 10.1021/cr5003485
– ident: e_1_2_6_13_1
  doi: 10.1016/S1352-2310(01)00456-3
– ident: e_1_2_6_21_1
– ident: e_1_2_6_45_1
  doi: 10.1038/srep12992
– ident: e_1_2_6_29_1
  doi: 10.1016/j.chemosphere.2018.12.111
– ident: e_1_2_6_53_1
  doi: 10.1021/acs.est.0c05883
– ident: e_1_2_6_47_1
  doi: 10.1016/j.talanta.2019.120128
– ident: e_1_2_6_14_1
  doi: 10.1016/j.chemosphere.2006.09.054
– ident: e_1_2_6_4_1
  doi: 10.1016/j.atmosenv.2007.12.010
– ident: e_1_2_6_20_1
  doi: 10.1080/10406638.2014.892886
– start-page: 693
  volume-title: Techniques and Instrumentation in Analytical Chemistry
  year: 2010
  ident: e_1_2_6_28_1
– ident: e_1_2_6_58_1
  doi: 10.1007/s00216-006-0586-z
SSID ssj0009946
Score 2.4409862
Snippet Polycyclic aromatic hydrocarbons (PAHs) are common pollutants present in atmospheric aerosols and other environmental mixtures. They are of particular air...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e4804
SubjectTerms absorbance
Absorption
Absorption coefficient
Absorptivity
Acidification
Aerosols
Air quality
analysis of complex mixtures
Aromatic compounds
Aromatic hydrocarbons
Arrays
Atmospheric aerosols
Atmospheric pressure
atmospheric pressure photoionization
carcinogenicity
Carcinogens
Chemical composition
chemical species
Chromatography
climate
Collision dynamics
Detection
Detection limits
Electromagnetic absorption
electrospray ionization
electrospray ionization mass spectrometry
Electrospraying
Environmental chemistry
Experiments
Formic acid
Geochemistry
high performance liquid chromatography
human health
Ionization
Ions
Light absorption
Liquid chromatography
Mass
mass spectrometry
Organic compounds
Photochemical reactions
photodiode array detector
Photodiodes
Photoionization
Pollutants
Polycyclic aromatic hydrocarbons
Quantitation
Quantitative analysis
Radiative forcing
Resolution
Solar radiation
Spectrometry
Toxins
Wavelength
wavelengths
Title Quantitative analysis of polycyclic aromatic hydrocarbons using high‐performance liquid chromatography‐photodiode array‐high‐resolution mass spectrometric detection platform coupled to electrospray and atmospheric pressure photoionization sources
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjms.4804
https://www.ncbi.nlm.nih.gov/pubmed/35019202
https://www.proquest.com/docview/2625183927
https://www.proquest.com/docview/2619216948
https://www.proquest.com/docview/2675562470
Volume 57
WOSCitedRecordID wos000750803300005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1096-9888
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009946
  issn: 1076-5174
  databaseCode: DRFUL
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3bjtMwELWgiwQv3C-FZTVICJ7Cpm5ax49ooUJoWXFbqW-RYzvbojQJuSD1jU_gG_kQxIzjtlpxERJPVZpx7MjH9nE8c4axx1Npo0xFOpBjpYJIZCZQyGMDZRSXccZHNnM9fSxOTuL5XL71XpUUC9PrQ2w_uNHIcPM1DXCVNoc70dBPq-ZZFJMU6B5H2EYDtvfi_ez0eCe5K_vYItypB6THvJGeDfnhpuz5xegXhnmesLoVZ3btf9p6nV31PBOe98C4wS7Y4ia7fLRJ73aL_XjXqcJFmOF8B8prk0CZQVXma73W-VKDqksn6QqLtcGVTtUpghTIV_4MSOj4-9dv1S7yAPLl525pQC9cMS-GTTaLsi3NsjRYUV0r-suXxs2-xz6skMaDC_wkBQVKHADGts5TrIAqVy1VA7rsqtwaaEvwGXyaCp-IL2BAtSu8ooBGDc6_t6stuLrpo3Mfbwr9aUVzm53OXn48ehX4ZBCBHsc8CsQ0HRN-tApjgawuC7mc6nSiBCnm8TTFycgSGcukHqU8zAQyGYvWEW6ZMiRRd9igKAt7j4GaRAjdbGTEGNmi1FJMdBiaVJBQzkSMh-zpBhWJ9krplLAjT3qNZ55gfybUn0P2aGtZ9eogv7HZ3wAr8fNDk3DcdjpuKvAR29uIADquUYUtO7IhrbqpjOK_2YgJMthIhEN2twfttiF0ZCx5yIfsicPmH1uYvH7zgX7v_6vhA3aFUxSIc17fZ4O27uxDdkl_aZdNfcAuinl84EfjT8j8Rks
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3ZjtMwFLVGHaThhX0pDHCREDyFSd2kTsQTGqgG6FQsM9K8RY7t0KI0CVmQ-sYn8I18COJeJ2k1YhEST1GS69iRj-3j5Z7L2KNJaLxEesoJx1I6nki0I5HHOlJLHgYJH5nE1vRMzOfB2Vn4doc9631hWn2IzYIbtQzbX1MDpwXpg61q6KdV9dQLSAt010MU-QO2--L99HS21dwNW-cinKo7JMjca8-6_KBPe340-oVinmesdsiZXv6vwl5hlzqmCc9baFxlOya7xvYO-wBv19mPd43MrI8Z9nggO3USyBMo8nSt1ipdKpBlbkVdYbHWONbJMkaYAp2W_wgkdfz967di63sA6fJzs9SgFjZZJ4dNNou8zvUy15hRWUp61KXG6X6HflghkQfr-kkaChQ6ALSp7VmxDIpU1pQNqLwpUqOhzqGL4VMV-EX8AQ2yXuEduTQqsCd8m9KAzZuWnVuPU2j3K6ob7HT68uTwyOnCQThqHHDPEZN4TAhS0g0E8rrE5eFExb4UpJnH4xi7I0N0LAnVKOZuIpDLGLT2cNKUII26yQZZnpnbDKTvIXiTkRZj5IuhCoWvXFfHgqRyfDEesic9LCLVaaVTyI40alWeeYT1GVF9DtnDjWXR6oP8xma_R1bU9RBVxHHiadmpwE9sXiMCaMNGZiZvyIbU6iahF_zNRvjIYT3hDtmtFrWbgtCmcchdPmSPLTj_WMLo9fEHut75V8MHbO_o5HgWzV7N39xlFzn5hNij7PtsUJeNuccuqC_1sirvd43yJ1-hSVM
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bb9MwFLamDQEv3C-FAQcJwVO21E3qWDyhjYpLmcZl0t4ix3ZoUZqENEHqGz-B38gPQZzjJK0mLkLiKUpyHDvyZ_vz5XyHsUdjaYNUBdqTI6W8QKTGU8hjPWUUl1HKhzZ1NT0VR0fR6ak83mJPe1-YVh9iveBGLcP119TAbWnS_Y1q6KfFci-ISAt0JwjlGFvlzuG7ycl0o7krW-cinKp7JMjca8_6fL9Pe3Y0-oVinmWsbsiZXP6vwl5hlzqmCc9aaFxlWza_xi4c9AHerrMfbxuVOx8z7PFAdeokUKRQFtlKr3Q216Cqwom6wmxlcKxTVYIwBTot_xFI6vj712_lxvcAsvnnZm5Az1yyTg6bbGZFXZh5YTCjqlL0qEuN0_0O_bBAIg_O9ZM0FCh0ABhbu7NiOZSZqikb0EVTZtZAXUAXw2dZ4hfxBwyoeoF35NKowZ3wbSoLLm9adm49TqHdr1jeYCeT5x8OXnhdOAhPjyIeeGKcjAhBWvmRQF6X-lyOdRIqQZp5PEmwO7JEx1Kphwn3U4FcxqI1okOkSKNusu28yO1tBioMELzp0IgR8kWppQi175tEkFROKEYD9qSHRaw7rXQK2ZHFrcozj7E-Y6rPAXu4tixbfZDf2Oz2yIq7HmIZc5x4OnYq8BPr14gA2rBRuS0asiG1urEMor_ZiBA5bCD8AbvVonZdENo0ltznA_bYgfOPJYxfvXlP1zv_aviAnT8-nMTTl0ev77KLnFxC3En2XbZdV429x87pL_V8Wd3v2uRPhetIzg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quantitative+analysis+of+polycyclic+aromatic+hydrocarbons+using+high%E2%80%90performance+liquid+chromatography%E2%80%90photodiode+array%E2%80%90high%E2%80%90resolution+mass+spectrometric+detection+platform+coupled+to+electrospray+and+atmospheric+pressure+photoionization+sources&rft.jtitle=Journal+of+mass+spectrometry.&rft.au=Hettiyadura%2C+Anusha+Priyadarshani+Silva&rft.au=Laskin%2C+Alexander&rft.date=2022-02-01&rft.issn=1076-5174&rft.eissn=1096-9888&rft.volume=57&rft.issue=2&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fjms.4804&rft.externalDBID=10.1002%252Fjms.4804&rft.externalDocID=JMS4804
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1076-5174&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1076-5174&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1076-5174&client=summon