Gradient-based variable forgetting factor RLS algorithm in time-varying environments

In this paper, a new control mechanism for the variable forgetting factor (VFF) of the recursive least square (RLS) adaptive algorithm is presented. The control algorithm is basically a gradient-based method of which the gradient is derived from an improved mean square error analysis of RLS. The new...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on signal processing Jg. 53; H. 8; S. 3141 - 3150
Hauptverfasser: Shu-Hung Leung, So, C.F.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York, NY IEEE 01.08.2005
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:1053-587X, 1941-0476
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract In this paper, a new control mechanism for the variable forgetting factor (VFF) of the recursive least square (RLS) adaptive algorithm is presented. The control algorithm is basically a gradient-based method of which the gradient is derived from an improved mean square error analysis of RLS. The new mean square error analysis exploits the correlation of the inverse of the correlation matrix with itself that yields improved theoretical results, especially in the transient and steady-state mean square error. It is shown that the theoretical analysis is close to simulation results for different forgetting factors and different model orders. The analysis yields a dynamic equation of mean square error that can be used to derive a dynamic equation of the gradient of mean square error to control the forgetting factor. The dynamic equation can produce a positive gradient when the error is large and a negative gradient when the error is in the steady state. Compared with other variable forgetting factor algorithms, the new control algorithm gives fast tracking and small mean square model error for different signal-to-noise ratios (SNRs).
AbstractList In this paper, a new control mechanism for the variable forgetting factor (VFF) of the recursive least square (RLS) adaptive algorithm is presented. The control algorithm is basically a gradient-based method of which the gradient is derived from an improved mean square error analysis of RLS. The new mean square error analysis exploits the correlation of the inverse of the correlation matrix with itself that yields improved theoretical results, especially in the transient and steady-state mean square error. It is shown that the theoretical analysis is close to simulation results for different forgetting factors and different model orders. The analysis yields a dynamic equation of mean square error that can be used to derive a dynamic equation of the gradient of mean square error to control the forgetting factor. The dynamic equation can produce a positive gradient when the error is large and a negative gradient when the error is in the steady state. Compared with other variable forgetting factor algorithms, the new control algorithm gives fast tracking and small mean square model error for different signal-to-noise ratios (SNRs).
The new mean square error analysis exploits the correlation of the inverse of the correlation matrix with itself that yields improved theoretical results, especially in the transient and steady-state mean square error.
Author Shu-Hung Leung
So, C.F.
Author_xml – sequence: 1
  surname: Shu-Hung Leung
  fullname: Shu-Hung Leung
  organization: Dept. of Electron. Eng., City Univ. of Hong Kong, China
– sequence: 2
  givenname: C.F.
  surname: So
  fullname: So, C.F.
  organization: Dept. of Electron. Eng., City Univ. of Hong Kong, China
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=16948374$$DView record in Pascal Francis
BookMark eNp9kU1rVDEUhkOp0A9du-jmUqiu7jTfN1mWUqswoNgR3IXczMk05d6kTTIF_70ZpigUdJVDeJ4XznlP0GFMERB6T_CCEKwvV3ffFhRjsVCCtI8DdEw0Jz3mgzxsMxasF2r4eYROSnnAmHCu5TFa3Wa7DhBrP9oC6-7Z5mDHCTqf8gZqDXHTeetqyt335V1np03Kod7PXYhdDTP0Tfi1gyA-h5zi3KLKW_TG26nAu5f3FP34dLO6_twvv95-ub5a9o4pUnsvqSQURgfMa808U2vpvbXEMq48plhROhLPR6awVkKuhXeE2WEcQDgqHDtFH_e5jzk9baFUM4fiYJpshLQtRmnZLkIxaeSH_5JUYTwIJht4_gp8SNsc2xZGSU0Yl5g16OIFssXZyWcbXSjmMYe5XcMQqbliA2-c2HMup1IyeONCtTWkWLMNkyHY7KozrTqzq87sq2ve5SvvT_Q_jbO9EQDgL82lEliy3y2bpTQ
CODEN ITPRED
CitedBy_id crossref_primary_10_1016_j_jfranklin_2017_08_030
crossref_primary_10_3390_app11041363
crossref_primary_10_1109_TPWRS_2013_2281004
crossref_primary_10_1109_TIM_2022_3173613
crossref_primary_10_1109_TAC_2024_3394351
crossref_primary_10_1007_s12555_018_0336_y
crossref_primary_10_1243_09596518JSCE974
crossref_primary_10_1109_ACCESS_2020_2976534
crossref_primary_10_1109_TCSI_2012_2220452
crossref_primary_10_1109_ACCESS_2020_3031500
crossref_primary_10_1016_j_ifacol_2015_09_341
crossref_primary_10_1016_j_neucom_2016_01_071
crossref_primary_10_1016_j_automatica_2020_109052
crossref_primary_10_1002_acs_1237
crossref_primary_10_1016_j_asoc_2009_06_018
crossref_primary_10_1016_j_sigpro_2013_10_007
crossref_primary_10_1007_s11277_019_06865_2
crossref_primary_10_1007_s11431_014_5703_1
crossref_primary_10_1016_j_strusafe_2015_07_002
crossref_primary_10_1073_pnas_2204405119
crossref_primary_10_1186_s13638_015_0440_0
crossref_primary_10_1109_TASL_2012_2236315
crossref_primary_10_3390_s21175759
crossref_primary_10_1103_PhysRevD_110_122004
crossref_primary_10_1109_TCSII_2012_2184374
crossref_primary_10_3390_e19110599
crossref_primary_10_1109_TFUZZ_2020_3034972
crossref_primary_10_1177_1729881417703775
crossref_primary_10_1016_j_dsp_2016_11_011
crossref_primary_10_1016_j_ymssp_2023_110176
crossref_primary_10_1016_j_conengprac_2025_106300
crossref_primary_10_1016_j_sysconle_2014_01_004
crossref_primary_10_1109_TCSII_2023_3305482
crossref_primary_10_1109_TSP_2022_3170708
crossref_primary_10_1088_1361_6501_ad8256
crossref_primary_10_1029_2018WR022555
crossref_primary_10_1109_ACCESS_2020_3000931
crossref_primary_10_1109_ACCESS_2024_3511717
crossref_primary_10_1186_s13634_017_0490_z
crossref_primary_10_1016_j_ces_2021_116570
crossref_primary_10_1049_iet_spr_2014_0013
crossref_primary_10_1109_LSP_2022_3153207
crossref_primary_10_1109_TSP_2008_2009022
crossref_primary_10_3390_a9040068
crossref_primary_10_1109_TASLP_2013_2294578
crossref_primary_10_1016_j_sigpro_2016_04_013
crossref_primary_10_1016_j_ins_2023_03_076
crossref_primary_10_1243_09544100JAERO706
crossref_primary_10_1049_iet_com_2012_0264
crossref_primary_10_1007_s11277_015_2768_5
crossref_primary_10_1016_j_ymssp_2016_05_007
crossref_primary_10_1109_TPWRS_2017_2767105
crossref_primary_10_1109_TASC_2021_3106267
crossref_primary_10_1109_TAES_2018_2797780
crossref_primary_10_1177_1077546314521445
crossref_primary_10_3390_s21175977
crossref_primary_10_1109_TSP_2020_3039595
crossref_primary_10_1109_ACCESS_2024_3433583
crossref_primary_10_1007_s00521_016_2394_5
crossref_primary_10_1007_s00034_012_9445_7
crossref_primary_10_1007_s11277_018_5929_5
crossref_primary_10_1016_j_dsp_2017_04_001
crossref_primary_10_3390_en11061358
crossref_primary_10_1109_JAS_2021_1004362
crossref_primary_10_1016_j_energy_2016_05_047
crossref_primary_10_1002_adc2_20
crossref_primary_10_1016_j_automatica_2020_109389
crossref_primary_10_1109_TAES_2019_2940304
crossref_primary_10_1111_mice_12037
crossref_primary_10_1109_TSP_2006_881225
crossref_primary_10_1016_j_sigpro_2018_09_040
crossref_primary_10_1109_MCS_2020_2990516
crossref_primary_10_3390_en11040778
crossref_primary_10_1049_sil2_12074
crossref_primary_10_1364_AO_54_005715
crossref_primary_10_1007_s11075_022_01477_7
crossref_primary_10_1049_el_2011_2454
crossref_primary_10_1002_rnc_5968
crossref_primary_10_1109_ACCESS_2020_2966300
crossref_primary_10_1109_TNNLS_2024_3385407
crossref_primary_10_3390_en12122242
crossref_primary_10_11728_cjss2014_03_319
crossref_primary_10_1109_ACCESS_2020_2975536
crossref_primary_10_1109_ACCESS_2021_3055947
crossref_primary_10_1109_TPWRS_2019_2898168
crossref_primary_10_1016_j_patcog_2012_05_009
crossref_primary_10_1002_sam_10074
crossref_primary_10_1016_j_automatica_2012_05_076
crossref_primary_10_1155_2018_6195387
crossref_primary_10_1109_TSP_2017_2725222
crossref_primary_10_3390_en15103509
crossref_primary_10_1109_TASLP_2015_2464692
crossref_primary_10_1002_qj_1873
crossref_primary_10_1080_00207160_2024_2350447
crossref_primary_10_1111_j_1467_8667_2009_00605_x
crossref_primary_10_3390_a15040111
crossref_primary_10_1109_TSTE_2023_3254597
crossref_primary_10_1155_ASP_2006_84797
crossref_primary_10_1007_s00034_024_02605_5
crossref_primary_10_1007_s00034_016_0271_1
crossref_primary_10_1109_TPWRD_2015_2422139
crossref_primary_10_1109_TSP_2020_3021240
crossref_primary_10_3390_electronics13224436
crossref_primary_10_3390_app12094263
crossref_primary_10_1109_LSP_2008_2001559
crossref_primary_10_1002_we_1985
Cites_doi 10.1049/ip-com:19971505
10.1016/0005-1098(81)90070-4
10.1109/29.1514
10.1049/el:20000727
10.1109/tassp.1985.1164493
10.1109/29.21703
10.1109/78.330354
10.1049/el:19911331
10.1109/78.91147
10.1109/78.370617
10.1049/el:19920352
10.1049/el:19921309
10.1109/TASSP.1983.1164205
10.1109/78.482100
ContentType Journal Article
Copyright 2005 INIST-CNRS
Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2005
Copyright_xml – notice: 2005 INIST-CNRS
– notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2005
DBID 97E
RIA
RIE
AAYXX
CITATION
IQODW
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
F28
FR3
DOI 10.1109/TSP.2005.851110
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Pascal-Francis
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
Engineering Research Database
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList
Technology Research Database
Technology Research Database
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Applied Sciences
EISSN 1941-0476
EndPage 3150
ExternalDocumentID 2361910621
16948374
10_1109_TSP_2005_851110
1468506
Genre orig-research
GroupedDBID -~X
.DC
0R~
29I
3EH
4.4
53G
5GY
5VS
6IK
85S
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACIWK
ACKIV
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AJQPL
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
E.L
EBS
EJD
F5P
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
MS~
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
VH1
AAYXX
CITATION
IQODW
RIG
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
F28
FR3
ID FETCH-LOGICAL-c381t-f62612ebce3f993f38d6ffaa1a348f020822b1f4b3809856d5fc13a7b7e5c25c3
IEDL.DBID RIE
ISICitedReferencesCount 149
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000230652900016&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1053-587X
IngestDate Sat Sep 27 23:34:21 EDT 2025
Sat Sep 27 18:52:26 EDT 2025
Sun Nov 09 08:50:42 EST 2025
Mon Jul 21 09:15:28 EDT 2025
Sat Nov 29 08:07:09 EST 2025
Tue Nov 18 21:44:03 EST 2025
Tue Aug 26 16:40:11 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords Target tracking
Adaptive algorithm
Forgetting factor
Correlation matrix
Theoretical study
Unsteady state
Recursive algorithm
Steady state
Time variation
Mean square error
Simulation
variable forgetting factor
Correlation analysis
Least squares method
Recursive method
RLS
Mean square error analysis
time-varying
Fast algorithm
Gradient method
Signal to noise ratio
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c381t-f62612ebce3f993f38d6ffaa1a348f020822b1f4b3809856d5fc13a7b7e5c25c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
PQID 869134603
PQPubID 23500
PageCount 10
ParticipantIDs proquest_miscellaneous_28007536
pascalfrancis_primary_16948374
crossref_citationtrail_10_1109_TSP_2005_851110
proquest_miscellaneous_896200201
ieee_primary_1468506
proquest_journals_869134603
crossref_primary_10_1109_TSP_2005_851110
PublicationCentury 2000
PublicationDate 2005-08-01
PublicationDateYYYYMMDD 2005-08-01
PublicationDate_xml – month: 08
  year: 2005
  text: 2005-08-01
  day: 01
PublicationDecade 2000
PublicationPlace New York, NY
PublicationPlace_xml – name: New York, NY
– name: New York
PublicationTitle IEEE transactions on signal processing
PublicationTitleAbbrev TSP
PublicationYear 2005
Publisher IEEE
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: Institute of Electrical and Electronics Engineers
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
Farhang-Boroujeny (ref2) 1998
ref15
ref14
Gantmacher (ref17) 1977; I
ref11
ref10
ref16
ref18
ref8
ref7
ref9
ref4
Urkowitz (ref19) 1983
ref3
ref6
Kailath (ref20) 1980
ref5
Leung (ref12) 2000; 147
Haykin (ref1) 1996
References_xml – ident: ref11
  doi: 10.1049/ip-com:19971505
– ident: ref7
  doi: 10.1016/0005-1098(81)90070-4
– ident: ref4
  doi: 10.1109/29.1514
– ident: ref9
  doi: 10.1049/el:20000727
– ident: ref16
  doi: 10.1109/tassp.1985.1164493
– ident: ref3
  doi: 10.1109/29.21703
– ident: ref13
  doi: 10.1109/78.330354
– volume-title: Adaptive Filter Theory
  year: 1996
  ident: ref1
– volume-title: Adaptive Filters: Theory and Applications
  year: 1998
  ident: ref2
– volume: 147
  start-page: 81
  issue: 2
  year: 2000
  ident: ref12
  article-title: Nonlinear RLS algorithm for amplitude estimation in class a noise
  publication-title: Proc. Inst. Elect. Eng.—Commun.
– volume-title: Signal Theory and Random Processes
  year: 1983
  ident: ref19
– ident: ref8
  doi: 10.1049/el:19911331
– ident: ref10
  doi: 10.1109/78.91147
– ident: ref15
  doi: 10.1109/78.370617
– volume: I
  volume-title: The Theory of Matrices
  year: 1977
  ident: ref17
– ident: ref5
  doi: 10.1049/el:19920352
– ident: ref6
  doi: 10.1049/el:19921309
– ident: ref14
  doi: 10.1109/TASSP.1983.1164205
– ident: ref18
  doi: 10.1109/78.482100
– volume-title: Linear Systems
  year: 1980
  ident: ref20
SSID ssj0014496
Score 2.2447834
Snippet In this paper, a new control mechanism for the variable forgetting factor (VFF) of the recursive least square (RLS) adaptive algorithm is presented. The...
The new mean square error analysis exploits the correlation of the inverse of the correlation matrix with itself that yields improved theoretical results,...
SourceID proquest
pascalfrancis
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 3141
SubjectTerms Adaptive algorithm
Algorithm design and analysis
Algorithms
Analytical models
Applied sciences
Control algorithms
Control theory
Detection, estimation, filtering, equalization, prediction
Dynamics
Equations
Error analysis
Errors
Exact sciences and technology
Information, signal and communications theory
Least squares methods
Mathematical analysis
Mathematical models
Mean square error analysis
Mean square error methods
Mean square errors
Mean square values
Resonance light scattering
RLS
Signal and communications theory
Signal, noise
Steady-state
Studies
Telecommunications and information theory
time-varying
Transient analysis
variable forgetting factor
Title Gradient-based variable forgetting factor RLS algorithm in time-varying environments
URI https://ieeexplore.ieee.org/document/1468506
https://www.proquest.com/docview/869134603
https://www.proquest.com/docview/28007536
https://www.proquest.com/docview/896200201
Volume 53
WOSCitedRecordID wos000230652900016&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Xplore
  customDbUrl:
  eissn: 1941-0476
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014496
  issn: 1053-587X
  databaseCode: RIE
  dateStart: 19910101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED5BxQADb0QoDw8MDBicOHGcESEeA0IIitQtchwbKkGK2pTfj88JpQgY2CLZViyfnbv4vvs-gEMVOcNikpVHtqCx0JqqQjNqmC0100xa5Xlmb9LbW9nvZ3dzcDythTHGePCZOcFHn8svh3qCV2WnWCaUIL_2fJqKplZrmjGIY6_F5cIFThOZ9lsan5Blp72Hu-byBKMLLJWd8UBeUgUBkWrs1sQ2YhY_vsve2Vyu_G-aq7DcBpXkrNkFazBnqnVYmqEa3IDe1ciDu2qKfqsk7-4fGaumiPV34gh-Jo32Drm_eSDq5Wk4GtTPr2RQEdSfp24AVkSR2cq4TXi8vOidX9NWUYFq55lragUyhplCG25dYGK5LIW1SoWKx9KiXmcUFaGNCy5ZJhNRJlaHXKVFahIdJZpvQacaVmYb3JSY4TKJjXVjC5tJxNA4z5cWUWlLIQM4-VzlXLd046h68ZL73w6W5c4sKIKZ5I1ZAjiaDnhrmDb-7rqBq_7VrVnwAPa_mfGrXWRInB8H0P20a94e1XEuBYIPBOMBHExb3RnDxImqzHAyziOJkRV3LyB_9JCZQLQLC3d-n1oXFj3nq0cO7kKnHk3MHizo93owHu37nfwBjCbyrg
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT-MwEB4hQII9AMtDZHn5sIc9YHDixHGOCPESpUJQpN4ix7GhEqSrNuX3r8cJpWjhwC2SbcXy2JmJ55vvA_itImdYTLLyyBY0FlpTVWhGDbOlZppJqzzPbCftdmW_n93OweG0FsYY48Fn5ggffS6_HOoJXpUdY5lQgvzaC6ic1VZrTXMGcezVuFzAwGki035L5BOy7Lh3f9tcn2B8gcWyMz7Ii6ogJFKN3arYRs7ivy-zdzfnq9-b6BqstGElOWn2wU-YM9U6_JghG9yA3sXIw7tqip6rJK_uLxnrpoj1t-IIfyaN-g6569wT9fw4HA3qpxcyqAgq0FM3AGuiyGxt3CY8nJ_1Ti9pq6lAtfPNNbUCOcNMoQ23LjSxXJbCWqVCxWNpUbEziorQxgWXLJOJKBOrQ67SIjWJjhLNt2C-GlZmG9yUmOEyiY11YwubSUTRON-XFlFpSyEDOHpb5Vy3hOOoe_Gc-x8PluXOLCiDmeSNWQL4Mx3wt-Ha-LrrBq76e7dmwQPY_2DG93aRIXV-HMDOm13z9rCOcykQfiAYD-Bg2upOGaZOVGWGk3EeSYytuHsB-aKHzATiXVj46_OpHcDSZe-mk3euutc7sOwZYD2OcBfm69HE7MGifq0H49G-39X_AFEY9fc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Gradient-based+variable+forgetting+factor+RLS+algorithm+in+time-varying+environments&rft.jtitle=IEEE+transactions+on+signal+processing&rft.au=Shu-Hung+Leung&rft.au=So%2C+C.F.&rft.date=2005-08-01&rft.issn=1053-587X&rft.volume=53&rft.issue=8&rft.spage=3141&rft.epage=3150&rft_id=info:doi/10.1109%2FTSP.2005.851110&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TSP_2005_851110
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-587X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-587X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-587X&client=summon