A new regression estimator with neural network realization

A new regression estimator viewed as the solution of a strictly convex quadratic programming problem is introduced in this paper. Two recurrent neural networks in continuous-time and discrete-time respectively are proposed to solve the quadratic programming problem in real time. The continuous-time...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on signal processing Jg. 53; H. 2; S. 672 - 685
Hauptverfasser: Youshen Xia, Leung, H., Nan Xie, Bosse, E.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York, NY IEEE 01.02.2005
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:1053-587X, 1941-0476
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract A new regression estimator viewed as the solution of a strictly convex quadratic programming problem is introduced in this paper. Two recurrent neural networks in continuous-time and discrete-time respectively are proposed to solve the quadratic programming problem in real time. The continuous-time neural network is shown to have a global stability, including the global asymptotic and exponential stability. The discrete-time neural network is shown to have a global convergence with a fixed step length. This fixed step length can be independent of the regression problem size by scaling a design parameter. Since the sizes of the proposed neural networks depend only on the constraints of the optimization problems, the proposed new regression estimator can obtained by two novel neural networks with lower implementation costs than the conventional methods. Our simulation results confirm that the proposed neural networks are effective in solving various kind of regression problems.
AbstractList A new regression estimator viewed as the solution of a strictly convex quadratic programming problem is introduced in this paper. Two recurrent neural networks in continuous-time and discrete-time respectively are proposed to solve the quadratic programming problem in real time. The continuous-time neural network is shown to have a global stability, including the global asymptotic and exponential stability. The discrete-time neural network is shown to have a global convergence with a fixed step length. This fixed step length can be independent of the regression problem size by scaling a design parameter. Since the sizes of the proposed neural networks depend only on the constraints of the optimization problems, the proposed new regression estimator can obtained by two novel neural networks with lower implementation costs than the conventional methods. Our simulation results confirm that the proposed neural networks are effective in solving various kind of regression problems.
Author Bosse, E.
Youshen Xia
Leung, H.
Nan Xie
Author_xml – sequence: 1
  surname: Youshen Xia
  fullname: Youshen Xia
  organization: Dept. of Electr. & Comput. Eng., Univ. of Calgary, Alta., Canada
– sequence: 2
  givenname: H.
  surname: Leung
  fullname: Leung, H.
  organization: Dept. of Electr. & Comput. Eng., Univ. of Calgary, Alta., Canada
– sequence: 3
  surname: Nan Xie
  fullname: Nan Xie
  organization: Dept. of Electr. & Comput. Eng., Univ. of Calgary, Alta., Canada
– sequence: 4
  givenname: E.
  surname: Bosse
  fullname: Bosse, E.
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=16416412$$DView record in Pascal Francis
BookMark eNp9kc1LAzEQxYMoqNWzBy9FUE_bZjaTbNZbEb-goGAFbyEbE41ud2uyS9G_3tQKggchMIH83kzmvV2y2bSNJeQA6AiAluPZ_d0opxRHkskyLzfIDpQIGcVCbKY75SzjsnjcJrsxvlIKiKXYIWeTYWOXw2Cfg43Rt83Qxs7PddeG4dJ3L-m1D7pOpVu24S2BuvafukvkHtlyuo52_6cOyMPlxez8OpveXt2cT6aZYRK6zGGVI9OG5aYwQCtpEJ9YITiHinIA4ww4Cg6d42gMl2AKh1SICrngFWcDcrruuwjte5--p-Y-GlvXurFtH5UsRQ4M6Yo8-ZfMJS0w55jAoz_ga9uHJm2hpCgBJTBI0PEPpKPRtQu6MT6qRUj2hA8FAlcnT9x4zZnQxhis-0WoWkWjUjRqFY1aR5MU_I_C-O7b0y5oX_-jO1zrvLX2d0qyueCSfQGWR5tp
CODEN ITPRED
CitedBy_id crossref_primary_10_1109_TCYB_2019_2925707
crossref_primary_10_1016_j_neucom_2023_01_021
crossref_primary_10_1162_neco_2007_10_06_376
crossref_primary_10_1016_j_neucom_2019_11_028
crossref_primary_10_1109_TSP_2007_894379
Cites_doi 10.1109/31.1783
10.1109/82.160169
10.1137/S1052623493246045
10.1109/72.655040
10.1137/S0363012992241673
10.1109/72.548188
10.1109/72.207617
10.1109/82.749103
10.1109/82.818897
10.1109/72.363446
10.1137/0803022
10.1109/72.728383
ContentType Journal Article
Copyright 2005 INIST-CNRS
Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2005
Copyright_xml – notice: 2005 INIST-CNRS
– notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2005
DBID 97E
RIA
RIE
AAYXX
CITATION
IQODW
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
F28
FR3
DOI 10.1109/TSP.2004.838929
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Pascal-Francis
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
Engineering Research Database
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList Technology Research Database

Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Applied Sciences
EISSN 1941-0476
EndPage 685
ExternalDocumentID 2361964391
16416412
10_1109_TSP_2004_838929
1381758
Genre orig-research
GroupedDBID -~X
.DC
0R~
29I
3EH
4.4
53G
5GY
5VS
6IK
85S
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACIWK
ACKIV
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AJQPL
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
E.L
EBS
EJD
F5P
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
MS~
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
VH1
AAYXX
CITATION
IQODW
RIG
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
F28
FR3
ID FETCH-LOGICAL-c381t-f4b243ac32c7c10b8c44d376551b0511cfc1f01f4ff54cc581c7f4066b4565b53
IEDL.DBID RIE
ISICitedReferencesCount 7
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000226341000026&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1053-587X
IngestDate Sun Sep 28 08:00:01 EDT 2025
Thu Oct 02 05:11:57 EDT 2025
Mon Jun 30 10:17:28 EDT 2025
Mon Jul 21 09:14:05 EDT 2025
Sat Nov 29 02:31:01 EST 2025
Tue Nov 18 21:09:35 EST 2025
Tue Aug 26 16:40:10 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Performance evaluation
recurrent neural network
Simulation
Estimation
global convergence
regression
Information extraction
Regression analysis
Neural network
Data mining
Quadratic programming
Optimization
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c381t-f4b243ac32c7c10b8c44d376551b0511cfc1f01f4ff54cc581c7f4066b4565b53
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
content type line 23
PQID 869148131
PQPubID 23500
PageCount 14
ParticipantIDs proquest_miscellaneous_28074254
ieee_primary_1381758
proquest_miscellaneous_896213405
crossref_primary_10_1109_TSP_2004_838929
proquest_journals_869148131
pascalfrancis_primary_16416412
crossref_citationtrail_10_1109_TSP_2004_838929
PublicationCentury 2000
PublicationDate 2005-02-01
PublicationDateYYYYMMDD 2005-02-01
PublicationDate_xml – month: 02
  year: 2005
  text: 2005-02-01
  day: 01
PublicationDecade 2000
PublicationPlace New York, NY
PublicationPlace_xml – name: New York, NY
– name: New York
PublicationTitle IEEE transactions on signal processing
PublicationTitleAbbrev TSP
PublicationYear 2005
Publisher IEEE
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: Institute of Electrical and Electronics Engineers
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref12
ref15
ref14
ref10
kinderlehrer (ref17) 1980
cottle (ref20) 1992
zaˇk (ref11) 1995; 6
ref16
ref19
ref18
ref8
cichocki (ref7) 1993
bradley (ref6) 1977
ref9
ref4
ref5
haykin (ref3) 1991
cherkassky (ref1) 1998
xia (ref13) 2000
gruber (ref21) 1990
bradley (ref2) 1998
References_xml – ident: ref8
  doi: 10.1109/31.1783
– ident: ref9
  doi: 10.1109/82.160169
– ident: ref5
  doi: 10.1137/S1052623493246045
– year: 2000
  ident: ref13
  publication-title: Design Methodology and Stability Analysis of Recurrent Neural Networks for Constrained Optimization
– ident: ref19
  doi: 10.1109/72.655040
– ident: ref16
  doi: 10.1137/S0363012992241673
– ident: ref12
  doi: 10.1109/72.548188
– year: 1980
  ident: ref17
  publication-title: An Introduction to Variational Inequalities and Their Applications
– year: 1993
  ident: ref7
  publication-title: Neural Networks for Optimization and Signal Processing
– ident: ref10
  doi: 10.1109/72.207617
– ident: ref14
  doi: 10.1109/82.749103
– year: 1992
  ident: ref20
  publication-title: The Linear Complementarity Problem
– ident: ref15
  doi: 10.1109/82.818897
– volume: 6
  start-page: 94
  year: 1995
  ident: ref11
  article-title: solving linear programming problems with neural networks: a comparative study
  publication-title: IEEE Trans Neural Networks
  doi: 10.1109/72.363446
– year: 1990
  ident: ref21
  publication-title: Regression Estimators A Comparative Study
– year: 1977
  ident: ref6
  publication-title: Applied Mathematical Programming
– ident: ref4
  doi: 10.1137/0803022
– year: 1998
  ident: ref2
  publication-title: Mathematical Programming for Data Mining Formulations and Challenges
– ident: ref18
  doi: 10.1109/72.728383
– year: 1991
  ident: ref3
  publication-title: Adaptive Filter Theory
– year: 1998
  ident: ref1
  publication-title: Learning Form Data
SSID ssj0014496
Score 1.8203917
Snippet A new regression estimator viewed as the solution of a strictly convex quadratic programming problem is introduced in this paper. Two recurrent neural networks...
SourceID proquest
pascalfrancis
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 672
SubjectTerms Applied sciences
Artificial intelligence
Asymptotic properties
Asymptotic stability
Computer science; control theory; systems
Computer simulation
Connectionism. Neural networks
Constraint optimization
Convergence
Cost function
Data mining
Estimation
Estimators
Exact sciences and technology
Gaussian noise
global convergence
Neural networks
Optimization methods
Quadratic programming
recurrent neural network
Recurrent neural networks
Regression
Stability
Title A new regression estimator with neural network realization
URI https://ieeexplore.ieee.org/document/1381758
https://www.proquest.com/docview/869148131
https://www.proquest.com/docview/28074254
https://www.proquest.com/docview/896213405
Volume 53
WOSCitedRecordID wos000226341000026&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1941-0476
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014496
  issn: 1053-587X
  databaseCode: RIE
  dateStart: 19910101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED5RxAADr4IIzwwMDKS1k4vjsCEEYqoqUaRuke3YCKmkqA9-P7YTWhB0QMoQyefEOj_uzj5_H8ClyhjmUvFICk0iNKWIJEUROQ4CIuKyLFF6soms1-PDYd5fg-vFXRittU8-0x336s_yy7Gau62yLnVwcilvQSvLWH1Xa3FigOi5uKy7kEQpz4YNjA8leXfw1PeBYIdb6-x9yaUF8pQqLiFSTK1OTE1m8Wtd9sbmYed_zdyF7capDG_rUbAHa7rah61vUINtuLkNrQMdTvRLnfhahQ5e482F3KHbiw0dsKX9RlWnhVtBMWquaB7A88P94O4xangTImX_PIsMyhgToZJYZYoSyRViaRcS6xxJOwepMooaQg0ak6JSKacqM9awM-ncO5kmh7BejSt9BKFiPGWcsFIiYpbkIkeqMZbW8HNeagyg86XLQjWg4o7bYlT44ILkhVW-o7rEolZ-AFeLCu81nsZq0bbT7VKsVmsA5z86a1nO0D1xACdfvVc0E3JacJbbwI8mNICLRamdSe54RFR6PJ8WHhfIxssBhCskeM4cAB5Jj_9u2glsemRXn9R9CuuzyVyfwYb6mL1OJ-d-vH4CrgboWQ
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB58gXrwLdZnDx482LVpp23qTURR1EVwhb2VJE1E0K7sw99vJq27inoQeihk0obJY2aSyfcBHKosxVwqHkihwwBNKQLJUATEQRCKqCxLlI5sImu3ebeb30_B8fgujNbaJZ_pFr26s_yyp0a0VXbCCE4u4dMwS8xZzW2t8ZkBomPjsg5DHCQ86zZAPizMTzoP9y4UbHFrn503ObFBjlSFUiLFwGrF1HQWP1ZmZ24ul__X0BVYatxK_6weB6swpas1WPwCNrgOp2e-daH9vn6qU18rnwA2Xino9mk31idoS_uNqk4Mt4LipbmkuQGPlxed86ugYU4IlP3zMDAoI4yFiiOVKRZKrhBLu5RY90jaWciUUcyEzKAxCSqVcKYyY017KsnBk0m8CTNVr9Jb4KuUJykP01IiYhbnIkemMZLW9HNeavSg9anLQjWw4sRu8VK48CLMC6t8IrvEola-B0fjCm81osbfouuk24lYrVYP9r911qQ8RXoiD3Y-e69opuSg4GluQz8WMw8OxqV2LtEBiah0bzQoHDKQjZg98P-Q4HlKEHhhsv170w5g_qpzd1vcXrdvdmDB4by6FO9dmBn2R3oP5tT78HnQ33dj9wPuD-ui
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+new+regression+estimator+with+neural+network+realization&rft.jtitle=IEEE+transactions+on+signal+processing&rft.au=Xia%2C+Youshen&rft.au=Leung%2C+H&rft.au=Xie%2C+Nan&rft.au=Bosse%2C+E&rft.date=2005-02-01&rft.issn=1053-587X&rft.volume=53&rft.issue=2&rft.spage=672&rft.epage=685&rft_id=info:doi/10.1109%2FTSP.2004.838929&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-587X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-587X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-587X&client=summon