A new regression estimator with neural network realization
A new regression estimator viewed as the solution of a strictly convex quadratic programming problem is introduced in this paper. Two recurrent neural networks in continuous-time and discrete-time respectively are proposed to solve the quadratic programming problem in real time. The continuous-time...
Gespeichert in:
| Veröffentlicht in: | IEEE transactions on signal processing Jg. 53; H. 2; S. 672 - 685 |
|---|---|
| Hauptverfasser: | , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
New York, NY
IEEE
01.02.2005
Institute of Electrical and Electronics Engineers The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Schlagworte: | |
| ISSN: | 1053-587X, 1941-0476 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | A new regression estimator viewed as the solution of a strictly convex quadratic programming problem is introduced in this paper. Two recurrent neural networks in continuous-time and discrete-time respectively are proposed to solve the quadratic programming problem in real time. The continuous-time neural network is shown to have a global stability, including the global asymptotic and exponential stability. The discrete-time neural network is shown to have a global convergence with a fixed step length. This fixed step length can be independent of the regression problem size by scaling a design parameter. Since the sizes of the proposed neural networks depend only on the constraints of the optimization problems, the proposed new regression estimator can obtained by two novel neural networks with lower implementation costs than the conventional methods. Our simulation results confirm that the proposed neural networks are effective in solving various kind of regression problems. |
|---|---|
| AbstractList | A new regression estimator viewed as the solution of a strictly convex quadratic programming problem is introduced in this paper. Two recurrent neural networks in continuous-time and discrete-time respectively are proposed to solve the quadratic programming problem in real time. The continuous-time neural network is shown to have a global stability, including the global asymptotic and exponential stability. The discrete-time neural network is shown to have a global convergence with a fixed step length. This fixed step length can be independent of the regression problem size by scaling a design parameter. Since the sizes of the proposed neural networks depend only on the constraints of the optimization problems, the proposed new regression estimator can obtained by two novel neural networks with lower implementation costs than the conventional methods. Our simulation results confirm that the proposed neural networks are effective in solving various kind of regression problems. |
| Author | Bosse, E. Youshen Xia Leung, H. Nan Xie |
| Author_xml | – sequence: 1 surname: Youshen Xia fullname: Youshen Xia organization: Dept. of Electr. & Comput. Eng., Univ. of Calgary, Alta., Canada – sequence: 2 givenname: H. surname: Leung fullname: Leung, H. organization: Dept. of Electr. & Comput. Eng., Univ. of Calgary, Alta., Canada – sequence: 3 surname: Nan Xie fullname: Nan Xie organization: Dept. of Electr. & Comput. Eng., Univ. of Calgary, Alta., Canada – sequence: 4 givenname: E. surname: Bosse fullname: Bosse, E. |
| BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=16416412$$DView record in Pascal Francis |
| BookMark | eNp9kc1LAzEQxYMoqNWzBy9FUE_bZjaTbNZbEb-goGAFbyEbE41ud2uyS9G_3tQKggchMIH83kzmvV2y2bSNJeQA6AiAluPZ_d0opxRHkskyLzfIDpQIGcVCbKY75SzjsnjcJrsxvlIKiKXYIWeTYWOXw2Cfg43Rt83Qxs7PddeG4dJ3L-m1D7pOpVu24S2BuvafukvkHtlyuo52_6cOyMPlxez8OpveXt2cT6aZYRK6zGGVI9OG5aYwQCtpEJ9YITiHinIA4ww4Cg6d42gMl2AKh1SICrngFWcDcrruuwjte5--p-Y-GlvXurFtH5UsRQ4M6Yo8-ZfMJS0w55jAoz_ga9uHJm2hpCgBJTBI0PEPpKPRtQu6MT6qRUj2hA8FAlcnT9x4zZnQxhis-0WoWkWjUjRqFY1aR5MU_I_C-O7b0y5oX_-jO1zrvLX2d0qyueCSfQGWR5tp |
| CODEN | ITPRED |
| CitedBy_id | crossref_primary_10_1109_TCYB_2019_2925707 crossref_primary_10_1016_j_neucom_2023_01_021 crossref_primary_10_1162_neco_2007_10_06_376 crossref_primary_10_1016_j_neucom_2019_11_028 crossref_primary_10_1109_TSP_2007_894379 |
| Cites_doi | 10.1109/31.1783 10.1109/82.160169 10.1137/S1052623493246045 10.1109/72.655040 10.1137/S0363012992241673 10.1109/72.548188 10.1109/72.207617 10.1109/82.749103 10.1109/82.818897 10.1109/72.363446 10.1137/0803022 10.1109/72.728383 |
| ContentType | Journal Article |
| Copyright | 2005 INIST-CNRS Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2005 |
| Copyright_xml | – notice: 2005 INIST-CNRS – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2005 |
| DBID | 97E RIA RIE AAYXX CITATION IQODW 7SC 7SP 8FD JQ2 L7M L~C L~D F28 FR3 |
| DOI | 10.1109/TSP.2004.838929 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Pascal-Francis Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ANTE: Abstracts in New Technology & Engineering Engineering Research Database |
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional Engineering Research Database ANTE: Abstracts in New Technology & Engineering |
| DatabaseTitleList | Technology Research Database Technology Research Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Applied Sciences |
| EISSN | 1941-0476 |
| EndPage | 685 |
| ExternalDocumentID | 2361964391 16416412 10_1109_TSP_2004_838929 1381758 |
| Genre | orig-research |
| GroupedDBID | -~X .DC 0R~ 29I 3EH 4.4 53G 5GY 5VS 6IK 85S 97E AAJGR AARMG AASAJ AAWTH ABAZT ABFSI ABQJQ ABVLG ACGFO ACIWK ACKIV ACNCT AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AJQPL AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 E.L EBS EJD F5P HZ~ H~9 ICLAB IFIPE IFJZH IPLJI JAVBF LAI MS~ O9- OCL P2P RIA RIE RNS TAE TN5 VH1 AAYXX CITATION IQODW RIG 7SC 7SP 8FD JQ2 L7M L~C L~D F28 FR3 |
| ID | FETCH-LOGICAL-c381t-f4b243ac32c7c10b8c44d376551b0511cfc1f01f4ff54cc581c7f4066b4565b53 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 7 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000226341000026&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1053-587X |
| IngestDate | Sun Sep 28 08:00:01 EDT 2025 Thu Oct 02 05:11:57 EDT 2025 Mon Jun 30 10:17:28 EDT 2025 Mon Jul 21 09:14:05 EDT 2025 Sat Nov 29 02:31:01 EST 2025 Tue Nov 18 21:09:35 EST 2025 Tue Aug 26 16:40:10 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Keywords | Performance evaluation recurrent neural network Simulation Estimation global convergence regression Information extraction Regression analysis Neural network Data mining Quadratic programming Optimization |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html CC BY 4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c381t-f4b243ac32c7c10b8c44d376551b0511cfc1f01f4ff54cc581c7f4066b4565b53 |
| Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 content type line 23 |
| PQID | 869148131 |
| PQPubID | 23500 |
| PageCount | 14 |
| ParticipantIDs | proquest_miscellaneous_28074254 ieee_primary_1381758 proquest_miscellaneous_896213405 crossref_primary_10_1109_TSP_2004_838929 proquest_journals_869148131 pascalfrancis_primary_16416412 crossref_citationtrail_10_1109_TSP_2004_838929 |
| PublicationCentury | 2000 |
| PublicationDate | 2005-02-01 |
| PublicationDateYYYYMMDD | 2005-02-01 |
| PublicationDate_xml | – month: 02 year: 2005 text: 2005-02-01 day: 01 |
| PublicationDecade | 2000 |
| PublicationPlace | New York, NY |
| PublicationPlace_xml | – name: New York, NY – name: New York |
| PublicationTitle | IEEE transactions on signal processing |
| PublicationTitleAbbrev | TSP |
| PublicationYear | 2005 |
| Publisher | IEEE Institute of Electrical and Electronics Engineers The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: Institute of Electrical and Electronics Engineers – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref12 ref15 ref14 ref10 kinderlehrer (ref17) 1980 cottle (ref20) 1992 zaˇk (ref11) 1995; 6 ref16 ref19 ref18 ref8 cichocki (ref7) 1993 bradley (ref6) 1977 ref9 ref4 ref5 haykin (ref3) 1991 cherkassky (ref1) 1998 xia (ref13) 2000 gruber (ref21) 1990 bradley (ref2) 1998 |
| References_xml | – ident: ref8 doi: 10.1109/31.1783 – ident: ref9 doi: 10.1109/82.160169 – ident: ref5 doi: 10.1137/S1052623493246045 – year: 2000 ident: ref13 publication-title: Design Methodology and Stability Analysis of Recurrent Neural Networks for Constrained Optimization – ident: ref19 doi: 10.1109/72.655040 – ident: ref16 doi: 10.1137/S0363012992241673 – ident: ref12 doi: 10.1109/72.548188 – year: 1980 ident: ref17 publication-title: An Introduction to Variational Inequalities and Their Applications – year: 1993 ident: ref7 publication-title: Neural Networks for Optimization and Signal Processing – ident: ref10 doi: 10.1109/72.207617 – ident: ref14 doi: 10.1109/82.749103 – year: 1992 ident: ref20 publication-title: The Linear Complementarity Problem – ident: ref15 doi: 10.1109/82.818897 – volume: 6 start-page: 94 year: 1995 ident: ref11 article-title: solving linear programming problems with neural networks: a comparative study publication-title: IEEE Trans Neural Networks doi: 10.1109/72.363446 – year: 1990 ident: ref21 publication-title: Regression Estimators A Comparative Study – year: 1977 ident: ref6 publication-title: Applied Mathematical Programming – ident: ref4 doi: 10.1137/0803022 – year: 1998 ident: ref2 publication-title: Mathematical Programming for Data Mining Formulations and Challenges – ident: ref18 doi: 10.1109/72.728383 – year: 1991 ident: ref3 publication-title: Adaptive Filter Theory – year: 1998 ident: ref1 publication-title: Learning Form Data |
| SSID | ssj0014496 |
| Score | 1.8203917 |
| Snippet | A new regression estimator viewed as the solution of a strictly convex quadratic programming problem is introduced in this paper. Two recurrent neural networks... |
| SourceID | proquest pascalfrancis crossref ieee |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 672 |
| SubjectTerms | Applied sciences Artificial intelligence Asymptotic properties Asymptotic stability Computer science; control theory; systems Computer simulation Connectionism. Neural networks Constraint optimization Convergence Cost function Data mining Estimation Estimators Exact sciences and technology Gaussian noise global convergence Neural networks Optimization methods Quadratic programming recurrent neural network Recurrent neural networks Regression Stability |
| Title | A new regression estimator with neural network realization |
| URI | https://ieeexplore.ieee.org/document/1381758 https://www.proquest.com/docview/869148131 https://www.proquest.com/docview/28074254 https://www.proquest.com/docview/896213405 |
| Volume | 53 |
| WOSCitedRecordID | wos000226341000026&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1941-0476 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014496 issn: 1053-587X databaseCode: RIE dateStart: 19910101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED5RxAADr4IIzwwMDKS1k4vjsCEEYqoqUaRuke3YCKmkqA9-P7YTWhB0QMoQyefEOj_uzj5_H8ClyhjmUvFICk0iNKWIJEUROQ4CIuKyLFF6soms1-PDYd5fg-vFXRittU8-0x336s_yy7Gau62yLnVwcilvQSvLWH1Xa3FigOi5uKy7kEQpz4YNjA8leXfw1PeBYIdb6-x9yaUF8pQqLiFSTK1OTE1m8Wtd9sbmYed_zdyF7capDG_rUbAHa7rah61vUINtuLkNrQMdTvRLnfhahQ5e482F3KHbiw0dsKX9RlWnhVtBMWquaB7A88P94O4xangTImX_PIsMyhgToZJYZYoSyRViaRcS6xxJOwepMooaQg0ak6JSKacqM9awM-ncO5kmh7BejSt9BKFiPGWcsFIiYpbkIkeqMZbW8HNeagyg86XLQjWg4o7bYlT44ILkhVW-o7rEolZ-AFeLCu81nsZq0bbT7VKsVmsA5z86a1nO0D1xACdfvVc0E3JacJbbwI8mNICLRamdSe54RFR6PJ8WHhfIxssBhCskeM4cAB5Jj_9u2glsemRXn9R9CuuzyVyfwYb6mL1OJ-d-vH4CrgboWQ |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB58gXrwLdZnDx482LVpp23qTURR1EVwhb2VJE1E0K7sw99vJq27inoQeihk0obJY2aSyfcBHKosxVwqHkihwwBNKQLJUATEQRCKqCxLlI5sImu3ebeb30_B8fgujNbaJZ_pFr26s_yyp0a0VXbCCE4u4dMwS8xZzW2t8ZkBomPjsg5DHCQ86zZAPizMTzoP9y4UbHFrn503ObFBjlSFUiLFwGrF1HQWP1ZmZ24ul__X0BVYatxK_6weB6swpas1WPwCNrgOp2e-daH9vn6qU18rnwA2Xino9mk31idoS_uNqk4Mt4LipbmkuQGPlxed86ugYU4IlP3zMDAoI4yFiiOVKRZKrhBLu5RY90jaWciUUcyEzKAxCSqVcKYyY017KsnBk0m8CTNVr9Jb4KuUJykP01IiYhbnIkemMZLW9HNeavSg9anLQjWw4sRu8VK48CLMC6t8IrvEola-B0fjCm81osbfouuk24lYrVYP9r911qQ8RXoiD3Y-e69opuSg4GluQz8WMw8OxqV2LtEBiah0bzQoHDKQjZg98P-Q4HlKEHhhsv170w5g_qpzd1vcXrdvdmDB4by6FO9dmBn2R3oP5tT78HnQ33dj9wPuD-ui |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+new+regression+estimator+with+neural+network+realization&rft.jtitle=IEEE+transactions+on+signal+processing&rft.au=Xia%2C+Youshen&rft.au=Leung%2C+H&rft.au=Xie%2C+Nan&rft.au=Bosse%2C+E&rft.date=2005-02-01&rft.issn=1053-587X&rft.volume=53&rft.issue=2&rft.spage=672&rft.epage=685&rft_id=info:doi/10.1109%2FTSP.2004.838929&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-587X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-587X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-587X&client=summon |